eprints@whiterose.ac.uk

(A Whlte Rose https://eprints.whiterose.ac.uk

. o
Q\J) ReseCerh On"ne Universities of Leeds, Sheffield and York

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/144583/

Version: Accepted Version

Book Section:

Sakurai, D, Ono, K, Carr, H et al. (2020) Flexible Fiber Surfaces: A Reeb-Free Approach.
In: Topological Methods in Data Analysis and Visualization V. Mathematics and
Visualization book series. Springer International Publishing. ISBN: 978-3-030-43035-1.

https://doi.org/10.1007/978-3-030-43036-8 12

© Springer Nature Switzerland AG 2020. This is an author accepted version of a paper
published in Sakurai D., Ono K., Carr H., Nonaka J., Kawanabe T. (2020) Flexible Fiber
Surfaces: A Reeb-Free Approach. In: Carr H., Fujishiro I., Sadlo F., Takahashi S. (eds)
Topological Methods in Data Analysis and Visualization V. TopolnVis 2017. Mathematics
and Visualization. Springer, Cham. Uploaded in accordance with the publisher's self-
archiving policy.

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ﬁ \‘Eﬁ’/ University of

UNIVERSITY OF LEEDS S Sheffield



mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/978-3-030-43036-8_12
https://eprints.whiterose.ac.uk/id/eprint/144583/
https://eprints.whiterose.ac.uk/

Flexible Fiber Surfaces: A Reeb-Free Approach

Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Abstract The fiber surface generalizes the popular isosurface to multi-fields, so
that pre-images can be visualized as surfaces. As with the isosurface, however, the
fiber surface suffers from visual occlusion. We propose to avoid such occlusion by
restricting the components to only the relevant ones with a new component-wise
flexing algorithm. The approach, flexible fiber surface, generalizes the manipulation
idea found in the flexible isosurface for the fiber surface. The flexible isosurface
in the original form, however, relies on the contour tree. For the fiber surface, this
corresponds to the Reeb space, which is challenging for both the computation and
user interaction. We thus take a Reeb-free approach, in which one does not compute
the Reeb space. Under this constraint, we generalize a few selected interactions in
the flexible isosurface and discuss the implication of the restriction.

1 Introduction

An isosurface is defined as the inverse image f~!(s) of some scalar value s in the
scalar field f : M(n) — R, where M(n) is an n-manifold. Though visualizing isosur-
faces [20] is a routine task for scalar field analysis, it is often required to understand
correlations between multiple quantities (e.g. temperature and pressure). In fact,

Daisuke Sakurai

Zuse Institue Berlin, Germany, e-mail: d.sakurai @ computer.org

Kenji Ono

Research Institute for Information Technology, Kyushu University, Fukuoka, Japan;
RIKEN Center for Computational Science, Kobe, Japan

Hamish Carr
School of Computing, University of Leeds, Leeds, UK

Jorji Nonaka - Tomohiro Kawanabe
RIKEN Center for Computational Science, Kobe, Japan



2 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Fig. 1 Our flexible fiber surface generalizes the flexible isosurface to multi-fields without pre-
computing the topology of pre-images. The domain is shown on the left and the range on the right.

scalar data analysis itself can be assisted by multi-field analysis when considering
the gradient magnitude as the second field [17].

For 3-D multi-fields of the form f : M(3) — R™, the range is extended to data
tuples (x1,..,%,) € R™. In particular, the fiber surface [5] generalizes the isosurface
for f: M(3) — R?, which is useful for extracting pre-images in the domain as a sur-
face mesh. The fiber surface is the pre-image f~!(P) of a control polygon P, which
is a polyline composed by I linear segments each having the endpoints (x;,y;) and
(xix1,yi+1) (1 <i <1415 i,l € N). Each vertex (x;,y;) is called a control point.
The user can specify the fiber surface by drawing the control polygon in the 2D
range. The control point shall be dragged to see how the shape of the fiber surface
changes. This allows fiber surfaces to be simple to compute, compact in size, and
quantitative as isosurfaces in scalar fields. Since the fiber of a point in an R? range is
a 1-D structure almost everywhere in the 3-D domain, the fiber surfaces are indeed
surfaces in general. We call a connected component of a fiber surface a fiber sur-
face component. (A component refers to a fiber surface component unless specified
otherwise.) However, interacting with the components remains still a challenging
task. As with the isosurface, the fiber surface suffers from overlaps and may have
too many features for the user to comprehend. In case of the isosurface, one has
been able to utilize the flexible isosurface [8] to distinguish the components, hide ir-
relevant ones such as noise or uninteresting phenomena, and even vary the isovalue
per component. Such interactions were shown to be useful for visualizing different
objects in a CT scan dataset separately, for example.

We thus adapt the component-wise manipulation of the isovalue, as found in the
flexible isosurface for multi-fields, as the flexible fiber surface (Fig. 1). Where an
isosurface component is contracted as a point in the contour tree [7], a component
of a fiber f~!(p) of some value p = (x,y) is contracted as a point in the Reeb space
[13]. Hence, each component of a fiber surface f~!(P) finds its contraction in the
Reeb space as a connected component.

We generalize the flexible isosurface, or to be more precise, its concept of
component-wise manipulation. Our flexible isosurface interface, as implemented
[8], pre-computes the contour tree in order to obtain the seed of isosurface compo-
nents and the connectivity of these components across different isovalues. While the



Flexible Fiber Surfaces: A Reeb-Free Approach 3

contour tree is generalized into the Reeb space for multi-fields, in this work we avoid
computating the Reeb space (we call such an approach to be Reeb-free), and for the
following reasons. Firstly, the scalability of analysis is limited by the scale at which
the Reeb space can be computed. Secondly, the current standard implementation
[28, 29] of the Reeb space computation requires the user to subdivide the domain
to a sufficiently fine resolution such that at least one tetrahedron is completely con-
tained in each 3-sheet (which is challenging to achieve). Finally, the Reeb space is
hard to be shown to, and to be utilized by, the user when the Reeb space is compli-
cated [25], which is usual in real-world data. Interactions relying on the contour tree
are not generalized in our approach (3 and 6) as we avoid obtaining the Reeb space.

Our contributions include (i) varying the input control polygon per fiber surface
component, (ii) freeing the operations of the flexible fiber surface from precomput-
ing the Reeb space. For contribution (i), we devise a new flexing algorithm. Contri-
bution (ii) means that the flexible iso-surface also becomes Reeb-free as a special
case. Our algorithm works for any 3-D tetrahedral grid, regardless of the homology
of the domain. Our key idea is to follow the pre-image on-demand.

The remainder of this article is organized as follows. We introduce the related
work in Section 2, and generalize the semantics of the original flexible isosurface to
our Reeb-free flexible fiber surface in Section 3. We then revisit the existing algo-
rithms of extracting a fiber surface in Section 4 with their implication to our compu-
tation. Section 4 explains how our algorithm identifies the connected components of
fiber surfaces extracted with the algorithm by Klacansky et al., and further deform
the fiber surface. Section 5 demonstrates the outcomes of our proof-of-concept im-
plementation. Section 6 discusses the indication of generalizing flexible-isosurface
to multi-fields in a Reeb-free manner including the limitations. Finally, Section 7
gives the conclusion and future work.

2 Related Work

The flexible fiber surface extends topological operations that are defined for isosur-
face. We thus introduce relevant work in the topological analysis for scalar fields
and multi-fields.

2.1 Work in Scalar Field Analysis

Isosurface An isosurface can be visualized effectively with marching cubes [20].
Its basic idea is to rotate pre-defined cubes with triangular patches inside to recon-
struct the isosurface. Since the original marching cubes algorithm had ambiguities
of its topology, topological algorithms often tessellate the cubes into tetrahedra and
apply marching tetrahedra [3]. In contrast to the marching cubes, the continua-



4 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

tion method [31, 14] starts from seeds and proceeds to adjacent cells. This enables
component-wise tracking of a pre-image, on which our algorithm is based.

Topological Analysis The Reeb graph [24] is a quotient space defined by contract-
ing each of the connected components of isosurfaces to a point. For simple domains,
their Reeb graph is guaranteed to be a tree — hence it has the special name contour
tree. Reeb graphs and contour trees are useful for displaying the global configuration
of the connected components of isosurfaces [2], simplifying the data [10, 8], index-
ing isosurfaces [16], extracting the topological changes in an isosurface [22, 26]
and designing transfer functions [26, 30]. The standard algorithm for the contour
tree [7] uses as input the isosurface topology along the edges of the simplicial mesh.
On the other hand, van Kreveld et al. [19] tracked the pre-image explicitly, which
is in fact the approach of our pre-image tracking as well. More generally, the Reeb
graph must be computed [23] instead.

Parallelization of these algorithms has been, and is still, a challenge [22, 11]
especially for distributed systems [9]. The dependency to pre-computed topology
thus restricts the scalability of component-wise manipulations we aim to achieve.
The manipulation, however, is in fact independent of the pre-computation as we
show with our Reeb-free approach.

Interface One of the attributes of the contour tree is its ability to provide seeds
for continuation. This forms the basis for the flexible isosurface [8]. This assumes
that features are represented with connected components of isosurfaces, and lets the
users analyze them while avoiding irrelevant surface components.

The original flexible isosurface interface (Fig. 1) consists of two views, one for
the domain and another for the range. The interface shows the connected compo-
nents in the domain. The components are assigned distinct colors so that the user
can visually identify the connected components. These colors are simultaneously
projected in the range view as color labels in order to indicate the component’s iso-
value. The user can see the pre-computed contour tree optionally in the 2D view on
the right. This view shows the 1D range with an auxiliary dimension so that one can
see the tree structure. In fact, labels are overlayed at the contraction points in the tree
to indicate the position of the components. Though the contour tree was mandatory
in this particular work, this was not necessary for data exploration as the user still
could explore the global context by seeing the cumulative distribution.

We summarize several characteristic operations of the flexible isosurface below:

o Initialization: the user can initialize a flexible isosurface, i.e. show the entire pre-
image or the largest contour segmentations [21].

e Selection: the user selects the components of interest in order to apply further
operations. The user clicks on the components or on their labels mapped to the
contour tree. Components can also be deselected with the mouse.

e Evolution: the user varies the isovalue for a subset of visible components by
dragging the corresponding projection in the contour tree or all at once by ma-
nipulating the isovalue slider.

e Deletion: the user can delete selected components. Those are components such
as artifacts and objects irrelevant to the analysis.



Flexible Fiber Surfaces: A Reeb-Free Approach 5

e Addition: the user adds a hidden surface component to the domain by clicking
on its point contraction in the contour tree.

e Simplification: if the abundance of surface components makes navigating in the
contour tree difficult, the user can simplify (i.e. hide) or unsimplify (show) the
isosurface by thresholding surface statistics. This is achieved by cutting away or
putting back the arcs of the contour tree, respectively.

2.2 Work in Multi-Fields Analysis

In multi-fields, the isosurface in scalar fields we have seen above generalizes as the
fiber surface.

Fiber Surface Carr et al. [5] approximated the fiber surface as the isosurface of
a scalar field, where the scalar value was the distance to the control polygon in
the range. Later, Klacansky et al. [18] proposed an algorithm to compute the fiber
surface without this approximation. We use the latter algorithm when extracting the
fiber surface.

Topological Analysis Edelsbrunner et al. [13] generalized the Reeb graph to multi-
fields as the Reeb space by contracting each connected component of the fiber f~!
to a point. The connectivity of connected components was not computed in their al-
gorithm. This was later achieved by quantizing the range [4] into rectangular regions
and connecting their pre-image in the domain. This approach found application to
visualizing nuclear scission [12] and fiber topology [25].

Eventually, Tierny and Carr [28] computed the Reeb space without the quantiza-
tion. The algorithm partitions the domain with singular fibers, at which topological
events (such as mergers, splits, birth and death of the pre-image) happen. They es-
timate the steps of the algorithm to be O(n; X nr). n; is the number of tetrahedral
edges E; nr is the number of tetrahedra. Though some optimization is possible [28],
the fact remains that irrelevant topological events in the data may heavily increase
the running time. As with the topological analysis for scalar fields, this can restrict
the scalability of the analysis. Our Reeb-free computation, on the other hand scales
linearly with the size of the feature that is actually of interest to the user. Last but not
least, Pareto optimality gives an alternative generalization of scalar topology [15].

3 Generalizing the Semantics

Our flexible fiber surface generalizes the iso-surface evolution to multi-fields. The
advantages and disadvantages of our generalization will be discussed in Section 6.



6 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

3.1 Generalizing the Interface

Fig. 1 shows our fiber surfacing interface on the right. In the interface, the domain
view on the left shows the fiber surface as the flexible isosurface interface does for
the isosurface. In contrast, our range view on the right replaces the topological in-
formation with a scatterplot to navigate the user in the range. The prototype focuses
on proving the concept.

3.2 Generalizing the Component-Wise Operations

Initialization When the user initializes the fiber surface of a control polygon, the
domain view shows the user all the surface components to understand their distri-
bution in the domain.

Selection and Deselection (De)selection can be achieved in the domain view. In
contrast, the component-wise selection and deselection cannot be done in the range,
since all the components of a fiber surface overlap in the view.

Evolution The user reshapes the control polygon for selected group of components
by dragging the control points.

Deletion Selected components can be removed from the domain view.

Addition and Simplification As we free the flexible fiber surface from the Reeb
space, these operations become infeasible. Indeed, addition requires displaying the
components to the user, which is the Reeb space itself. Simplification, too, requires
access to the global topology.

4 The Algorithm

We assume a tetrahedral grid and the barycentric interpolation. First we extract the
fiber surface using the algorithm by Klacansky et al. [18]. In each segment of the
control polygon, this algorithm first extracts a base fiber surface, which is the pre-
image of the line that covers the segment (see Fig. 2). The surface is the set of
triangular patches obtained by applying the marching tetrahedra to the scalar field
defined as the signed distance to the line. The pre-image of the complement of the
segment is then clipped, i.e. cut away.

Next, we identify components, and the user selects interesting ones. The user
shall then move the control point to specify the target control polygon. During the
process, the flexing algorithm proposed in this article tracks the movement of the
fiber surface components individually by tracking the active tetrahedra. (They cover
the surface components being deformed (Alg. 1).)



Flexible Fiber Surfaces: A Reeb-Free Approach 7

Fig. 2 Fiber surface extrac- R .
) A ange Domain
tion [18]. The white / grey Control Polygon
/ black color indicates the Segment

position in the covering line.
A base fiber surface patch is

" Govering Line
P
00 m

clipped at the pre-image (blue < Control Points {2, 1 Base Patch Clipped éy
& red) of control points. ! x
Fig. 3 Intra-segment con- Intra-Segment Inter-Segment
nectlons: and 1nter—§egment Range Domain Range Domain
connections (both in red) _
between clipped patches in- P - X P @
duced by the control polygons 2 r Zy e zy

y polyg 1 f, kx Lfl kx

in the range.

4.1 Identifying the Connected Components

Once the surface has been approximated, we can check its connectivity with the
union-find algorithm [27]. The elements of union-find are the points in the mesh, and
we connect the pairs of such points if they lie in adjacent patches. In the traditional
marching tetrahedra, a point shared by adjacent mesh triangles resides in the same
tetrahedral edge. Identifying the points is solved by identifying the edge [3] since
no two different points reside in a single edge. However, a vertex may not lie in the
edge for our fiber surface computation since the patches are clipped (Fig. 2).

A naive approach is to glue the triangular patch corner points when they have
close coordinate values. However, a fiber surface can have intersecting patches, and
thus two points in disconnected patches can share close coordinates. We instead find
the connection between a base fiber’s patches and clipped patch corners separately.

4.1.1 Patch Corners in Base Fiber Surface

To compute the location of corners in the base fiber surface is to extract the isosur-
face of the signed distance to a control polygon segment. The connectivity between
the points can be obtained by recording the point ID at the tetrahedral edge. As
a tetrahedral edge intersects with a base fiber surface only once at most, we keep
record of the point IDs for each control polygon segment separately. By using these
point IDs as the elements of the union-find data structure, we connect the patch
corners in a base fiber surface as long as they are actually connected to each other.

4.1.2 Patch Corners Due to Clipping

As we can see in Fig. 3, two connected patches can belong to the same segment
(intra-segment connection) or two neighboring ones (inter-segment connection).



8 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Fig. 4 When the user drags

a control point, the segments

sweep the range, starting Range
from the source position and
ending at the target position.
Our algorithm walks through
the active tetrahedra, which
contain the pre-image of a
moving segment.

Target Segment

Segment Sweep

Source Segment

Finding Intra-Segment Connections Fig. 3 shows that an intra-segment connec-
tion can have a connection of corner points inside a single tetrahedron and across
two tetrahedra adjacent to each other. To connect the points in the former manner,
our algorithm joins two points with the union-find if they are from the same base
fiber surface and inside the same tetrahedron. In addition, two points that are from
the same base fiber surface and clipped by the identical control point are given the
same point ID when they touch each other at a tetrahedral face. To do so, we record
the point ID at the face for each control point separately just as we did for base fiber
surfaces in Section 4.1.1. Notice that clipped patch corners are given a unique ID
only when touching a tetrahedral face.

Finding Inter-Segment Connections Two clipped patches which are pre-image of
different but adjacent segments belong to the same connected component as long as
they are inside the same tetrahedron and were clipped due to the same control point.
We loop through the segments, clip the patches, and connect every neighboring
pairs. If the control polygon is closed, i.e. (x1,y1) = (x;21,y1+1), we clip the first
segment’s patches but defer connecting them until the end of the loop.

4.2 Following the Connected Components

While the user drags a control point, the control polygon sweeps the range. As illus-
trated in Fig. 4, this starts from the source segments and ends at the rarget segments.
We model the control point to move along the sweep border, which is a line segment
connecting the start and target positions. We follow the surface components being
continuously deformed in the domain. If we observe a moving component from in-
side a tetrahedron, the component starts its motion from the original location and
moves towards its destination. As the sweep proceeds, the pre-image penetrates into
adjacent tetrahedra, and moves out from our example tetrahedron if the destination
is outside.

We detail this procedure in Alg. 1. We start by gathering the active tetrahedra,
i.e. the tetrahedra holding the user-selected fiber surface patches. We pair each tetra-
hedron with the segments that define the component, and put all such pairs in a
queue. If a tetrahedron overlaps with multiple segments, every segment gets its own
pair.



Flexible Fiber Surfaces: A Reeb-Free Approach 9

Algorithm 1 Follow the deformation of surface components
Input: Source control polygon P, target control polygon F;, Pairs (segment, active tetrahedron)
tetsg of Py
Output: Pairs (segment, active tetrahedron) zets; of B
1: queue + tets;
2: while queue is not empty do
3:  pop (seg, tet) from queue

4:  if (seg,tet) is visited then
S: continue
6:  endif
7. mark (seg, tet) as visited
8:  if seg is not dragged then
9: continue
10:  endif
11:  if (seg, ter) has base fiber surface of target segment then
12: put (seg, tet) in tets;
13:  endif
14:  for tetrahedron tet, adjacent to tet do
15: if (seg, tet,) is not visited and shared_face(tet,tet,) intersects segment sweep in range
then
16: put (seg, tet,) in queue
17: end if
18:  end for
19:  for segment seg, neighboring seg do
20: if control point between seg and seg, moved and (seg,,, tet) is not visited and fet inter-
sects sweep border in range then
21: put (seg,,, tet) in queue
22: end if
23:  end for

24: end while

We pop a pair (seg, tet) from queue and operate on it (lines 3—13). In order to
avoid processing the same pair twice, we mark the pair as visited. This visit flag is
implemented as an array of tetrahedron IDs for each segment. If the points of zet
have both positive and negative distance to the seg, fet may intersect with a surface
component of seg. The pair then joins the output pairs F;.

As we have checked the evolution inside tet for seg, we push adjacent tetrahedra
tety’s in queue for visiting it later as long as the component continues tet, (lines
14—18). This continuation happens when tet and ret,’s touching face intersects seg
in the range.

Finally, we pass tet to its neighbors seg,’s (lines 19-23). If a control point be-
tween seg and seg,, does not move during a drag, the evolution of component is inde-
pendent of seg,. We do not process such seg, (line 20). Otherwise, we check whether
the component of (seg,ret) continues to seg, (line 20). If so, we put (seg,, fet) in
queue.

After we visited all the (seg,zet) pairs, we extract the fiber surface components
in them using the method by Klacakanski et al.



10 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Fig. 5 The duration of drag-
ging scale linearly with the
number of tetrahedra we pro-
cess. The examples share the
same control polygon: it is )
defined as the diagonal line
from the point (0,0) to (1,1) /
in the normalized range, and Time
is dragged towards (0.6,0.4)

to produce 10 samples evenly

along the trace. ST

@—e Bivariate Toy: 103.3K-583.2K tets, 5.8-27.2 sec
©-0 Ethandiol: 393.0K-1611.2K tets, 14.8-61.2 sec

max

min
min Number of Tetrahedra max

5 Outcomes

We build a proof-of-concept interface with C++. We use VTK for the data structure
and Qt for the GUI The interface lets us display a pre-computed scatterplot or con-
tinuous scatterplot [1]. We selected a few typical, simple, datasets to evaluate our
Reeb-free approach. We show that one can in fact achieve component-wise flexing
of fiber surfaces. Our serial implementation is run on a PC with Intel Xeon CPU
(3.20 GHz, 20 MB Cache) and 64 GB RAM. Each dragging completes in several
seconds.

5.1 The Analysis of the Algorithm

As expected, the computation time scales linearly with the number of active tetra-
hedra the algorithm, Alg. 1, visits (Fig. 5). This demonstrates the fact that the size
of the features the user is interested determines the response time. If the tetrahedra
are distributed evenly in the range, the number of tetrahedra being swept shall scale
linearly with the distance the dragged control point moves away. We can see this in
the plot as the near-constant distance between two neighboring points of each line.

5.2 A Simple Proof of Concept: the Tooth Dataset

The tooth dataset (Fig. 6) gives a simple proof of concept for our flexible fiber
surface. We subdivided each cube of the input regular grid into 6 tetrahedra with the
Freudenthal tessellation (see [6]), so that the tetrahedral faces are consistent across
neighboring cubes.



Flexible Fiber Surfaces: A Reeb-Free Approach 11

Fig. 6 Tooth dataset. The two
fields are CT value and its
gradient magnitude. (a) The
domain and (b) the range.
We start by drawing two
control polygons that contain
either only the crown or root.
We then move them into a
region that contains both.
The evolution of the crown
in white (or root in red) is
restricted to the crown (root).

We report that the features are simple to identify without the Reeb space since we
can identify the boundary of objects as hyperbolic curves [17], and their overlaps in
the range resolve in the high gradient regions.

5.3 Comparison with the Flexible Isosurface

We take some small head CT dataset with the resolution of 50 x 50 x 50 for compar-
ing our results with the flexible isosurface. In Fig. 7, we have visualized the dataset
with the flexible isosurface and with our Reeb-free interface. Due to the overlap of
features in the range, the interaction with the domain is essential for our Reeb-free
interface. The simplified contour tree is a significant advantage of the original flexi-
ble isosurface interface since it gives hints to an experienced user about the surface
component evolution.

6 Discussion

We now discuss the consequence of our generalization of flexible isosurface to
Reeb-free multi-field analysis.

Analysis of the Algorithm The number of steps required for tracking a compo-
nent is O(ny), where ny is the number of tetrahedra to be visited in our method.
nr shall be close to the number of tetrahedra necessary to extract the fiber surface
partitioning the domain [25] with the Reeb space extraction [28]. Though our imple-
mentation is serial, the approach can apparently extend itself to distributed systems
by locally running Alg. 1 in each node with occasional communications between
different nodes. Though this requires further research, it should be more feasible
than computing the Reeb graph of such systems.

Evolution The evolution of fiber surface components lets us understand how mul-
tivariate values distribute, and especially how the features continue in the domain.



12 Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Uncollapse

(d)

Fig. 7 Comparing the original flexible isosurface (a) (b) and our Reeb-free flexible fiber surface
(c) (d) under severe overlaps of features in the range.

Simplification We did not simplify the topology of connected components al-
though this was available in the flexible isosurface concept by Carr et al. thanks
to the contour tree.

Global Exploration We show a scatterplot to provide the user with a global con-
text to the analysis. The cruciality of this lack depends on the dataset to be analyzed.
Datasets with similar objects tend to suffer because their image overlap in the range.
The scatterplot can be peeled [28] for an effective exploration, though such an oper-
ation assumes pre-computing the Reeb space. Even if the Reeb space were available,
navigating the user in the abundance of features is a challenge. This is because vi-
sualizing the Reeb space becomes rapidly challenging as it grows complex [25].



Flexible Fiber Surfaces: A Reeb-Free Approach 13

7 Conclusion and Future Work

We extended the flexible isosurface to multi-field without requiring Reeb space anal-
ysis. In particular, we generalized the semantics of component-wise pre-image evo-
lution to multi-fields. Our approach does not require computing the pre-image topol-
ogy explicitly. The algorithm identifies the connected components of fiber surfaces,
and sweeps the range to track them. The lack of global pre-image topology and
simplification is a downside of this approach (although rendering the Reeb space
is itself an unsolved challenge). Through experiments for rather simple datasets,
we demonstrated that the interaction in the domain does not necessarily require the
Reeb space.

We see a few future directions: the global navigation and simplification of data
that are affordable for non-experts of topological analysis; extension to different cell
types and interpolants.

Acknowledgement

We thank Julien Tierny at Sorbonne Universities UPMC for offering some of the
datasets [29].

This work was supported by the German Federal Ministry of Education and
Research (HD(CP)? project, grant number 01LK1501C) and the Engineering and
Physical Sciences Research Council (EPSRC) project EP/J013072/1.

References

1. Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Transactions on Visualization
and Computer Graphics 14(6), 1428-1435 (2008)

2. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE
Visualization 97, pp. 167-173 (1997)

3. Bloomenthal, J.: Polygonization of implicit surfaces. Computer Aided Geometric Design 5(4),
341-355 (1988)

4. Carr, H., Duke, D.: Joint contour nets. IEEE Transactions on Visualization and Computer
Graphics 20(8), 1100-1113 (2014)

5. Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber surfaces: Generalizing iso-
surfaces to bivariate data. Computer Graphics Forum 34(3), 241-250 (2015)

6. Carr, H., Moller, T., Snoeyink, J.: Artifacts caused by simplicial subdivision. IEEE Transac-
tions on Visualization and Computer Graphics 12(2), 231-242 (2006)

7. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Computational
Geometry 24(2), 75-94 (2003)

8. Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: Simplifying and displaying
scalar topology using the contour tree. Computational Geometry: Theory and Applications
43(1), 42-58 (2010)

9. Carr, H.A., Weber, G.H., Sewell, C.M., Ahrens, J.P.: Parallel peak pruning for scalable SMP
contour tree computation. In: Proceedings of 2016 IEEE 6th Symposium on Large Data Anal-
ysis and Visualization (LDAV), pp. 75-84 (2016)



14

10.

11.

12.

13.

14.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

Daisuke Sakurai, Kenji Ono, Hamish Carr, Jorji Nonaka, and Tomohiro Kawanabe

Chiang, Y.J., Lu, X.: Progressive simplification of tetrahedral meshes preserving all isosurface
topologies. Computer Graphics Forum 22(3), 493-504 (2003)

Doraiswamy, H., Natarajan, V.: Computing Reeb graphs as a union of contour trees. IEEE
Transactions on Visualization and Computer Graphics 19(2), 249-262 (2013)

Duke, D., Carr, H., Knoll, A., Schunck, N., Nam, H.A., Staszczak, A.: Visualizing nuclear
scission through a multifield extension of topological analysis. IEEE Transactions on Visual-
ization and Computer Graphics 18(12), 2033-2040 (2012)

Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: Pro-
ceedings of the Twenty-fourth Annual Symposium on Computational Geometry, SCG ’08, pp.
242-250. New York, NY, USA (2008)

Howic, C., Blake, E.: The mesh propagation algorithm for isosurface construction. Computer
Graphics Forum 13(3), 65-74 (1994)

. Huettenberger, L., Heine, C., Carr, H., Scheuermann, G., Garth, C.: Towards multifield scalar

topology based on pareto optimality. Computer Graphics Forum 32(3pt3), 341 — 350 (2013)

. Kettner, L., Rossignac, J., Snoeyink, J.: The Safari interface for visualizing time-dependent

volume data using isosurfaces and contour spectra. Computational Geometry 25(1), 97-116
(2003)

Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct vol-
ume rendering. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, VVS
’98, pp. 79-86. New York, NY, USA (1998)

Klacansky, P., Tierny, J., Carr, H., Geng, Z.: Fast and exact fiber surfaces for tetrahedral
meshes. IEEE Transactions on Visualization and Computer Graphics 23(7), 1782—-1795 (2017)
van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., Schikore, D.: Contour trees and
small seed sets for isosurface traversal. In: Proceedings of the Thirteenth Annual Symposium
on Computational Geometry, SCG ’97, pp. 212-220. New York, NY, USA (1997)

Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction al-
gorithm. ACM SIGGRAPH Computer Graphics 21(4), 163-169 (1987)

Manders, E.M.M., Hoebe, R., Strackee, J., Vossepoel, A.M., Aten, J.A.: Largest contour seg-
mentation: A tool for the localization of spots in confocal images. Cytometry 23(1), 15-21
(1996)

Pascucci, V., Cole-McLaughlin, K.: Parallel computation of the topology of level sets. Algo-
rithmica 38(1), 249-268 (2003)

Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of
Reeb graphs: Simplicity and speed. ACM Transactions on Graphics 26(3), 58 (2007)

Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement intégrable ou d’une
fonction numérique. Comptes Rendus I’ Academie des Sciences de Paris 222, 847-849 (1946)
Sakurai, D., Saeki, O., Carr, H., Wu, H.Y., Yamamoto, T., Duke, D., Takahashi, S.: Interactive
visualization for singular fibers of functions f : R — R2. IEEE Transactions on Visualization
and Computer Graphics 22(1), 945-954 (2016)

Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume skeletonization and its appli-
cation to transfer function design. Graphical Models 66(1), 24—49 (2004)

Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM
22(2), 215-225 (1975)

Tierny, J., Carr, H.: Jacobi fiber surfaces for bivariate Reeb space computation. IEEE Trans-
actions on Visualization and Computer Graphics 23(1), 960-969 (2017)

Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The Topology ToolKit. Tech.
rep., CNRS/UPMC, https://topology-tool-kit.github.io/

Weber, G.H., Dillard, S.E., Carr, H., Pascucci, V., Hamann, B.: Topology-controlled volume
rendering. IEEE Transactions on Visualization and Computer Graphics 13(2), 330-341 (2007)
Wyvill, B., McPheeters, C., Wyvill, G.: Animating soft objects. The Visual Computer 2(4),
235-242 (1986)



