

This is a repository copy of Influence of column shear failure on pushover based assessment of masonry infilled reinforced concrete framed structures: A case study.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/id/eprint/144588/</u>

Version: Accepted Version

### Article:

Cavaleri, L, Di Trapani, F, Asteris, PG et al. (1 more author) (2017) Influence of column shear failure on pushover based assessment of masonry infilled reinforced concrete framed structures: A case study. Soil Dynamics and Earthquake Engineering, 100. pp. 98-112. ISSN 0267-7261

https://doi.org/10.1016/j.soildyn.2017.05.032

© 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

#### Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

# **FIGURES**



Figure 1. Effect of geometrical irregularities in distribution of infills: *a*) Adapazari-Turkey (1999); *b*) L'Aquila-Italy (2009).



Figure 2. Local failures of RC frames due to the interaction with infills: *a*) Failure of a joint; *b*) Failure of a column end;

c) Failure of column and joint.



Figure 3. Structural plan of the floors with location of infills and indication of their typology.



Figure 4. Force-displacement relationship for the equivalent struts.



Figure 5. Geometrical parameters for the identification of w.



Figure 6. Force – drift relationships adopted for the equivalent struts  $T_1$ ,  $T_2$ ,  $T_3$  and  $T_4$ .



Figure 7. 3D view of the structural model.



Figure 8. Capacity and demand spectra in acceleration against displacement format.



**Figure 9**.  $R_{\mu\nu}\mu$ -*T* relationships for the evaluation of the inelastic demand spectrum for an assigned value of  $\mu_r$  and three different peak strength – ultimate strength ratios as proposed by Miranda and Bertero (1994) and Dolsek and Fajfar

(2004)



Figure 9-10. Critical sections subjected to additional shear force due to the presence of the infills.



**Figure 1011.** Shear distribution coefficients  $\alpha_{CSE}$  vs.  $\psi$  factor at  $\ell/h=1$  and  $\ell/h=2$ .



Figure 11 12. Near collapse LS elastic response spectrum in ADRS format.



Figure 12 13. Comparison of dynamic response of BF and IF models: *a*) Natural periods of the first 3 modes; *b*)

Participating mass ratios.



Figure 13 14. BF and IF pushover analysis for: a) Modal distribution; b) Uniform distribution.



Figure 14 15. Distribution of drift demand for IF and BF cases.



Figure 16. Bilinear equivalent capacity curves.



Figure 15 17. Assessment of the capacity of BF and IF in ADSR format.



Figure 16 18. Comparison between shear demand and capacity of columns according to IF+Local model: *a*) Pushover along X direction; *b*) Pushover along Y direction.



Figure 19. Comparison between shear demand and capacity of columns according to IF model: *a*) Pushover along X direction; *b*) Pushover along Y direction.



**Figure 20**. Comparison between shear demand and capacity of columns according to BF model: *a*) Pushover along X direction; *b*) Pushover along Y direction.



Figure 21. Localization of the first shear failure on the capacity curve.

## **TABLES**

| Dimensions       | A's           | A             |                                                                                                            |
|------------------|---------------|---------------|------------------------------------------------------------------------------------------------------------|
| B X H (cm) (Top) |               | (Bottom)      | Beam connections                                                                                           |
| First            | storey        |               |                                                                                                            |
| 50x40            | 6Φ14          | 6Φ14          | 9-15 15-19 19-22 22-25 25-28 28-31 31-34 34-37 37-40 11-17 17-20 20-23 23-26 26-29 29-32 32-35 35-38 38-41 |
| 50x40            | 5 <b>Φ</b> 14 | 5 <b>Φ</b> 14 | 1-2 2-3 3-4 4-5 5-6 18-21 21-24 24-27 27-30 30-33 33-36 36-39 39-42                                        |
| 50x45            | 5 <b>Φ</b> 14 | 5 <b>Φ</b> 14 | 7-8 8-9 9-10 10-11 11-12                                                                                   |
| 50x50            | 7Φ16          | 4 Φ 16        | 5-11 6-12                                                                                                  |
| 50x50            | 5 <b>Φ</b> 14 | 5Φ 14         | 13-14 14-15 15-16 16-17 17-18 23-24 29-30 34-35 35-36 41-42 7-13 12-18                                     |
| 50x60            | 5 <b>Φ</b> 16 | 3 <b>Φ</b> 16 | 22-23 28-29 40-41 1-7                                                                                      |
| 50x75            | 6Φ14          | 4Φ14          | 3-9.                                                                                                       |
| Secon            | d storey      |               |                                                                                                            |
| 50x40            | 6Φ14          | 6Φ14          | 9-15 15-19 19-22 22-25 25-28 28-31 31-34 34-37 37-40 11-17 17-20 20-23 23-26 26-29 29-32 32-35 35-38 38-41 |
| 50x40            | 5 <b>Φ</b> 14 | 5 <b>Φ</b> 14 | 1-2 2-3 3-4 4-5 5-6 18-21 21-24 24-27 27-30 30-33 33-36 36-39 39-42                                        |
| 50x45            | 5 <b>Φ</b> 14 | 5 <b>Φ</b> 14 | 7-8 8-9 9-10 10-11 11-12 15-16 16-17 17-18                                                                 |
| 50x50            | 5 <b>Φ</b> 14 | 5Φ 14         | 13-14 14-15 23-24 29-30 35-36 41-42 7-13 5-11 6-12 12-18                                                   |
| 50x60            | 5 <b>Φ</b> 16 | 3 <b>Φ</b> 16 | 22-23 28-29 34-35 40-41 1-7 3-9                                                                            |
| Third            | storey        |               |                                                                                                            |
| 40x40            | 4Φ14          | 4Φ14          | 17-18 23-24 29-30 35-36 41-42                                                                              |
| 40x45            | 6Φ14          | 6Φ14          | 17-20 20-23 23-26 26-29 29-32 32-35 35-38 38-41                                                            |
| 40x45            | 4Φ14          | 4Φ14          | 15-19 19-22 22-25 25-28 28-31 31-34 34-37 37-40 18-21 21-24 24-27 30-33 33-36 36-39 39-42                  |
| 40x60            | 4Φ14          | 4Φ 14         | 15-17 23-23 28-29 34-35 40-41                                                                              |

## Table 1. Typical reinforcement of beam ends (diameters expressed in mm)

Table 2. Typical reinforcement of columns (diameters in mm)

| Dimensions<br>B X H (cm) | Type*         | A <sub>s,B</sub> | A <sub>s,H</sub> |     |
|--------------------------|---------------|------------------|------------------|-----|
|                          | First storey  |                  |                  |     |
| 50x70                    | A             | 6Φ20             | 6Φ20             |     |
| 50x70                    | В             | 6Φ20             | $4 \Phi 20$      | В   |
| 50x60                    | А             | 6Φ20             | 4Φ20             | **  |
| 50x60                    | В             | 5Φ 20            | $4 \Phi 20$      | ••• |
| 50x50                    | В             | 4Φ18             | 4Φ18             |     |
|                          | Second storey |                  |                  | ••  |
| 50x60                    | А             | 6Φ20             | 4Φ20             |     |
| 50x50                    | В             | 4Φ18             | 4Φ18             | ••  |
| 40x50                    | А             | 4Φ18             | 4Φ18             |     |
| 50x60                    | С             | 4Φ18             | 6Φ18             |     |
|                          | Third storey  |                  |                  |     |
| 40x50                    | А             | 4Φ18             | 4Φ18             |     |
| 40x40                    | А             | 4Φ18             | 4Φ18             |     |

\*This column indicates different reinforcement typologies for cross sections having same dimensions.

Table 3. Classification of infills typologies

|                      | Typolog     | ies of infill |      |      |
|----------------------|-------------|---------------|------|------|
| Geometrical features | T1          | T2            | T3   | T4   |
| Length (m)           | 2.70 - 3.40 | 3.40 - 4.30   | 6.90 | 6.90 |
| Height (m)           | 3.40        | 3.40          | 3.40 | 3.40 |
| Openings             | Yes         | Yes           | No   | Yes  |

| Table 4. Experimental mechanical | parameters of masonry | y infills. |
|----------------------------------|-----------------------|------------|
|----------------------------------|-----------------------|------------|

| Infill type | <b>E</b> m | <b>G</b> m | fvom  |
|-------------|------------|------------|-------|
|             | [MPa]      | [MPa]      | [MPa] |
| IF          | 6450       | 2540       | 0.36  |

Table 5. Parameters identifying equivalent strut constitutive laws.

| Infill typology | $\alpha - \ell / \ell$ | w/d        | $F_1$  | $F_2$ | $\delta_l$ (mm) | $\delta_2(mm)$ | $\delta_u (mm)$ |
|-----------------|------------------------|------------|--------|-------|-----------------|----------------|-----------------|
| initia typology |                        | <i>w/u</i> | (kN)   | (kN)  | $D_{1}(\%)$     | $D_{2}(\%)$    | $D_u$ (%)       |
| T1              | 0.26                   | 0.231      | 151.5  | 275.4 | 0.41            | 3.17           | 25.37           |
| ••              | 0.20                   | 0.201      | 10110  | 270.1 | 0.020           | 0.150          | 1.20            |
| T)              | 0.35                   | 0 103      | 148 65 | 2/0.5 | 0.46            | 3.63           | 29.06           |
| 14              | 0.55                   | 0.175      | 140.05 | 247.5 | 0.019           | 0.150          | 1.20            |
| Т2              | 0.00                   | 0 273      | 307.4  | 558.0 | 0.66            | 9.15           | 91.50           |
| 15              | 0.00                   | 0.275      | 507.4  | 556.9 | 0.022           | 0.300          | 3.00            |
| <b>T</b> 4      | 0.25                   | 0 177      | 100.41 | 2625  | 0.66            | 4.57           | 36.60           |
| 14              | 0.35                   | 0.177      | 199.41 | 302.5 | 0.022           | 0.150          | 1.20            |

Table 6. Spectral parameters.

| Limit state        | PGA   | F <sub>0</sub> | T <sub>c</sub> * | S     | TB    | Tc    | TD    |
|--------------------|-------|----------------|------------------|-------|-------|-------|-------|
| Near Collapse (NC) | 0.359 | 2.411          | 0.363            | 1.180 | 0.177 | 0.532 | 3.036 |

Table 7. Parameters for the equivalent SDOF system bilinear response.

|                                             | DIR. X MODAL | DIR. X UNIF | DIR. Y MODAL | DIR. Y UNIF |
|---------------------------------------------|--------------|-------------|--------------|-------------|
| $\mathbf{k}^{*}[kN/m]$                      | 399525.72    | 515533.64   | 737682.82    | 976385.62   |
| <b>m</b> <sup>*</sup> [kNs <sup>2</sup> /m] | 1110.59      | 1110.59     | 1389.29      | 1389.29     |
| $\mathbf{T}^{*}[\mathbf{s}]$                | 0.331        | 0.291       | 0.273        | 0.237       |
| $\mathbf{F}^{*}_{y}[kN]$                    | 4106.292     | 4900.911    | 5204.514     | 5656.083    |
| <b>d</b> <sup>*</sup> <sub>y</sub> [m]      | 0.010        | 0.010       | 0.007        | 0.006       |
| $S_{ay}[g]$                                 | 0.370        | 0.441       | 0.375        | 0.407       |
| $\Gamma_1$                                  | 1.2          | 28          | 1.32         | 2           |

| Table 78. Shear distribution coefficient for the infills and related parameter |
|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------|

| Infill typology | λ*   | <i>fv0m</i> (MPa) | ξ   | <b>A</b> CSE |
|-----------------|------|-------------------|-----|--------------|
| <b>T1</b>       | 1.59 | 0.36              | 1.0 | 1.25         |
| T2              | 1.25 | 0.36              | 1.0 | 1.36         |
| Т3              | 0.92 | 0.36              | 1.0 | 1.51         |
| <b>T4</b>       | 0.92 | 0.36              | 1.0 | 1.51         |

Table 89. Geometrical properties of ground level columns.

| Column    | b    | h    | d    | $A_s/i$    | $\rho_l$ |
|-----------|------|------|------|------------|----------|
| Туре      | (mm) | (mm) | (mm) | $(mm^2/m)$ | -        |
| 50x 50 B  | 500  | 500  | 470  | 0.4        | 0.0122   |
| 50 x 60 A | 500  | 600  | 570  | 0.4        | 0.0147   |
| 50 x 60 B | 500  | 600  | 570  | 0.4        | 0.0167   |
| 50 x 70 A | 500  | 700  | 670  | 0.4        | 0.0179   |
| 50 x 70 B | 500  | 700  | 670  | 0.4        | 0.0144   |