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Abstract  

Spray coating is a common method of distributing liquids over powders, especially in the 

pharmaceutical, detergent and food industries. During this process, liquid drops are deposited on the 

surface of particles. Liquid is then transferred between particles via particle collisions, in a process 

called liquid contact spreading. This contact spreading process facilitates inter-particle coating, in 

which wetting, de-wetting, mixing and drying are occurring simultaneously. This work presents the 

first experimental study of the mechanism of liquid contact spreading. In this work, a novel 

experimental method has been developed to investigate the mechanism of contact spreading, 

incorporating a newly developed image analysis technique, based on colourimetric measurements, to 

quantitatively determine coating behaviour via contact spreading. 

Here, experiments designed to isolate the contact spreading coating mechanism were performed in a 

tumbling drum using a model material system; alumina particles and dyed polyethylene glycol 

solutions of varying viscosities. The coating uniformity was quantified by the variation in inter-particle 

coating; the coefficient of variation (CoV). For all systems, the uniformity of the coating increased with 

time until the CoV decreased to an asymptotic value. The rate of the decrease in the CoV was 

successfully fitted using an exponential decay function.  

 

The viscosity of the coating solution had a significant effect on the rate of liquid transfer; the lower 

the viscosity the faster the contact spreading process. This effect is attributed to differences in the 

formation and stability of liquid bridges between the particles, influencing the extent of liquid transfer. 

The results also show that in most cases examined here, viscous forces play a main role in the contact 
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spreading process, and the contribution of capillary forces are minimal. This understanding could 

assist the design and scale up for the wet coating processes. 

 

Keywords: Contact spreading; Spray coating; Tumbling drum; Coating uniformity; Inter-particle 

coating; Image analysis 

 

1. Introduction 

Spray coating of liquids onto powders and particles is a common process used to develop structured 

particulate products in numerous industries, including pharmaceuticals, foods, agriculture and 

detergents. Coatings can be applied to protect particles from incompatible elements, to control the 

release of active ingredients in core particles, to provide chemical functionality, and to improve 

appearance, taste and odour, for example. In the coating process, a suspension of atomized droplets 

is applied to particles agitated in a tumbling drum or fluidised bed; both of which are widely used for 

coating particles [1]. The aim of this work is to develop an understanding of how liquid viscosity affects 

the contact spreading of liquids between powders in a tumbling drum, and to show that a specially 

developed imaging technique is capable of producing reliable and accurate information on the coating 

variation within a particle batch.  

 

Spray coating of powders may seem a simple process. However, wet coating processes experience 

complex interactions which involve three state phases; solid, liquid and gas, and cause the design and 

scale-up of these processes to be based largely on trial and error [2,3]. Spray coating can be 

conceptually divided into two distinct steps; (i) the initial droplet deposition onto the particle surfaces 

(Fig. 1a), and (ii) the contact spreading of liquid between particles due to the formation and rupture 

of liquid bridges (Fig. 1b). Research to date has tended to focus on the droplet deposition mechanism 

rather than the liquid transfer via contact spreading. However, in tumbling drums, contact spreading 

is thought to provide a significant contribution [4,5], and understanding this mechanism could assist 

in design and scale up rules for wet coating processes. 
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(a) 

 

(b) 

 

 

Fig. 1. Spray coating mechanisms: (a) drop deposition (b) contact spreading. 

 

Coating uniformity is one of the most important quality control measures for final products [6-8], 

which can be described in terms of two coating variations: (i) Intra-particle coating variation, is the 

coating variation on a single particle; (ii) Inter-particle coating variation, refers to the coating variation 

between different particles within one batch [9]. Intra-particle coating uniformity is important as the 

overall performance of a coating may be limited by the thinnest point on the particle. Inter-particle 

uniformity is important for a homogeneous coating in a batch. Wide variations may have a major 

impact, particularly for tablets in the pharmaceutical industry. In the case of some tablets in the batch 

only receiving a small amount of coating, high levels of blood toxicity are possible due to uncontrolled 

drug release. In contrast, tablets receiving too much coating could cause a delay in drug release.  

 

In order to predict the coating process, it is important to understand the effect of formulation (e.g. 

particle size [9-11], shape [12], coating solution concentration [13,14]) and operational (e.g. coating 

time [13-15], spray pattern [13,16], drum velocity [12-14]) variables on coating quality. To quantify 

the effect of such parameters, analytical techniques are required to investigate the extent of the 

coating on the particles. Many studies have attempted to characterise the coating layer, using 

techniques such as batch weight gain [13,17], digital imaging [18,19], X-ray tomography [20,21], 

confocal laser scanning microscopy [20], laser induced breakdown microscopy [22], atomic force 

microscopy [23] and scanning electron microscopy [24]. 

 

Although the techniques used in the aforementioned studies have proved viable for coating 

characterisation, many of these studies have mainly focused on intra-particle coating uniformity. They 

do not adequately characterize the overall coating quality for each batch, i.e. inter-particle coating 

uniformity, which is a major concern when coating bioactive ingredients. There are, however, other 

studies which have described methods for quantifying coating variability within a batch of particles 



4 

 

coated in equipment such as tumbling drums and fluidised beds. Many investigations have used simple 

weight gain [9,10,15,25] or size gain [13,26] of a sample of coated particles taken from a batch in order 

to determine inter-particle coating variability. For example, Liu and Litster [25] studied the effect of 

spouted bed process parameters on the mass distribution of seeds coated with fertilizer. Here, a 

representative sample of 50-100 particles was taken from the final product of each experiment and 

each particle weighed individually. In a study by Li et al. [10], a combination of weight gain and nuclear 

magnetic resonance (NMR) was used to determine the coating amount. NMR analyses were 

performed by measuring a specific component in the coating solution. Image analysis methods have 

also been used for the characterisation of particle coatings. Kennedy and Niebergall [27] developed a 

digital imaging system for the assessment of pharmaceutical coatings based on measurement of the 

optical densities of particles. The standard deviation of the optical density of individual particles was 

used to evaluate inter-particle coating uniformity. Laser induced breakdown spectroscopy (LIBS) also 

offers a method of determining inter-particle coating uniformity [8,16,28]. For example, Dubey et al. 

[28] applied LIBS to study the influence of speed, loading and spray pattern on tablet coating variability 

in a pan coater and used their results to validate their Discrete Element Method (DEM) simulations. 

Other spectroscopic methods have also been reported for the determination of inter-particle coating 

variability [29-32]. Mauer and Leuenberger [32] employed near infrared spectroscopy (NIRS) to 

determine inter- and intra-tablet variation of samples taken from a pan coater at different time 

intervals. Romero-Torres et al. [30] investigated the feasibility of using Raman spectroscopy for 

measurement of tablet-to-tablet coating variability, and concluded it is a simple and robust technique 

for quantitative characterisation of coating variations. Another method by which to interrogate 

coating thickness variations is terahertz pulsed imaging (TPI) [32-34]. For example, Lin et al. [34] used 

this technique to monitor tablet film coating thickness and inter-tablet variability as a function of a 

variety of process conditions in a pan tablet coater. Microscopy techniques have also been used for 

the characterisation of coating variation. Andersson et al. [35] used fluorescence microscopy to 

characterise pharmaceutical pellet thickness and variance between pellets. Confocal laser scanning 

microscopy (CLSM) has also been employed for determining coating thickness and uniformity [36,37]. 

For example, Depypere et al. [37] used CLSM to investigate the effect of process settings and coating 

solution concentration on coating quality of protein coated microparticles in a fluidised bed.  

 

To date there is no single broadly accepted method of characterising inter-particle coating uniformity.  

While many of these techniques have proven to be capable of characterising inter-particle coating 

uniformity, most are restricted to the number of particles that can be analysed within a reasonable 

time frame. Furthermore, many analyses are only suited for characterisation of relatively large-sized 
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particles and/or high amounts of coating material. Some require time-consuming sample preparation 

(e.g. fluorescence microscopy) and calibration procedures (e.g. NIRS). Additionally, techniques such 

as LIBS are destructive, and some microscopy methods require destructive sectioning of the sample 

particles.  

 

Although extensive research has been conducted into spray coating in drum systems, little research 

exists which specifically studies the contact spreading mechanism. Indeed, to date studies into contact 

spreading have been limited to modelling of the process. Shi and McCarthy [4] developed a dynamic 

liquid transfer model for their DEM studies of heterogeneous particles in a drum spray coating system. 

Their results showed that the time evolution of coating variability can be fitted with the inverse square 

root of the time. Mani et al. [38] developed a model based on capillary bridges formed in the pendular 

regime to study the redistribution of liquid in a sheared unsaturated granular media. They found that 

the liquid distribution was influenced by the shear rate and the liquid distribution could be inferred 

indirectly by velocity profiles. Mohan et al. [39] numerically studied the effects of four different liquid 

transfer models on liquid transfer via inter-particle collisions in sheared particle beds. The study 

concluded that the fraction of liquid flowing into the bridge was the main contribution to the liquid 

transfer rate. In 2016, Washino et al [40] proposed a new contact dispersion model for DEM 

simulations in a spray drum. This differed from the Shi and McCarthy model by taking into account the 

partial wetting of particles. In the Shi and McCarthy model it was always assumed that particle surfaces 

were evenly coated with liquid. It was found by Washino et al. that this assumption is only valid for 

low viscosity coating liquids. However, at higher viscosities, it is necessary to account for partial 

wetting of the surfaces. 

 

In this paper, we present an experimental study into the contact spreading mechanism.  These novel 

experiments are designed to isolate the rate processes of coating, and allow the investigation of 

contact spreading in the absence of the spray deposition component.   Here, we also use a newly 

developed qualitative and quantitative image analysis technique, based on colourimetric 

measurement. This relatively inexpensive method allows the analysis of a relatively large number of 

particles over a short time period, with minimal sample preparation. Furthermore, it can be used to 

characterise small quantities of coating material on particles, and has the capability of being employed 

for a wide range of particle sizes and morphologies. For the first time, we report the use of this 

experimental technique to investigate the contact spreading process of liquid between particles in a 

tumbling drum by quantitatively determining coating uniformity as a function of the liquid viscosity. 

For this study, a model system using alumina beads as the core particles and polyethylene glycols as 
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the coating solutions is employed to study the effect of coating liquid viscosity on inter-particle coating 

uniformity.  

 

2. Materials and Methods 

2.1. Materials 

In this study, alumina beads (Anderman Ceramics Ltd, UK) were used as the model particles (size: d10 

= 0.88 mm d50 = 1.02 mm, d90 = 1.18 mm; bulk density = 3.62g/cm3). Beads were used as supplied, 

without treatment prior to use. To study the influence of viscosity on contact spreading behaviour, 

aqueous solutions of polyethylene glycol (PEG) (Sigma-Aldrich, UK) of four different molecular weights 

(4000, 10000, 20000 and 35000 Da) at the same 50 % wt / wt concentration were used as coating 

solutions. 1 % wt / wt Acid Red (Sigma-Aldrich, UK) was used to dye the coating solutions to allow for 

colourimetric characterisation of the coating (see Section 2.3). The physical properties of the solutions 

are presented in Table 1. The viscosities of the solutions were measured using a rheometer (MCR 502, 

Anton Paar, Graz, Austria) fitted with a cone and plate (2 o cone angle, 50 mm diameter), and  showed 

Newtonian behaviour over the applied shear rate (0.1 and 1000 s-1). Surface tension was measured 

using the Wilhelmy plate technique (KRÜSS tensiometer, GmbH). As expected, the viscosity increases 

substantially with molecular weight. However, the difference in surface tension between the solutions 

is minimal.  

 

2.2. Tumbling drum contact spreading experiments 

The contact spreading experiments were conducted in a stainless steel tumbling drum, manufactured 

in-house at The University of Sheffield, with dimensions of 325 mm in length and 210 mm in diameter 

(Fig. 2), running on a ball mill (Glen Creston, UK). The batch size was 10 % fill level by volume of the 

drum (2323.7 g). Prior to each run, 10 % of each batch were fully coated with a PEG solution (5 g) of a 

certain viscosity in a plastic bag outside the drum while the remaining 90 % of uncoated particles were 

placed in the drum. Subsequently, the fully coated sample was added to the running drum (50 rpm, 

Froude number = 0.294) using a specifically designed particle delivery device and the timer started. 

The drum was then stopped after a predetermined time interval and the drum was emptied and the 

whole batch collected. Runs were then repeated and stopped at increasing time intervals, so as to give 

a time series of coated batches for the selected coating solution viscosity. Furthermore, for each 

series, an additional run was performed where the 10 % of the initial coated particles were added into 

the remainder of the uncoated particles in a static drum without any tumbling and subsequently 

collected. This experiment quantified any additional liquid transfer from the procedure of emptying 

the drum and provided an initial start point to the time series. It should be noted that for all batches, 
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very little of the coating liquid was transferred to the drum surface. Once collected, each of the 

batches was dried at room temperature (21 °C). This same methodology was used for four different 

viscosity PEG coating solutions. A minimum of three experiments were performed at each condition 

to test reproducibility. 

 

It should be noted that coating was completed at durations below 300 s, and the particles for all 

experiments were still wet at the end of the experiment. While drying will be occurring during the 

process, the drying in these experiments is unlikely to significantly influence the coating. 

 

Table 1 

Properties of the dyed polyethylene glycol (PEG) solutions. 

 

Molecular weight, MW (Da) Viscosity (mPa.s) Surface tension (mN/m) 

4000 131 ± 30 54.78 ± 0.2 

10000 665 ± 90 55.42 ± 0.2 

20000 3115 ± 500 55.88 ± 0.2 

35000 14903 ± 3000 55.05 ± 0.2 

 

 

 

Fig. 2. Tumbling drum experimental set-up. 
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2.3. Quantitative Image Analysis 

After the coating process, a riffled sample of the coated batch was spread on adhesive black vinyl 

(Anchor Magnets, UK). Subsequently, 24-bit colour images (2752 x 2192 pixels) of the particles were 

recorded using a Lumenera Infinity 3 Camera (Lumenera Corporation, Canada) fitted with a Navitar 

12X zoom lens (Image Optics, UK) and a LGT.19.MF2D LED dome diffuser lamp (Honyu, China). The 

attached light diffuser incorporates a ring with 120 LEDs which reflect onto a white dome to provide  

completely shadow free incident illumination, thus reducing reflection on the captured images. A 

lighting controller was also attached to this light diffuser to provide the correct amount of light 

required. A typical image featured approximately 150 – 200 beads. Sixteen images were taken for each 

batch, thereby analysing 2000+ particles per batch. In the case of any overlapping particles, this data 

was removed from the analysis. To quantify the distribution of the coating on the particles, a set of 

self-written image analysis LabView algorithms to analyse the colour of the individual particles per 

batch was used. The 24-bit colour images consist of three 8-bit arrays of pixel values for red, green 

and blue (RGB) intensities. By identifying the pixels forming the image of an individual particle it is 

possible to calculate RGB intensity fractions (R + G + B = 1) for each particle and, therefore, how evenly 

distributed the coating is. For example, where the coating containing the red dye is concentrated on 

a small number of particles, those particles will have a red intensity fraction greater than 1/3. By 

determining the relative intensity of the red fraction of the particles, it is possible to quantify changes 

in the distribution of the coating with processing conditions. 

Quantitative analysis of the images began with separating the particles from the image background. 

After converting the colour image to an 8-bit greyscale image, a boxcar averaging background 

subtraction algorithm was applied [41]. A fundamental morphological ‘opening’ operation [42] was 

then employed to ensure the particles are separated from their neighbours in the image. After 

removing the background and applying LabView’s particle labelling function, an image where the 

pixels comprising each particle with a unique label was obtained (Fig. 3). The labelled image was then 

used as a mask to isolate the pixels of each particle in the colour image from which the RGB intensity 

fractions were calculated. Further details of this process are given in the Appendix. 
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Fig. 3. Labelled image of coated particles. 

 

2.4. Treatment of data 

In order to study the effect of coating liquid viscosity on the contact spreading process, an examination 

of the inter-particle coating variability of each batch series as a function of time was conducted. From 

the image analysis, values of the mean % red intensity for each particle, and the standard deviation 

found in this value, were calculated for each data series at every time point. From these values, the 

coefficient of variation (CoV) was calculated as a percentage, as shown in Eq. (1): 

��� = �
� × 100 (1) 

  

where µ is the mean % red intensity and σ is the standard deviation of the distribution of % red 

intensity. The value of the CoV quantifies the coating uniformity within a batch at a certain time point; 

lower CoV values evidencing a more uniform coating. Values of the CoV were plotted as a function of 

time for each viscosity series. 

 

 

3. Results  

3.1. Typical data set 

In this section, the data analysis procedure is described for a typical coating data set. Here, PEG 10,000 

was used as the coating solution (viscosity of 665 mPa.s). 
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Fig. 4 shows the coating evolution of the alumina particles. Here, a frequency distribution shows the 

number of particles of differing percentage red values at each time point. The raw particles show a 

relatively narrow peak at approximately 33.6 % red, indicating that they are virtually white in colour 

(pure white particles would yield a value of 33.3 %). The pre-coated particles (42.67 % red, σ = 1.83) 

have a broader distribution of colour. The value of the mean % red is significantly larger than the raw 

particles enabling us to distinguish between the two. At 0 seconds run time (when the coated particles 

are added to the drum without any tumbling), there is a shift in the % red to higher values, and a large 

distribution of red between approximately 33.8 – 43 %. The small peaks at the high % red are 

attributed to the 10 % initially coated particles. The large, relatively narrow peak at approximately 

34.5 % represents the initial 90% uncoated particles. However, there is a shift of the peak of these 

particles from that of the raw particles to a slightly higher % red, indicating that there is some liquid 

transfer between particles whilst the drum is being emptied. After 5 seconds, there is a further shift 

to higher red intensity, with a still relatively large distribution of % red. However, as the time increases, 

the distributions become narrower indicating less variation in coating with time, i.e. the colour of the 

batch becoming more uniform due to contact spreading of the coating liquid. 

 

To follow the change in inter-particle coating variability, the CoV value for each time point was 

determined based on Eq. (1) and plotted as a function of time as shown in Fig. 5. It is observed that 

the coating variability decreases and the coating becomes more uniform with time, indicating that the 

process of contact spreading is occurring within the drum. The CoV value for this series appears to 

reach an asymptotic value of ~1.4 % at approximately 60 seconds. The CoV values were well 

represented (R2 > 0.96) by the following exponential decay equation, given here as a function of time: 

���
�� = ��� + 
���� − �����
���� (2) 

  

where CoV∞ represents the asymptotic variation value in the coating, CoV0 represents the initial 

variation at time 0 seconds, λ is the coating rate constant, and t is the tumbling time. The fitted curve 

can be seen in Fig. 5 for the typical data set. 

A regression was performed to fit the data. The fitting constant λ, 0.095 s-1 in this case, is a measure 

of the coating rate. The time for the coating process to reach completion (tc) is also calculated. As the 

function is an exponential decay, the time taken to reach complete coating will be infinite. To 

overcome this, the time for 98 % of the coating to be complete (i.e. (CoV- CoV∞)/( CoV0- CoV∞) = 0.02, 

assuming CoV0 represents 0 % and CoV∞ represents 100 %) is used to determine the characteristic 

time of coating completion for each of the data sets; given by, tc = ln 0.02/-λ. In the case of this data 

series, this yields a tc of 41.17 s. 
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Fig. 4. Coating evolution of alumina particles (note that not all time points for this series are shown 

for visualisation purposes) 

 

 

Fig. 5. Raw data represented by circles, and the line is fitted using Eq. (2). 

 

In the following section, this same procedure is used to obtain plots and fitted exponential curves for 

a series of different coating liquid PEG viscosities, in order to investigate the effect of coating liquid 

viscosity on the contact spreading process. Coating rate (using the fitted constants, λ) and the time 

taken for coating completion, tc, for each series are determined and compared. 
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3.2. Effect of coating liquid viscosity 

Fig. 6 shows all the data sets for the different solution viscosities, fitted with exponential decay curves. 

The data is normalised according to Eq. (3) for easy comparison of the coating rate for the various 

solution viscosities.  

������� = ���
�� − ������� − ��� = �
���� (3) 

  

From Fig. 6, similar trends were observed for all viscosities, where CoV decreases with time. However, 

differences in the coating rate constant are exhibited depending on the viscosity of coating solution. 

The normalised CoV curves are steeper for low viscosity solutions compared to the ones for the higher 

viscosity coating solutions; this is reflected in their fitting constants (Table 2). Furthermore, the time 

taken to reach the asymptote, i.e. completion of coating (tc), is longer for the higher viscosity solutions 

(Table 2). These differences in coating behaviour when using different coating liquid viscosities could 

be related to the effect of viscosity on liquid bridge formation, liquid bridge strength, and rupture 

mechanisms which influence the motion of the particles, as well as the rate of liquid transfer between 

colliding particles. 

  

The final asymptotic CoV is roughly the same for each of the systems (1.53 ± 0.3), but the rate at which 

these values are approached varies for each coating solution used. Fig. 7a plots the mean coating rate 

constants, λ, as a function of coating liquid viscosity. It should be noted that this figure encompasses 

data from over 100 individual experiments. There is clearly a decrease in the values with increasing 

viscosity, indicating that contact spreading is a slower process at higher viscosities. Furthermore, the 

decrease in λ with viscosity appears to be logarithmic; evident by a good fit (R2 = 0.995) of the fitted 

logarithmic curve (Fig. 7b). However, a greater number of viscosities would need to be analysed to 

confirm this relationship. Fig. 8a shows how the time taken for coating completion, tc, increases as a 

function of coating liquid viscosity. Fig. 8b shows the log plot of the same data. After being 

transformed using the earlier developed relationship between λ and tc (tc = ln(0.02/-λ), the same 

equation used to fit Fig. 7 has been used to fit the data in Fig. 8.   

 

Fig. 9 illustrates the images of alumina particles coated with two different viscosities of PEG solution 

as a function of tumbling time; 131 mPa.s from 10 – 40 seconds (Fig. 9a-c) and 14903 mPa.s from 10 

– 140 seconds (Fig. 9d-f). It is visually observed that the variation in coating decreases with time for 

both viscosities. However, it is clear from the images that the coating process takes longer to yield a 

uniform coating for the higher viscosity solution; this evidences a slower coating process via contact 

spreading. These visual studies are in agreement with the quantitative data obtained from the image 
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analysis. Moreover, for the higher viscosity solution, particularly at low tumbling times, the intra-

particle coating variability appears to be higher, compared to the lowest viscosity solution at the same 

tumbling time. This may be due to the fact that the higher viscosity solutions do not wet as effectively 

as lower viscosity solutions, or the fact that the liquid bridges are leaving visible localised spots of 

solution upon rupturing. 

 

Table 2 

Extracted fitting parameters and time taken for coating completion for all series of experiments. 

 

Viscosity 

(mPa.s) 
Run 

Coating rate constant, λ 

(s-1) 
R2 

Time for coating 

completion, tc (s) 

131 

1 0.125 0.988 31.41 

2 0.118 0.979 33.08 

3 0.150 0.987 26.05 

4  0.170 0.998 23.08 

5  0.174 0.988 22.48 

Mean 0.147 ± 0.03 - 27.22 ± 4.0 

665 

1 0.097 0.983 44.50 

2 0.095 0.994 41.17 

3 0.106 0.984 37.04 

Mean 0.010 ± 0.006 - 40.90 ± 3.0 

3115 

1 0.081 0.993 48.58 

2 0.077 0.982 50.88 

3 0.072 0.992 54.70 

Mean 0.077 ± 0.005 - 51.39 ± 3.0 

14903 

1 0.046 0.997 85.46 

2 0.043 0.964 91.16 

3 0.030 0.969 128.68 

4  0.034 0.971 113.99 

5  0.032 0.990 121.28 

Mean 0.037 ± 0.007 - 108.11 ± 19.0 
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Fig. 6. Normalised CoV and fitted decay curves as a function of mixing time for four different 

viscosity (µ) PEG solutions (● = 131 mPa.s, ▲= 665 mPa.s, ■ =3115 mPa.s, x = 14903 mPa.s).  

 

 
(a) 

 
(b) 

Fig. 7. Coating rate constants plotted as a function of coating liquid viscosity, a) normal viscosity 

and b) log viscosity.  Error bars represent standard deviation. 
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(a) 

 
(b) 

Fig. 8. Time taken for coating completion (tc) plotted as a function of coating liquid viscosity a) 

normal viscosity and b) log viscosity. Error bars represent standard deviation.  

 
 

 

 

(a) 131 mPa.s – 10 sec (b) 131 mPa.s – 20 sec (c) 131 mPa.s  - 40 sec 

(d) 14903 mPa.s – 10 sec (e) 14903 mPa.s – 20 sec (f) 14903 mPa.s – 140 sec 

Fig. 9. Images of coated particles as a function of tumbling time at two different PEG viscosities; 131 

mPa.s (a) after 10 seconds, (b) after 20 seconds and (c) after 40 seconds; 14903 mPa.s (d) after 10 

seconds, (e) after 20 seconds and (f) after 140 seconds.  
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4. Discussion 

In this study, the newly developed technique has been used to quantify the effect of coating liquid 

viscosity on contact spreading. It is observed that for all viscosities studied, the coating variability 

decreases and, therefore, by definition, the coating becomes more uniform with time. This is seen 

from the CoV plots as a function of time (Fig. 6) and also from the colour frequency distributions (Fig. 

4), which showed narrower peaks at longer coating times indicating lower colour variability. These 

results are in agreement with previous experimental [5,13,43] and simulation [26,43] studies for spray 

coating (including liquid spray), which all reported that the inter-particle coating variability decreases 

with coating time.  

Furthermore, the CoV value appears to reach an asymptotic value. This has been reported by Freireich 

& Li [44] and Sahni & Chaudhuri [13] in their studies of inter-tablet coating variability. However, it 

should be noted that these studies involved systems inclusive of liquid spray, so direct comparisons 

to this present study, where only contact spreading is considered, must be treated with caution. 

However, in their DEM simulations specific to liquid contact spreading, Shi & McCarthy [4] and 

Washino et al. [40] reported the attainment of an asymptotic value of coating variability. In our current 

experimental study, it is expected that the asymptotic CoV value should be the same for each of the 

systems (allowing for slight variations in liquid colour due to differences in the PEG chain length), and 

only the rate at which this value is achieved should differ. A zero CoV value represents a perfectly 

homogenous system; in this study, asymptotic CoV values varied between 1.13 and 1.98, showing 

minimal but realistic variation from the ideal case. The fact that a zero CoV value is never achieved is 

probably due to the limitations of mixing in tumbling drums, which have been well-documented (e.g. 

[5,10,16,26,45]). 

 

To quantify the coating rate, curves were fitted to each data set (CoV as a function of time). As the 

CoV eventually reached an asymptotic value, exponential decay curves were initially fitted to the data. 

This fitting method gave excellent fits for all the data sets with an average R2 value of 0.986 +/- 0.003. 

Several authors (e.g. [4,43,44]) have fitted their CoV data with a power law function. However, Easo 

found an exponential relationship using population balance modelling [46]. For this reason, a power 

law function was also fitted to each of our data sets. Here, the curves could only be fitted from 2 

seconds coating time (as the power law function does not hold below 1 second, and 2 seconds was 

the earliest experimental point considered) and needed an extra fitting parameter. The R2 values of 

these fits were then compared with fits using the exponential function, this time adjusted to fit from 

2 seconds coating time for direct comparison. An excel solver was used to minimise the sum of the 

squared difference between the theoretical and actual data points by varying the coating rate 
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constant, and thereby determine the best fit for each of the functions. The power law also gave good 

fits to our data sets (R2 = 0.950 +/- 0.007). However, in all but three cases, the exponential function 

better fits the decay of the CoV data with time, and the average R2 value was also slightly higher (0.971 

+/- 0.003). Therefore, using the exponential function to fit curves to the data was considered the most 

appropriate and was employed throughout this work. 

From this work, it is clearly evident that coating solution viscosity has a significant effect on the coating 

rate. This is due to the differing properties of the liquid bridges formed between particles during the 

process. Many authors have investigated the formation of liquid bridges at the micro-scale, 

investigating both static and dynamic liquid bridge properties for systems involving two or three 

particles [47-55]. Liquid viscosity has been shown to have a large impact on the bridge strength, the 

rupture distance, and the subsequent redistribution of the liquid [56-60]. However, there is currently 

no research on the effect of liquid viscosity on the coating variation at the process scale, e.g. in a 

tumbling drum.  

Qualitative analysis explains the differences in the CoV values at the early time points. Although the 

same mass of red dye was added to each solution, the particles seen in Fig. 9 clearly differ in red 

intensity at the early time points (10 seconds). This effect is amplified at even earlier time points, 

especially zero seconds, where it is clear that the solutions of increased viscosity have a lower rate of 

spreading. Fig. 9(d) shows localised spots of intense red colour on individual particles which could be 

a result of a liquid bridge rupture and slow spreading of the liquid on the particle surfaces. These spots 

are not visible on images in Fig. 9 (a)(b) or (c), as it presumed that the lower viscosity solutions, even 

upon bridge rupture, will spread on the solid surface more quickly and not leave localised 

concentrated spots of solution. The analysis does, however, confirm the trend of increasing coating 

uniformity with time, and shows the effect that viscosity has on the time scale. This suggests that the 

current imaging system and software may be an excellent characterization technique for 

measurement of coating variability. 

 

From images of particles taken during our experiments, partial coverage due to contact spreading is 

clearly evident at early coating times for both low and high viscosity solutions (Fig. 10). As time 

progresses, further spreading occurs and the particles become more coated. For PEG with a viscosity 

of 131 mPa.s, it takes approximately 15 seconds for all the particles to assume complete coverage of 

PEG and approximately 60 seconds for 14903 mPa.s PEG; although not all particles display the same 

red intensity and further contact spreading occurs until the asymptote is reached.  
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(a) (b) 

Fig. 10. Images of particles showing partial coverage (a) 131 mPa.s PEG after 2 seconds (b) 14903 

mPa.s PEG after 10 seconds. 

 

As previously mentioned, there have been some modelling studies concerning contact spreading in 

drum systems. Shi and McCarthy [4] produced a DEM model to incorporate contact liquid spreading, 

but assumed instantaneous spreading of the liquid over the particle surfaces in the event of a bridge 

rupture. Washino et al. [40] attempted to improve the model of Shi and McCarthy by segmenting the 

particle surface, and not assuming instantaneous and full particle liquid coverage. By comparing their 

results with the Shi and McCarthy model, they found that the assumption of full liquid coverage does 

not hold for highly viscous fluids. However, their model did not include the ability of the liquid to 

spread on the particle surface, which in practise would be expected to have a large impact on the 

liquid redistribution. This is especially true for the systems investigated here, where very slow liquid 

spreading has been observed, meaning modelling of the system using either of the models described 

will still under predict the time taken for spreading to occur. Indeed, from the qualitative results of 

our experiments, seen in Fig. 9 and Fig. 10, this lack of spreading can be seen to particularly influence 

systems which use high molecular weight PEG solutions. As has been seen, surface tension 

measurements for each of the four solutions are extremely close in value, indicating any changes in 

the coating process are due to differences in the liquid viscosity and/ or the surface spreading of the 

liquids which may depend on the molecular weight of the PEG used. 

 

The difference in coating rate when using different coating liquid viscosities could be related to the 

different particle dynamics and mixing patterns due to different liquid bridge strength. Wet particles 

encounter capillary and viscous forces resisting motion. A capillary number, representing the ratio of 

viscous to capillary forces, was calculated for each of the solutions: 
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�� = �����   (4) 

  

where U is the characteristic velocity (here, the linear velocity at the periphery of the drum), μL is the 

liquid viscosity, and γL is the liquid surface tension. The capillary number is used here to determine the 

dominant force (capillary or viscous force) on the strength of a dynamic pendular liquid bridge 

between the particles [61]. A capillary number of 1 indicates the capillary and viscous forces are 

equally important, whereas a capillary number significantly greater than 1, seen for the majority of 

the solutions used (Table 3), indicates that viscous forces dominate as a result of either high liquid 

viscosity or large relative velocity between the particles [62]. These forces can be several orders of 

magnitude greater than the capillary force [40,56,59]. For the three highest viscosity solutions used 

here, the capillary force can, therefore, be neglected, and the liquid bridge strength can be 

approximated by its viscous component, given by Eq. (5) (normal direction) and Eq. (6) (tangential 

direction) [62]. Although the 131 mPa.s solution has a Ca number of only slightly above 1, for 

simplicity, and due to the small liquid bridge force relative to the other systems in this work, the 

capillary contribution was not included in the bridge force calculation.   

��� = 6!�"∗$%
"∗
&  (5) 

  

��' = ( 8
15 ln "∗

& + 0.9588/ 6!�"∗$�   (6) 

  

 

In Eq. (5) and Eq. (6), 1/R* = 1/R1 + 1/R2 where R1 and R2 are the radii of the two particles. µ is the fluid 

viscosity, v is the relative velocity of the spheres (normal and tangential), and S is the separation 

distance between particles. This first order dependence shows that liquid viscosity can have a large 

impact on the liquid bridge strength, particle dynamics, and therefore, the rate of contact spreading. 

A higher viscosity liquid provides more resistance to particle motion and consequently it decreases 

the frequencies of particle collisions, liquid bridge formations and subsequent ruptures and, thus, the 

rate of contact spreading. The effect of varying surface tension was not investigated in the current 

work, and it can be seen in Table 1 that the surface tension for all the liquids used are very similar, 

with no significant difference between them. 
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Table 3 

Capillary number calculated for each solution.  

 

Viscosity (mPa.s) Capillary number 

131 1.31 

665 6.59 

3115 30.6 

14903 149 

 

 

The resistance to particle motion, a phenomenon caused by the liquid viscosity, and the kinetic energy 

of the particles in collisions, are in direct competition. The viscous Stokes number represents the ratio 

between these two forces and along with a critical Stokes value, determines the likelihood of 

agglomeration and coating in liquid-powder processing operations [63]. The critical Stokes value is 

difficult to calculate, as it is a function of the liquid height on the particle, surface asperity height, and 

the particle coefficient of restitution. The Stokes number can be accurately calculated in cases where 

the particles’ collisional velocities are known. Measuring particle velocities in these systems is a huge 

challenge, however the linear velocity at the periphery of the drum can be used here as a rough 

approximation [61,64]. On an individual collision basis, increasing solution viscosity results in a smaller 

Stokes number.  When the value of the Stokes number is below the critical value, the particle collision 

no longer possesses the energy required to overcome the viscous resistance. It is important to note 

that within the drum, there are many collisions, and each collision will have a different value of Stokes 

number, resulting in a distribution of Stokes numbers over the course of a coating process.  Therefore, 

decreasing the viscosity results in a greater proportion of the particle collisions with Stokes numbers 

above the critical Stokes value, and hence separating upon collision, redistributing the liquid around 

the bed via contact spreading. 

 

Furthermore, the viscosity of coating liquid directly affects the liquid transfer rate during liquid bridge 

formation and the rupture process. For a low viscosity liquid, the bridges may achieve equilibrium 

profiles at all times, which are governed by the contact angle and wettability of two particles in contact 

[4]. However, in the case of high liquid viscosity, the bridges may not have enough time to achieve an 

equilibrium profile before rupturing due to a low liquid spreading rate. This, in turn, decreases the 

amount of liquid distributed between the particles and the rate of contact spreading. Accordingly, it 

increases the time at which the asymptotic CoV of the system is approached. 
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5. Conclusion  

For the first time, an experimental method to quantify liquid contact spreading in a tumbling drum 

has been developed. The imaging technique, based on colourimetric analysis, has been used to 

quantitatively describe the effect of coating liquid viscosity on the contact spreading mechanism in a 

model liquid-powder system. This newly developed imaging system is capable of handling a significant 

number of particles, and measurements and analysis can take place in a short period of time. The 

novel contact spreading isolating experimental technique developed in this study allows several 

important parameters to be ascertained; the asymptotic CoV value, the time taken to reach this value, 

and the rate of coating.  

 

This technique has proved successful in mapping the contribution of contact liquid spreading to 

coating kinetics for a variety of solution viscosities. The lower the viscosity, the faster the contact 

spreading process, with a shorter time required to reach an asymptotic value of the coefficient of 

variation. This is attributed to differences in the viscous component of the liquid bridge strength 

between particles, which influences the mechanism of liquid transfer via contact spreading.  

 

The same methodology has the potential to be applied to investigate other material properties and 

operational parameters. Industries often resort to iterative, trial and error methods to design their 

spray coating process. Design and scale up of equipment is a time consuming and difficult process, 

resulting in large costs. This technique provides insight into the source and timescales for coating 

uniformity, with applicability to many equipment geometries across industries such as 

pharmaceuticals, detergents, agrochemical and food.  This work is the first experimental step towards 

a mechanistic understanding of contact spreading, which will ultimately aid the design and scale up of 

coating processes.  
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Appendix 

Analysis of images of coated particles 

To quantify the distribution of the coating on the particles, a suite of self-written image analysis 

algorithms written in the LabView programming language was used to analyse the colour of individual 

particles. The LabView Vision Development Module provides an array of image processing and analysis 

related ‘virtual instruments’ (VI) that can be assembled along with self-written code, enabling the 

rapid development of image processing algorithms. 

The 24-bit colour images of coated particles are made up of three 8-bit pixel arrays where a pixel value 

(0 to 255) denotes the recorded intensity of red "
0, 2�, green  3
0, 2� and blue 4
0, 2� light in that 

portion of the image (see Fig.  A1). To evaluate the distribution of the red-dyed coating on the 

processed particles it is necessary to separate object and background pixels (image segmentation). 

This is followed by identifying which object pixels belong to an individual particle (object labelling) 

from which it is possible to analyse the colour distribution across the particles. Details of the steps 

involved in analysing the colour images are given in the following sections. 
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(a) (b) 

  

(c) (d) 

Fig.  A1. (a) A typical 24-bit colour image of processed particles where the coating containing the red 

dye is concentrated on a small number of particles. (b - d) Red, green and blue pixel intensity arrays. 

The particles that appear red in the colour image are light grey in the red pixel intensity array and dark 

grey in the blue and green arrays. White particles are nearly equal in intensity across the red, green 

and blue pixel intensity arrays. 

 

A1. Image pre-processing 

Greyscale Image: The operations used to separate object pixels from background pixels require an 8-

bit greyscale image. Whilst it is possible to apply the segmentation functions to the red 8-bit pixel 

intensity array only, a more flexible approach, one that allows for the use of different colour dyes, is 

to rescale the 24-bit colour image to an 8-bit greyscale image 5
0, 2�. Using the LabView IMAQ Add 

and IMAQ Multiply VIs the following function is applied: 

5
0, 2� = 0.30 "
0, 2� + 0.59 3
0, 2� + 0.11 4
0, 2�. 
A1� 

 

The constants used were chosen to give a close approximation to the brightness of the original colour 

image (see Fig. A2a). However, it was found that the segmentation functions described below would 

often remove the darker (red) particles, effectively identifying them as background pixels. 
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(a) (b) 

Fig. A2. Greyscale conversions of image shown in Fig.  A1a. (a) Applying typical scaling values to the 

red, green and blue image intensity arrays results in the red particles being noticeably darker grey 

than the white particles. (b) Applying a higher than typical scaling value to the red image intensity 

array results in red particles of similar intensity to the white particles. 

 

Better results were obtained by increasing the brightness of the red particles: 

5
0, 2� = 0.7 "
0, 2� + 0.15 3
0, 2� + 0.15 4
0, 2�. (A2) 

 

The higher intensity of red pixels results in a greyscale image with red particles of similar brightness 

to the white particles (see Fig. A2b). 

Flat Field Intensity Correction: It was found that the ring light used to illuminate the particles caused a 

small variation in intensity across the image, from brightest at the centre of the image to darkest at 

the edges. Auto-thresholding used in image segmentation works best when the illumination is flat.  To 

correct for uneven illumination LabView’s IMAQ Flat Field Correction VI was used, supplying it with 

the greyscale image 5
0, 2� and a flat field image generated using the IMAQ Estimate Flat Field Model 

VI. The corrected image 5::
0, 2� was used in the next processing step. 

Noise Reduction: To suppress noise in the image, the method described by Crocker and Grier [41] was 

followed and applied a low-pass filter with a Gaussian kernel to the image: 

5��
0, 2� = 1
4 ; 5::
0 + <, 2 + =� �0> ?− <@ + =@

4B%@ C
D

E,FG�D
. 
A3� 

  

" ≤ I ≤ 2" (A4) 
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The effect of the filter is to slightly blur the image with the degree of blurring controlled by the noise 

correlation length B%. Typically, B% = 2 was used. The size of the Gaussian kernel is set by the integer 

I and was set to a value larger than a typical particle radius " in pixels but less than the particle 

diameter 2" (I ≈ 95). The normalisation parameter is given by 4 = L∑ �0> N−O<@ 4B%@⁄ QRDEG�D S@
. 

Applying the filter requires the output image 5��
0, 2� to be cast as an array of floating point values. 

 

A2. Image segmentation 

Boxcar Average: A first pass at separating object pixels from the background pixels was made using a 

box car average function [41]: 

5TU
0, 2� = V

@DWV�X ∑ 5
0 + <, 2 + =�DE,FG�D . 
A5� 

 

The function (Eq. (2)) outputs an image 5TU
0, 2� that models the local average pixel intensities. 

Subtracting the boxcar image from the smoothed image (Eq. (6)) suppresses the background pixel 

intensities to 0: 

5���TU
0, 2� = 5��
0, 2� − 5TU
0, 2�, (A6) 

 

After subtracting the boxcar image from the smoothed image, the IMAQ Threshold VI was applied to 

the image using a threshold of 1. The VI outputs an 8-bit binary image 5Y
0, 2�, where all pixels in 

5���TU
0, 2� with a grey value above 1 are set to 1 and the remainder set to 0 (see Fig. A3a). 
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(a) (b) 

Fig. A3. (a) Binary image of particles after boxcar subtraction and thresholding. Many touching 

particles are not fully separated in the binary image. (b) After a series of ‘erode’ and ‘dilate’ steps most 

of the particles in the binary image are now separated.   ‘Blobs’ of connected white pixels correspond 

to the pixels forming the image of individual particles. Where they are surrounded by black 

background pixels the segmentation process has been successful. A small number of particles that 

overlap their neighbours are not fully separated. 

 

Erode and Dilate: Many of the particles in the binary image 5Y
0, 2� are still connected to their 

neighbours by a few pixels. Erode and Dilate are two morphological operations that take a ‘structuring 

element’ to erode regions of object pixels in a binary image and grow or dilate those regions. By 

dilating object regions after eroding them it is possible to separate connected regions [42]. Two 

iterations of the morphological operation ‘erode’, using the IMAQ Morphology VI with a circular 

structuring element (width = 43 pixels) were applied. This was followed by 6 iterations of ‘dilate’ using 

the IMAQ Morphology VI, using a circular structuring element (width = 13 pixels). The result (see Fig. 

A3b) was that it was able to separate most of the particles in the binary image 5Z[
0, 2� with minimal 

loss of pixel data. 

 

A3. Colour analysis 

The LabView VI IMAQ Label takes a binary image 5Z[
0, 2� and labels each separate region with a 

unique grey value (Fig. A4a). This enables the identification of individual particles and their pixels in 

the image by their label number (see Fig. A4b). 
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(a) (b) 

Fig. A4. (a) A connected region labelled image where each ‘blob’ in the binary image (Fig. A3) is labelled 

with a unique grey value. This image is used to identify object pixels in the original image. (b) Original 

colour image displaying the connected region label number and the outline of the region. 

 

To calculate the red (\]^), green (\_^) and blue (\T^) intensity fractions for an individual particle 

with label `, the locations of all the pixels labelled ` were identified and histograms for the 

corresponding pixels in the red, green and blue intensity arrays generated (a]^
b�, a_^
b� and 

aT^
b�). The intensity fractions were calculated using 

\]^ = ∑ cd^ 
e�eXffghi
∑ cd^
e�eXffghi W∑ cj^
e�eXffghi W∑ ck^
e�eXffghi , (A7) 

\_^ = ∑ cj^
e�eXffghi
∑ cd^
e�eXffghi W∑ cj^
e�eXffghi W∑ ck^ 
e�eXffghi , (A8) 

\T^ = ∑ ck^
e�eXffghi
∑ cd^ 
e�eXffghi W∑ cj^
e�eXffghi W∑ ck^ 
e�eXffghi . (A9) 

For white particles \]^ ≈ \_^ ≈ \T^ ≈ 0.33 and for particles that appear in red in the image 

\_^ ≈ \T^ < \]^ . 


