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Abstract 

The development of a techno-economic model to investigate the economic potential for recovering 

methane from virgin coal seams for electricity production at a study area in South Wales, UK, is 

presented. Utilizing the coal bed methane gas to fuel a combined cycle gas turbine (CCGT) will offer a 
low carbon option compared to fossil fuel fired power generation for a study area in South Wales. Cost 

effectiveness is analysed using a techno-economic model developed specifically for this purpose. The 

model considers both reservoir conditions and engineering factors to calculate the enhanced ultimate 

recovery (EUR), the capital expenditure (CAPEX) and the operational expenditure (OPEX) of the 
coupled CBM-CCGT process at the study area. The projected UK Navigant gas prices and the DECC 

electricity prices are then used to estimate the levelised costs of electricity (LCOE) and obtain the 

financial performance of the coupled CBM-CCGT process. Calculation results showed that the probable 
cost of electricity (LCOE) amounts to 37 £/MWh and the return on investment could be in the excess of 

77%. For the selected study area, the coupled CBM-CCGT process could potentially be an economic 

option for power generation.  
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Abbreviations/symbols 

 

𝑞𝑜:  Initial production 

𝑞𝑡:  Production rate 

£:  English Pounds 

£m:  Million English Pounds 

A:  Area 

CAPEX:  Capital Expenditure 

CBM:   Coal Bed Methane 

CC:  Carbon cost 

CCGT:   Combined Cycle Gas Turbine 

CF:  Cash flow 

CoI:  Cost of Investment  

COE:   Cost of Electricity 

d:  Days 

DECC:  Department of Energy and Climate Change in UK 

DR:   Discount Rate 

DTI:  Department for Trade and Industry 

E:  Percent of Efficiency 

EG:  Electricity Generation  

EIA:  Environmental Impact Assessment 

EUR:  Estimated Ultimate Recovery 

Gc:  Gas content of the coal 

GCP:  Gas Collection Point 

GCP:  Gas Collection Point 

GCU:  Gas Compression Unit 

GfI:  Gain from Investment 

GP:  Gas produced 

GSU:   Gas Storage Unit 

h:  Cumulative height of coal 

hr:  hours 

km2:  square kilometres  
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LCOE:  Levelised Cost of Electricity 

LR:   Loss ratio 

m:  meters 

mD:  millidarcy  

MW:  Megawatt  

MWhr:  Megawatt hour 

n:  Time period 

NEG:  Net Electricity Generation  

NG:  National Grid 

NPV:  Net Present Value 

OGIP:  Original Gas in Place 

OPEX:  Operational Expenditure 

OC:  Outgoing costs 

P10:   90% probability of meeting or exceeding the estimated proved volume 

P50:  50% probability of meeting or exceeding the estimated probable volume 

P90:   10% probability of meeting or exceeding the estimated possible volume 

PEDL:  Petroleum Exploration and Development Licences 

R:  Revenues 

RF:  Recovery factor 

ROI:  Return on Investment 

T:  Time period 

t:   Tonne 

TC:  Total Costs 

UK:  United Kingdom  

UoS:  Use of System 

ρc:  Density of coal 

𝑎:  Decline rate 

𝑛:  Years 
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1.0 Introduction 
Meeting the challenges of reduced carbon dioxide emissions and the provision of competitive energy 
costs is more important than ever. Combine these two vital objectives with maintaining the security of 

energy supply is considered vital and of strategic importance for Europe. In UK, natural gas forms a key 

part of the energy supply and is important not only for electricity production, but also for domestic 
heating, cooking and industrial production (DECC 2014). In recent years, the UK has become 

increasingly dependent on gas imports, with annual UK gas consumption of approximately 85 billion 

cubic meters; while the Government forecasts that nearly 70% of the UK’s gas supply will be imported 
by 2025. In 2012, the British Geological Survey (BGS) estimated that there are approximately 2,900 

billion cubic meters of onshore coal bed methane (CBM) in UK (DECC, 2013a). Even with a yield of 

10%, the potentially recoverable resources of CBM (at 290 billion cubic meters) could contribute 

significantly to safeguard the energy needs of the country for the next decades to come and until the 
transition to renewables. Today, there are a number of active CBM production sites in UK, including 

the one in Staffordshire and Airth in Scotland (DECC 2015b). Current success in the production of CBM 

in these areas shows that it could be implemented in other parts of the UK, including South Wales (Plaid 

Cymru Shadow Minister for Energy 2014).  

Coal bed methane is gas of natural origin formed as part of the geological process of coal generation, 
and is contained in varying quantities within coal (Rogers et al., 2007). CBM can be recovered by 

drilling into the coal seams, initially releasing water to lower the pressure and then allowing the 

desorption of the methane gas from the internal surfaces of the coal, where it is able to flow either as 

free gas or dissolved in water towards the production well at the surface. By controlling the release of 
pressure in the coal seam, methane can be captured (Rogers et al., 2007; Wang et al. 2011; Moore 2012). 

Occasionally, CBM extraction may need to be enhanced by hydraulic fracturing when insufficient 

natural permeability of the coal exists (Clarkson 2011). Concentration levels of methane recovered via 
these techniques can often exceed 95%, making the gas suitable for use as a direct replacement for 

conventional natural gas in pipeline networks. This gas can then be compressed and supplied to market 

(e.g. heating, chemicals, gas to liquids etc) (Khalilpour 2012). The high quality of the gas recovered 
from unmined coal seams also renders it suitable for replacing or supplementing conventional natural 

gas in a combined cycle gas turbine system (CCGT). A schematic illustration of the CBM-CCGT 

process is shown in Figure 1. Successfully developing a coal bed methane field requires prudently 

managing the technical as well as the economic aspects of the project. The profitability of a coal bed 
methane (CBM) project is site specific and is highly dependent on various geological and market 

dependant factors (Hammond 2011).  

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The coupled CBM-CCGT process. 

 

2.0 Objectives and methodology 
This study presents a transparent documentation of the development and application of a techno-
economic model to investigate the economic viability of methane recovery from unmineable coal seams 

and the subsequent electricity generation in a CCGT power plant. The techno-economic model 

developed for CBM-CCGT cost of electricity (COE) determination is controlled by geological, technical 
and market dependant model input variables adapted to site specific boundary conditions for any 

selected target area worldwide. As a case study, data from a well exploited site in the South Wales, UK 

is considered. Part of the techno-economic model is to predict the future gas production and electricity 

generation from a target site, evaluate the capital expenditure (CAPEX) and the operational expenditure 
(OPEX) of the coupled CBM-CCGT process and determine the levelised costs of electricity (LCOE). 

Statistical analyses with the use of Monte Carlo analysis were employed and the degree of certainty 

defined based on the following three scenarios: a) proved estimates (P10); b) probable estimates (P50); 
and c) possible estimates (P90). Cash flows for the different scenarios were also determined and 

compared based on the revenues obtained from selling electricity generated from the CBM-CCGT 

process to the national grid. The basic process layout for the developed techno-economic model of the 
coupled CBM-CCGT process is shown in Figure 2. A detailed description of the model and an 

application case study is presented in the following chapters.  

The innovation provided by the present study is the discussion of a coupling scheme allowing for 

integration connecting the various sub-processes to the surface processes up to the production of 

electricity. This procedure allows for flexible adaptation of variations in the model as well as allows the 

implementation of sensitivity studies which will be discussed in follow up publication.   
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Figure 2. Flow chart for the techno-economic model development.  
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3.0 Factors influencing the CBM investment in South Wales, UK   
 

3.1 Geology of the South Wales Coalfield 

The South Wales Coalfield (Figure 2) is situated within an asymmetrical syncline approximately 96 km 

East-West and 30 km North-South and covers an area of about 2,690 km2. It is an erosional remnant of 
a formerly extensive area of Carboniferous geology (Harris et al., 1996). The depth of the coalfield 

varies enormously across the entire area. In the east, the lowest coal seams do not reach depths greater 

than 60 m below Ordnance Datum (OD) while in the west (near Gorseinon) they are found at much 

greater depth exceeding 1,800 m below OD (Adams, 1967). The geology of South Wales distinctly 
displays a wide range of formations and rock exposures of varying ages and periods. The lithology of 

the area consists of Devonian formations, Carboniferous Limestones and Millstones formations and then 

the South Wales Coal Measures. The South Wales Coal Measures consist of: a) the Lower Coal 
Measure; b) the Middle Coal Measure; and c) the Upper Coal Measure. The Coal Measures are all of 

Carboniferous age and lie upon the Lower Carboniferous Limestones; which in turn lie upon the 

Devonian sandstone (Figure 3). The coal rank in the South Wales Coalfield varies from high volatile 

bituminous coals in the south and east crops to anthracite coals in the north-western part of the Coalfield 
(Bevins et al., 1996). The Lower Coal Measures can be observed to have more anthracitic coal seams 

compared to the Middle Coal Measures and the Upper Coal Measures. The Upper Coal Measures have 

more sub-bituminous ranked coal which are located at the southern part of the South Wales Coalfield 

(Bevins et al., 1996). 

 

Figure 3. A simplified geology of the South Wales Coalfield showing the locations of the Coal Measure 

outcrops 
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3.2 Reservoir conditions, policies and commercial opportunities in South Wales 

The gas recovery has a direct impact on the economics of a coal bed methane scheme. A sound resource 

base, ideally consisting of a few thick permeable coal seams with high content (>7m3/t) is required for 
successful coal bed methane development. The South Wales Coalfield is characterised by gassy coal 

seams with relatively high methane content (Jones et al. 2004). Based on 173 samples from 24 boreholes 

taken at an average depth of 702 m, the mean methane content was found to be 13.3 m3/t (Creedy, 1986). 
The average values derived from 18 anthracite coal samples taken from three boreholes were 18.3 m3/t 

at an average depth of 692 m (Creedy, 1986).  

Also, methane flow rates measured in seam boreholes in UK coal mines are generally 0.1 m3 per day 

per meter of the borehole length. In North Wales at the Point of Ayr Colliery, borehole flows as high as 

62 m3 per day per meter length have been encountered in virgin conditions (Creedy 1999). However, 
there is little evidence that such flows can be produced in other parts in Wales. Coal permeability is 

another factor that influences the profitability of the coal bed methane operation and links directly to the 

amount of gas production. Coal permeability depends on the maturity, the cleat system and its degree of 
openness or mineralisation. Discontinuities in the coal, such as micro-fractures at the matrix and cleats 

of the coal contribute to the permeability and therefore the recovery of coal bed methane. Discontinuities 

provide pathways for bulk fluid and gas to flow at faster desorption rates (Freij-Ayoub, 2012). 

According to Hunt and Steele (1991) and Hughes & Logan (1990), a natural permeability greater than 
1 mD is needed for the CBM operations to be economically attractive. The permeability of coal bed in 

the South Wales Coalfield ranges from 1 to 10 mD, which enforces the economic potential for 

recovering coal bed gas from this area (Shi and Durucan 2005). The permeability of coal seam can be 
further enhanced by hydraulic fracturing when and if necessary (Rogers et al., 2007) and in this case 

permeability can be up to 30 mD.  

There are a number of existing project developers, operators, producers and equipment manufacturers 

able to support the development of CBM in South Wales (DTI 2001). These local expertise and 

equipment manufacturers will potentially influence future CBM productions in the area as local supply 
of equipment will be a lot cheaper than importing equipment from other countries. Furthermore, for 

Wales, a variety of legislation covers the individual activities related to unconventional gas 

developments (National Assembly Wales, 2012). Petroleum Exploration and Development Licenses 
(PEDLs) are also awarded in a series of ‘rounds’ by the Department of Energy and Climate Change 

(DECC 2013a). Figure 4 shows the sites in South Wales where PEDLs were awarded to entitled 

companies during the 14th round on the 28th of July 2014.  
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Figure 4. Areas that have been awarded PEDLs in South Wales during the 14th Round in 2014 (Map 

updated on 9th of March 2015) (Oil and Gas Authority 2013a). 
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4.0 Case study description and basic model assumptions 
4.1 Study Area 

The area under investigation is a coal deposit of Carboniferous age with anthracite coals located on the 

upper reaches of the Neath and Dulais Valleys in the county of Neath Port Talbot, South Wales. The 

coal seams are suitable for conventional mining but there may be an option to exploit their CBM 
potential before mining them. For examination, seven deep wells (at average depth 600 m), well log 

data for all wells, more than 20 cross sections of the area as well as historical data from Coal Authority 

were considered.  

The ground is primarily forestry, under the ownership/lease of the Forestry Commission. The area is 
characterized by deep and dense faults (Figure 5). The largest discontinuity is a transcurrent fault that 

runs up the Neath Valley with a displacement in order of several kilometers.  

The two major rivers Neath and Dulais are the principal controlling drainage elements in the area (Figure 

5). There are also a few small rivers and streams that run across the hillside of the study area. The 

geological setting of the site is well defined due to historic borehole data. A cross-section of the study 

area is shown in Figure 6. 

 

  

 
Figure 5. Waterways and geological faults of the study area. 
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Figure 6. Cross section of the site. 
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4.2 Site selection criteria assumptions 

The site selection criteria were developed based on successes and failures of previous experiments and 

pilot studies (Jones et al. 2004; DECC 2013a; van Berger 2003; Bevin et al., 1996). The criteria take 
into account the site characteristics, coal quality parameters, depths, the geology and hydrogeology of 

the area as well as environmental restrictions on the site. These criteria highlight the merits and demerits 

of the selected parameters, their importance in site selection and their economic and environmental 
potentials. Using the site selection criteria shown in Table 1, site buffers were drawn and the coal 

resource area identified and estimated (Figure 7). The coal resource area found to be equal to 4.14 km2. 

 

Table 1. Assumptions for the site selection criteria for CBM operations 
Selection Criteria Value Reference 

Resource area Greater than 1 km2 Jones et al., 2004 
Gas content Greater than 8.4 m3/t  DECC, 2013a 

Seam thickness  Greater than 1.5 m  DECC, 2013a 

Depth of coal seams Greater than 500 m and less than 

1,000 m  

van Berger, 2003 

Coal rank Greater than Bituminous  Bevin et al., 1996 

Permeability of coal and bedrock Greater than 1 mD  DECC, 2013a 

Proximity to populated areas 1,000 m away  van Berger, 2003 

Proximity to underground mine workings 100 m away  van Berger, 2003 

Proximity to fault zones 500 m away for major fault; 

200 m away for minor fault 

van Berger, 2003 

Proximity to waterways 25 m away  van Berger, 2003 

Proximity to aquifers 1,000 m away van Berger, 2003 

 

 
Figure 7. Site buffers and the coal resource area. 

 

 



13 
 

4.3 Coal seams considered and assumed range of their properties 

Geological surveys show that the overall research area provides three coal seams suitable for coal bed 

methane which were investigated in the scope of the present study to ensure fuel supply for the CCGT 
plant for up to 41 years. The target coal seams are: a) the Eighteen Feet; b) the Nine Feet; and c) the 

Bute. The depth of the targeted coal seams ranges from 562 m to 623 m (ref. Figure 6). Desorption tests 

on twelve coal samples taken from the boreholes have been undertaken at the laboratory. From the 

results analysis it was found that the desorbed coal gas content ranges from 10.1 to 16.5 m3/t.  

 

4.4 Assumptions for the estimation of the gas in place  

Based on the geological and reservoir conditions, volumetric analysis undertaken to calculate the 

volume of the methane in the coal beds (McGlade 2013). The original gas in place (OGIP) that is trapped 

in the coal seams calculated from Eq. 1 (Rogers et al. 2007): 

OGIP = A × h × ρc × Gc     (1) 

, where A is the area (m2); h is the cumulative height of coal in the area (m); 𝜌𝑐 is the density of the coal 

(t/m3); and 𝐺𝑐 is the gas content of the coal (m3/t). Also, the amount of recoverable gas calculated using 

Eq. 2 (Rogers et al., 2007): 

EUR = OGIP  ×  RF (2) 

, where EUR is the enhanced ultimate recovery (m3), RF is the recovery factor and is equal to the ratio 

of the gas produced to the initial gas content (%). Due to the uncertainties in the reservoir parameters 
(e.g. coal seam thickness, recovery factor, gas content, depth of coal seams and methane drainage 

diameters), a probabilistic approach based on the Monte Carlo analysis (van Bergen et al., 2003) used 

for the estimation of the EUR. The amount of gas to be produced ranked according to the degree of 

certainty as follows: 

a) “Proved” there is a  90% probability of meeting or exceeding the estimated proved volume (P10); 

b) “Probable” there is a 50% probability of meeting or exceeding the estimated probable volume 

(P50); and  

c) “Possible” there is a 10% probability of meeting or exceeding the estimated possible volume 

(P90). 

 

4.5 Composition of coal bed methane and gas production rates assumptions 

Samples of coal bed methane gas were obtained directly from the vertical boreholes during and after 

drilling. The samples were analysed by gas chromatography for the presence of hydrocarbons (Airey 

1969). Methane in the gas varied from 95 to 99 percent; carbon dioxide from 0.1 to 2 percent. The 
majority of samples contained ethane, propane, and butane at concentrations below 2%. Very small 

concentrations of hydrogen and helium were found in some samples. Also, oxygen and nitrogen were 

present in very small concentrations, possibly as a result of air contamination. In the present study, it 
was assumed that the coal bed methane gas contains 97 percent of pure methane that can be compressed 

and fed via pipeline directly to fuel a CCGT.  

 

4.6 Infrastructure and planning assumptions 

Drilling of boreholes, installation of pipelines, gas collection points, storage tanks, and construction of 

roadways for access on site are some of the most important infrastructure facilities required for coal bed 
methane development. Borehole production may last for many years and often drilling is carried out 

sequentially throughout the life of the project. The cumulative gas production and the reservoir 

conditions of the site have been used to calculate the extent of the volumetric drainage. For the three 

scenarios considered in this study, a circular drainage pattern has been assumed. The radius of the 
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draining area ranged from 480 m to 650 m (Hosking et al. 2015; Clarkson 2013) with the majority of 

drilling to be undertaken in the first year.  

Moreover, it was assumed that for every five boreholes at least one gas collection point (GCP) is 

required. Figure 8 shows the locations of the boreholes for the three scenarios under investigation (i.e. 
P10, P50 and P90). The larger the methane drainage area, the lesser the number of boreholes to be drilled 

on site.  

Also, the water in the coal beds contributes to pressure in the reservoir that keeps methane gas adsorbed 

to the surface of the coal. This water must be removed during the gas extraction process by pumping in 
order to lower the pressure in the reservoir and stimulate desorption of methane from coal. As the amount 

of wells increases, the amount of water to be extracted will also increase. In the present study and since 

there were not past coal bed methane activities in the South Wales Coalfield, data from the Black warrior 

Basin in Alabama obtained. Based on 2,917 wells, the average water production was 58 barrels per day 
per well (assuming that 1 barrel contains 4.5 litters) (Rice and Nuccio 2000). The specification of such 

water abstraction have been used in the present study for the estimation of the size and number of pumps 

as well as for the waste water treatment facilities and fees for the water discharge. 

 

 
                                                     (a) 
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                                          (b) 

 

                                                (c) 

Figure 8. Spatial location of the boreholes for: a) P90 - 11 boreholes; b) P50 - 15 boreholes; c) P10 - 18 

boreholes. 

 

4.7 Electricity generation from CCGT assumptions 

The potential of recovering methane from the deep coal seams and feeding it into a 50 MW CCGT 

power plant has been examined. Technical data about the proposed CCGT power obtained from an 

existing 50 MW CCGT power plant located in Yorkshire and operating for the last 20 years. The 

technical characteristics of CCGT power plant are shown in Table 2. The expected electricity generation 
by the coupled CBM-CCGT process depends on the capacity of the power plant and the expected 

efficiency. The capacity and lifespan of the CCGT plant depends on the size of the CBM reserve. The 

electricity generation (EG) per year in MWh can be calculated by: 
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EG = PC  ×  d ×  hr ×  E (%) , (3) 

where EG is the electricity generation in (MWh), PC is the power capacity in (MW), d are the days of 

operation of the power plant(e.g. 365 for a year), hr the hours of operation of the power plant (e.g. 24 

hours per day) and E is the percent of efficiency of the power plant.  

 

In the present study, it was assumed that the electricity generation could range from 2.83 to 2.65 MWh 

per year for the P10 and P90 scenarios accordingly. 

 

Table 2. Key time periods and technical data for the CCGT power plant. 

CCGT Plant Data P90 P50 P10 Units 

Key Time 

Periods 

Total pre-development period 1 1 1 Years 

Construction period 1 1 1 years 

Plant Operating Period 20 15 10 years 

Technical 
Data 

Net power output 50 50 50 MW 

Net efficiency 65 63 61 % 

Average Load Factor 100 100 100 % 

Energy requirement for CCGT 2.03 1.48 0.954 1010 MJ 

Amount of Gas needed to be 
supplied over the lifespan 

4.84 3.52 2.27 108 m3 

Electricity Generation per year  2.85 2.76 2.67 105 MWh 

 

5.0 Calculation results and discussion 

5.1 Calculation of volumetrics  

To consider the range of reservoir conditions and engineering factors influencing the volumetrics 

(Equations 1 & 2), statistical distributions were defined for each of the input parameters. The evaluation 
of the enhanced ultimate recovery was performed via Monte Carlo analysis (Gray 1987; McGlade 2013). 

Table 3 shows the minimum values, most likely values, maximum values, and standard deviations 

defining the distributions of the input parameters. A combination of literature survey and site specific 
data obtained as part of the current work have been used to gain an understanding of the gas content of 

the perspective site in the South Wales coalfield. The minimum and maximum values are those obtained 

from experimental tests on coal samples obtained during drilling exploration. The most likely methane 

content was set to 15.65 m3/t (with a standard deviation of 0.455). Values of the recovery factor, RF, 
were taken from van Bergen et al. (2001). The value of the RF is related to the potential restrictions on 

the flow in the coal seam which in the South Wales coalfield are of particular low coal permeability 

(DECC, 2015a). This uncertainty can realistically be addressed through gaining more field experience 
in the region. Monte Carlo simulation for the effective gas storage capacity was performed and produced 

the results shown in Figure 10 and Table 4. Figure 9 shows the cumulative probability plot of the Monte 

Carlo simulation results for the effective methane storage capacity of the perspective site while the P10, 

P50 and P90 percentiles are indicated. From the calculations, the total proved effective storage capacity 
is 3.48 x 108 m3 (P10 scenario), with a probable capacity of 3.73 x 108 m3 (P50 scenario) and a possible 

capacity of 3.96 x 108 m3 (P90 scenario). These results have been calculated using the methodology 

described in Section 2. Also, the net efficiency of CCGT power plant ranged from 60.5% to 64.5% for 

the P10 and P90 scenarios accordingly (Parsons Brinkerhoff, 2011).  

 

Table 3. Summary of the input values used for Monte Carlo simulations of the key parameters used to 

evaluate the EUR and volumetrics. 
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Parameters Range Min Mean Max 
Standard 

deviation 

Normal 

Value 
Units 

Coal Seam 

Thickness (h) 
6.5 to 7.0 6.50 6.75 7.0 0.141 6.60 m 

Gas Content (Gc) 13.3 to 18.0  13.3 15.65 18.0 0.455 15.45 m3/t 

Recovery Factor 

(RF) 
50 to 60 50.0 55.0 60.0 2.836 54.81 % 

 

Table 4. Monte Carlo simulation results for the different parameters. 

 P90 P50 P10 Units 

Estimated Ultimate Recovery (EUR) 3.96 3.73 3.48 108 m3 

Average depth of boreholes 639 600 560 m 

Methane drainage diameter of the CBM boreholes 620 550 480 m 

Net efficiency of CCGT power plant 64.5 62.5 60.5 % 

 

 

Figure 9. Monte Carlo simulation results for the estimated ultimate recovery (EUR) at the perspective 

site in South Wales Coalfield: a) Cumulative probability of the EUR showing the P10, P50 and P90; b) 

Histogram of the Monte Carlo simulation results  

 

5.2 Decline curve analysis for the gas production and lifespan of the coupled CBM-CCGT 

process  

For the estimation of future gas production, the decline curve analysis using the exponential decline 

technique used (Mazumder & Wolf 2004): 

 qt =  qoe−aT ,         (8) 

where qt represents the production rate (m3/day); qo is the initial production (m3/day); a is the decline 

rate (m3/day); T is the time in days. The decline rate (a) and the time rate (T) calculated using equation 

8. Also, the loss ratio (LR) and the cumulative gas produced (GP) evaluated using equations 9 and 10 

below: 

 

 LR =  
qo − q𝑇

qo
= 1 − e−aT          (9) 

 

 GP =  
qo − qT

a
 

        (10) 
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Results from the gas production decline curve analysis used to obtain the number of boreholes to be 

drilled each year. Also, the total amount of gas produced for each borehole over the lifespan of the 

project calculated by dividing the estimated ultimate recovery (EUR) to the number of boreholes drilled.  

 

Since there are no past CBM activities in Wales and gas flow rates from coal seams are limited (Creedy 
1999), for the purpose of this study, gas production rates obtained from the Black Warrior Basin in 

Alabama, USA. According to Jones et al. (2004) and Creedy (1994), Black Warrior Basin has similar 

characteristics to that of the South Wales Coalfield in UK. Using Eq. 8 to Eq. 10, isotherms presenting 
the logarithmic gas production rate (qT) against time (t) have been created and the total amount of gas 

recovered per year estimated (Table 10). From Table 5, the probable amount of gas to be produced over 

the entire life of the CBM process found to be equal to 3.49 x 107 m3/t. Also, the cumulative coal bed 

methane production and the lifespan estimated using the results from the gas production decline curve 
analysis (Figure 10). From the calculations, the lifespan for the coupled CBM-CCGT process found to 

range from 41 to 25 years for the P90 and P10 scenarios accordingly (Table 6).  

 

Table 5. Recoverable coal bed methane for P10, P50 and P90 scenarios studied 

Gas Production  P90 P50 P10 Units 

Total gas produced per borehole over the lifespan 3.60 2.49 1.93 107 m3/t 

Gas produced per borehole for the first year only 2.02 1.80 1.70 106 m3/t 

 

Figure 10. Cumulative gas production rate over the lifespan of the CBM-CCGT process. 

 

Table 6. Lifespan for the coupled CBM-CCGT process 

 P90 P50 P10 Units 

The lifespan of the CBM-CCGT process 41 37 25 Years 
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Time for selling electricity 20 15 10 Years 

Time for producing gas 41 37 25 Years 

Time for selling gas only 21 22 15 Years 

 

5.3 Capital Expenditure (CAPEX) 

CAPEX includes the total funds needed to acquire infrastructure and equipment for the CBM-CCGT 

development. CAPEX estimated using the reservoir and geological property conditions of the site and 

cost of the infrastructure and equipment shown in Table 7 and 8.  

Also, for each of the P10, P50 and P90 scenarios and from Figure 8, the length of the pipelines estimated. 

The cost for the construction of the pipelines is shown in Table 9. The cost of the fracking equipment 

and the number of water pumping units required for each scenario estimated based on the number of 

boreholes to be drilled and results are shown in Table 10. The CAPEX for CBM production is shown in 
Figure 11. Also, the CAPEX for the CCGT power plant includes licensing, engineering, procurement, 

construction works and is shown in Table 11.  

 

Table 7. The costs of infrastructure and equipment (CAPEX) for CBM development 

Infrastructure and Equipment (CAPEX) Costs Units Reference 

Equipment Fracking Equipment 30,000 £/unit Energybiz, 2014 

Water Pumping Unit 20,000 £/unit Energybiz, 2014 

Infrastructures Road Construction 1000 £/m Archer et al., 2006 

Gas Collection Points (GCPs) 87,000 £/unit Zhou et al., 2013 

Gas compression unit (GCU) 1,000,000 £/unit Zhou et al., 2013 
Methane Pipelines  116 £/m Archer et al., 2006 

Gas Clean up Facility  50,000 £/unit Zhou et al., 2013 

Gas Storage tanks  100,000 £/unit Zhou et al., 2013 

Flare stack  50,000 £ Zhou et al., 2013 

Others Cost of decommissioning boreholes 50,000 £/unit  

Safety, monitoring, licenses and 

verification costs  13,000 £ DECC, 2015b 
Environmental Impact Assessment 20,000 £ Oosterhuis, 2007 

Other infrastructures  100,000 £  

 

Table 8. The capital expenditure (CAPEX) for the CCGT development 

 CCGT Capital Costs (CAPEX) Costs Units Reference 

Pre-licensing, technical and design  12 £/kW Parsons Brinkerhoff, 2011 
Regulatory, licencing and public enquiry 0.4 £/kW Parsons Brinkerhoff, 2011 

Engineering, procurement and construction  640 £/kW Parsons Brinkerhoff, 2011 

Infrastructure  16.5 £/kW Parsons Brinkerhoff, 2011 

 

Table 9. Cost of constructing the pipeline network (to be read in conjunction with Table 1) 

 P90 P50 P10 

a) Distance of pipelines from the Gas 

Collection Point (GCP) to Boreholes (m) 
5,437 m 7,822 m 8,871 m 

Costs £630,683 £907,298 £1,029,009 

b) Distance of pipelines from GCP to Gas 
Storage Unit (GSU) (m) 

4,388 m 4,817 5,008 m 

Costs £508,972 £558,763 £580,892 
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c) Distance from GSU to CCGT Power 

Station and National Grid (NG) 
37,000 m 37,000 m 37,000 m 

Costs £4,292,000 £4,292,000 £4,292,000 

Total Costs £5,431,655 £5,758,061 £5,901,901 

 

Table 10. Cost of water pumping unit and fracking equipment (to be read in conjunction with Table 1) 

 P90 P50 P10 

Water Pumping Unit 11 15 18 

Costs £220,000 £300,000 £360,000 
Fracking Unit 11 15 18 

Costs £330,000 £450,000 £540,000 

 

 Table 11. CAPEX for the CCGT power plant only. 

 

 

 

 

Figure 11. CAPEX for the CBM development. 

 

5.4 Operational Expenditure (OPEX) 
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CAPEX for CCGT Costs 

Costs of pre-licensing, technical and design £600,000 

Costs of regulations, licencing and public enquiry £20,000 

Costs of engineering, procurement and construction £32,000,000 

Costs of infrastructure  £825,000 
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OPEX includes the total funds required for ongoing operations such as well drilling, hydraulic 

fracturing, water extraction from the boreholes and water treatment facilities, and the overall 

maintenance of the CBM-CCGT infrastructure facilities. Costs shown in Table 12 and Table 13 have 

been used for the estimation of the OPEX. Such costs are representative for the UK market. 

Drilling cost is highly dependent on the depth of the target coal seams and the number of boreholes. In 

this study, the majority of the drilling work considered to be undertaken at the first year. The cost of 

hydraulic fracturing will also depend on the depth of the target coal seams, the reservoir properties (e.g. 
permeability) and the amount of fracking material (e.g. fracking fluid, propends etc) to be injected in 

the boreholes. The cost of pumping water out of the well will depend primarily on the local geological 

conditions. Based on the amount of water to be extracted, the size of the pumps determined. Based on 
historic data from past CBM exploration,  it was assumed that the amount of water to be abstracted from 

each borehole per day could be on average 58 barrels per day (Rice and Nuccio 2000). For each of the 

scenarios studied, the total cost of drilling, fracking and extracting water is shown in Table 14. Also, the 

maintenance cost assumed to be equal to 10% of the actual costs for each equipment and infrastructure 
facility. Figure 12 shows the total OPEX for the CBM development over the entire lifespan of the 

project. From Figure 12, drilling of the boreholes and maintenance costs are by far the largest. Table 15 

shows the OPEX for the CCGT process and includes the operating costs and maintenance costs. 

 

Table 12. The cost of operations per unit (OPEX). 

Operations and Costs Costs Units Reference 

Drilling boreholes  556 £/m - 

Fracking per meter depth along the borehole 58 £/m Energybiz, 2014 

Fracking fluid 5.50 £/ m3 Energybiz, 2014 

Proppant  40 £/ m3 Energybiz, 2014 

Water pumping 0.03 £/ m3 SouthWestWater, 2015 

Labour  300,000 £/year - 

Electricity for general purposes 10,000 £/year DECC, 2015b 

Fuel for water pumps 10,000 £/year DECC, 2015b 

Water disposal (no treatment)  50,000 £/year SouthWest Water, 2015 

Remediation costs (one off) 100,000 £ DECC, 2013a 

 

Table 13. The costs of operations for a CCGT. 

CCGT Operating Costs (OPEX)  Costs  Units References 

Operating and Maintenance fixed fees 23,182 £/MW/year Parsons Brinkerhoff, 2011 

Operating and Maintenance Variable fees 0.100 £/MWh Parsons Brinkerhoff, 2011 

Insurance 2,727 £/MW/year Parsons Brinkerhoff, 2011 

Connection and UoS (Use of System) charges 1,484 £/MW/year Parsons Brinkerhoff, 2011 

Carbon Costs  1.0 £/MWh Parsons Brinkerhoff, 2011 

 

Table 14. The costs of drilling, fracking and extracting water for each CBM reserves. 

OPEX costs for CBM P90 P50 P10 

Costs of drilling boreholes (£m) 3.88 4.29 4.10 

Costs of Fracking (£m) 0.54 0.66 0.64 

Costs of water Extractions (£m) 1.35 1.67 1.35 
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Figure 12. The OPEX for CBM development. 

 

Table 15. The OPEX for CCGT power plant only. 

OPEX for CCGT P90 P50 P10 

Costs of Operating and Maintenance (Fixed) (£m) 23.2 17.4 11.59 

Costs of Operating and Maintenance (Variable) (£m) 0.57 0.41 0.26 

Costs of Insurance (£m) 2.73 2.05 1.36 

Costs of Connection and UoS (Use of System) (£m) 1.48 1.11 0.74 

Carbon Costs (CC) (according to DECC) (£m) 48 31 16 

 

5.5 Cost of investment (CoI)  

Cost of investment includes the funds required for the planning period as well as for the OPEX for the 
first year of the project. Eq. 3 shows the cost of investment (CoI) for a CBM-CCGT includes both the 

total CAPEX and OPEX.  

CoI = CAPEXn + OPEXn , (3) 

where n is equal to the time period in years.  

 

The costs of investment is shown in Table 16 and has been calculated by adding the CAPEX and OPEX 

for the coupled CBM and CCGT process. The discount rate estimates for coal bed methane operations 
are subject to a significant degree of uncertainty in UK. The approach for estimating the future evolution 

of discount rates relies on high-level policy scenarios and this is not part of this study. The discount rate 

considered in this study is equal to 5%. Although a 5% discount rate might be adequate for government, 
it would not possibly be adequate for any company. However, uncertainties and assumptions made in 

the model can be asses in the context of a sensitivity study and quantify the potential risk; such studied 

are not part of this paper. The NPV total costs estimated using the cost of investment and investment 

per year.  
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Table 16. The cost of investment and the investment per year 

 P90 P50 P10 

Cost of investment (£m) 46 47 46 

Investment per year for CBM-CCGT (£m) 4.75 4.55 4.21 
Investment per year for CBM only (£m) 0.95 0.999 1.01 

 

5.6 Net present value and Levelised Costs of Electricity (LCOE) 

 

The net present value (NPV) of electricity generation (EG) calculated by (DECC 2013b): 

 

𝑁PV 𝐸𝐺 =  ∑
NEGn

(1 + DR)n
n

 
      (5) 

, where NEG is the net electricity generation, n is equal to the time period and the discount rate (DR) is 

the interest rate in percentages. The expected outputs are expressed in net present value terms, resulted 
in discounted future costs, when comparing to the output today. The expected costs are also expressed 

in net present value terms, resulted in discounted future costs, when compared to costs today. The sum 

of net present value (NPV) of the total expected costs (TC) of developing a CCGT for each year is: 
 

NPVCBM−CCGT  =  ∑
(CAPEX + OPEX )n

(1+DR)nn , 

 

(6) 

where DR is the discount rate. According to the DECC (2013b), the levelised cost of electricity 

generation is the discounted lifetime cost of ownership and use of a generation asset, converted into an 

equivalent unit of cost of generation in £/MWh.  
 

 

The levelised cost of the CCGT is the ratio of the total costs of a generic CCGT plant (including both 
CAPEX and OPEX), to the total amount of electricity expected to be generated over the plant’s entire 

lifetime. Both are expressed in net present value terms. This means that future costs and outputs are 

discounted, when compared to costs and outputs today. The levelised cost of electricity (LCOE) 

expressed by: 
 

LCOE =  
𝑁𝑃𝑉𝑇𝐶

𝑁𝑃𝑉𝐸𝐺
 , 

 

(7) 

where NPV of TC is the net present value of the total costs and NPV of EG is the net present value  

(NPV) of electricity generation. The levelised costs relates only to those costs accruing to the owner (or 
operator) of the asset (DECC 2013b). 

 

The levelised costs of electricity (LCOE) calculated by dividing the NPV total costs by the NPV 

electricity generation. The total NPVs and the LCOE for each CBM reserves are shown in Table 17. 

The LCOE for a typical CCGT power plant in the UK is in the range of 70 to 80 £/MWh (DECC 2013b). 
The LCOE in this study is lower and ranges from 34 to 42 £/MWh since only a 50 MW capacity CCGT 

power plant has been considered. 

 

Table 17. The NPVs and LCOE for each CBM reserves. 

 P90 P50 P10 

NPV total costs (£m) 82.6 77.2 68.1 
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NPV electricity generation (106 MWh) 2.41 2.1 1.6 

LCOE (£/MWh) 34.3 37.1 41.8 

 

5.7 Revenues (R) and Cash Flows (CF) 

The amount of gas to be fed to a CCGT power plant per year is fixed. Depending on the gas production 
flow rates, there may be that a significant amount of the yearly produced gas will be fed to the CCGT 

while the remaining gas will be sold to the national gas grid. Therefore, revenues may well arise from 

both: a) the electricity to be produced by the CBM-CCGT process; and b) the surplus gas which will be 
fed into the national gas grid (Figure 1). Effectively, the electricity produced will be sold to the national 

electricity grid according to the wholesale electricity price per year whereas the remaining gas produced 

will be sold to the national grid according to the market price of gas. Future gas prices can be derived 
from the projections available by Navigant (UK prices) and shown in Figure 13. In 2014, the gas price 

was £0.24 per m3 (DECC 2013b). The increase in the future gas prices are due to the projected yearly 

inflations, the growth in economy and the growth in gross domestic product (GDP) (Navigant 2014). 

The wholesale electricity prices projected by DECC (2013b) can be used to calculate the revenues from 

selling the electricity generated from the coupled CBM-CCGT (Figure 14).  

Cash flow analysis should also be carried out to determine the cumulative gains from the revenues made 

after deducting the yearly outgoing costs, tax and insurance (Rogers et al., 2007). The cumulative cash 

flow (CF) at a given time calculated using Eq. 11: 

CFn =  ∑(Rn − OCn) ,

n

 
(11) 

 

where R are the revenues (or the total amount of cash the business receives from customers as payment 

for use of gas), OC are the outgoing costs and n is the time period.  

 

 

Figure 13. Projected UK Gas prices (Navigant, 2014). 
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Figure 14. Projected wholesale electricity prices (DECC 2013b). 

 

Revenues from selling electricity and coal bed methane to the national grid have been calculated and 

are summarised in Figure 15. Revenues from selling electricity to the national grid estimated using the 

DECC wholesale electricity prices (DECC 2013a). Also, the revenues from selling the excess coal bed 
methane  have been determined using the Navigant UK gas prices (Navigant 2014). From Figure 16, for 

the different P10, P50 and P90 scenarios studied, revenues described by a declining trend which follows 

the production of coal bed methane and electricity generation trends obtained. Also, Figure 16 shows 
the overall NPV of the project starting from CAPEX in year zero and the cumulating the subsequent 

annual cash flows multiplied by the discount factor (1/(1+DR))t. Also, the yearly investment, 20% VAT 

have been deducted from the revenues. From the results analysis it was found that for the P90 scenario, 
payout obtained after four years and the cumulative profits obtained over the project life are £100 million 

(Figure 12).  
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Figure 15. Revenues from selling electricity and coal bed methane to the national grid. 

 

 

 
Figure 16. Overall NPV for the project for each CBM reserves studied. 

 

 

5.8 Return on investment (ROI) 

Return on investment (ROI) used to determine the amount of additional profits produced due to a certain 

investment. ROI is commonly used to compare different scenarios for investments and assess the one to 

produce the greatest profit and benefit. The ROI calculated using Eq.12: 

 

ROI (%) =
GfI − CoI

CoI 
 x 100, 

        (12) 

where GfI is the gain from investment and CoF is the cost of investment. In Equation 12, "Gain from 

Investment” refers to the proceeds obtained from the sale of the investment of interest. Because ROI is 

measured as a percentage, it can be easily compared with returns from other investments, allowing one 

to measure a variety of types of investments against one another. 

 

For each of the three scenarios studied, the return on investment calculated and comparisons made. First, 

the cost of investment needed to start the CBM-CCGT was estimated and then it was used to calculate 

the ROI according to the Eq. 12. The results are shown in Table 18. For the three scenarios studied, the 

ROI ranged from 40% to 116% while the probable ROI found to be equal to 78%. 
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Table 18. The return on investment (ROI) for each of the CBM reserves. 

 P90 P50 P10 

Return on Investment (ROI) (%) 116% 78% 40% 

 

6.0 Conclusions  

The development and application of a dynamic techno-economic model for calculating the return on 

investment for a coupled CBM-CCGT operation at a study area in the South Wales Coalfield is 
presented. A coal resource area was selected based on a series of site selection criteria. Statistical 

analysis on the reservoir parameters (i.e. thickness of the coal seams, recovery factor and gas content) 

have been undertaken. Using results from Monte Carlo simulations the enhanced ultimate recovery 

(EUR) estimated for the three scenarios: a) P10 - possible; b) P50 - probable; and c) P90 - proved values. 
Also, the revenues for utilising the recoverable coal bed methane to generate electricity by a CCGT 

power plant and selling the electricity generated to the national electricity grid has been calculated.  

The economics of the CBM are highly site specific depending upon the reservoir quality and cost/price 

relationships found in each individual basin and specific project. In this study, every effort made to make 
this analysis on basis using common assumptions. The process design and parameter value choices 

underlying this analysis are mainly based on public domain literature. For these reasons, these results 

are not indicative of potential performance, but are meant to represent the most likely performance given 

the current state of public knowledge. 

At the perspective site, for the P50 scenario, results from the overall techno-economic model show that 
the coupled CBM-CCGT development can yield a cash flow profit of £83 million in 37 Years. This 

results in return on investment of 77.6% based on an investment of £47 million for the first year. Also, 

the levelised costs of electricity (LCOE) calculated and found to range from 34.3 to 41.8 £/MWh 
accordingly. For the selected study area, the coupled CBM-CCGT process is considered as an economic 

option for power generation.  

The methodology presented in this paper can be applied to any new or emerging coal bed methane 

development project to assist in quantification of the economics. In the future, a sensitivity study will 
be undertaken with the aim to provide and evaluate the overall economic viability of South Wales CBM 

resource and the factors with most impact on the economic viability of CBM resource.  
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