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ABSTRACT

We examine the role of stratification in determining the length scales of turbulent anelastic convection. Motivated
by the range of scales observed in convection at the solar photosphere, we perform local numerical simulations of

convection for a range of density contrasts in large domains, analyzing both the Eulerian and Lagrangian statistics of

the flow. We consider the two cases of constant dynamic viscosity and constant kinematic viscosity. We discuss the

implications of our results to the issue of solar mesogranulation.
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1. INTRODUCTION

Convection in the solar photosphere is characterized

by a wide range of scales. The smallest clearly dis-

cernible scale is that of the granules; granular convec-

tion itself has a range of scales, with a typical granule

being 1Mm in horizontal extent and having a lifetime

of a few minutes. The kinetic energy contained in these

scales is transferred to smaller scales through a turbu-

lent cascade, until it is dissipated as heat at scales of the

order of a millimetre. At a considerably larger scale are
the supergranules, with a typical size of 30Mm and a
lifetime of a few days. The existence of granular and su-

pergranular scales is clear from numerous observational

studies (e.g. Rieutord & Rincon 2010; Hathaway et al.

2015). There is, however, an additional putative inter-
mediate convective scale, known as mesogranulation. A

mesogranular scale of convection was first reported by

November et al. (1981), who used time-averaged velocity

measurements to identify a convective scale of the order

of 4Mm with a lifetime of about two hours. Intrigu-

ingly though, there is no specific signature detectable in

the kinetic energy spectra at this scale that would un-

ambiguously identify a true mesogranular scale, distinct

from either large granules or small supergranules (see
Hathaway et al. 2000; Rieutord & Rincon 2010, and ref-

erences therein). The existence of mesogranulation has

thus been the subject of considerable debate over the

last few decades.

From a theoretical perspective, several computational

studies have addressed the modelling of mesogranu-

lation. The first such studies, which employed the

Boussinesq approximation (Cattaneo et al. 2001, 2003),

did indeed observe larger-scale convective structures,

which could be identified as mesogranules, together with

smaller cells, which could be identified as granules. In

order to go beyond the Boussinesq approximation by

incorporating the influence of stratification — a crucial

ingredient of the solar photosphere — the problem of

convective cell structure has also been addressed using

codes that solve the fully compressible convection equa-

tions. For instance, Rincon et al. (2005), Bushby et al.

(2012) and Bushby & Favier (2014) investigated fully

compressible convection, though for quite small density

contrasts. They also observed the emergence of large
convective cells, of a similar scale to those seen in the
Boussinesq configuration; in these studies, mesogranules

were associated with the most energetic scale in the ki-

netic energy spectrum. From the point of view of termi-

nology, when comparing the results of simulations with

solar observations, certain studies (e.g. Rieutord & Rin-

con 2010; Hathaway et al. 2015) associate the highly
energetic convective cells with granules, whilst others

(e.g. Bushby et al. 2012; Bushby & Favier 2014) refer to
these as mesogranules.

Although the effects of density stratification are of

course included in the equations of fully compressible

convection, the numerical constraints involved in accu-

rately tracking sound waves are severe, ensuring that

only fairly small density contrasts can be studied. How-

ever, in the Sun, the density stratification close to the

surface is pronounced, with a change in density of nearly

four orders of magnitude over the outer 2% of the Sun

(Stix 1989). Here, therefore, we propose to study the

pivotal role of density stratification by considering the
problem of thermal convection under the anelastic ap-

proximation, an asymptotic reduction of the full gov-

erning equations that retains the effects of stratification,

but filters out sound waves (see Gough 1969; Lantz &

Fan 1999). Such an approach has been employed for a

number of years in global spherical simulations of stars
and planets (e.g. Glatzmaier & Gilman 1981; Clune et al.

1999). However, for local models with Cartesian geome-

tries, the development of this types of codes is, some-

what surprisingly, rather new. A review of the various

computational approaches that have been employed to

model stellar convection is provided by Kupka & Muth-

sam (2017).
The outline of the paper is as follows. Section 2

presents the mathematical formulation of the problem

of thermal convection in the anelastic approximation,

with a brief description of the numerical approach we

have employed (a fuller description can be found in the

Appendix). Section 3 describes the results of the numer-

ical simulations for the case of constant dynamic viscos-
ity, employing three different approaches to investigat-
ing the dependence of the convective cell structure on

the stratification of the atmosphere. Section 4 examines

the changes that arise in the case when the kinematic

viscosity is assumed constant. The connection with the

long-standing issue of solar mesogranulation is discussed

in Section 5.

2. MATHEMATICAL FORMULATION OF

ANELASTIC CONVECTION

We consider the problem of anelastic convection be-
tween two infinite horizontal planes, at z = 0 (bottom)

and z = d (top). This orientation of the z-axis, opposite

to that traditionally used for compressible convection,

allows for a formal identification of the anelastic and

Boussinesq equations. Several different formulations of

the anelastic approximation can be found in the litera-

ture. Here we follow that introduced by Lantz & Fan

(1999); the results of this formulation have been com-

pared with those of fully compressible convection, both
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in the linear (Berkoff et al. 2010) and nonlinear regimes
(Verhoeven et al. 2015).

The starting point for the anelastic approximation is

to decompose the density ρ, temperature T , pressure p

and entropy s into an adiabatic, z-dependent reference
state, indicated by overbars, and a perturbation to this

state, indicated by subscripts “1”:

ρ = ρr (ρ̄+ ερ1) , T = Tr

(

T + εT1

)

,

p = pr (p̄+ εp1) , s = sr + cpε (s̄+ s1) , (1)

where cp is the specific heat at constant pressure, and
ρr, Tr, pr and sr are representative values of the den-

sity, temperature, pressure and entropy, evaluated at

the bottom of the layer. The asymptotically small pa-

rameter ε is a dimensionless measure of departure from

adiabaticity, expressed as

ε = −
d

Tr

(

dT

dz
+

g

cp

)

, (2)

where g = −g ez is the gravity vector.
The reference state depends only on the height z, and

takes the form of a polytrope:

ρ̄ = (1 + θz/d)
m
, T = 1+θz/d, s̄ =

1

|θ|
ln(1+θz/d),

(3)

where θ < 0 is the dimensionless temperature difference

across the layer and m = 3/2 is the adiabatic polytropic

index. The density contrast across the layer is defined
by

χ =
ρ̄(0)

ρ̄(d)
=

1

(1 + θ)m
. (4)

In this formulation of the anelastic approximation, it
is assumed that the effect of the molecular transport of

heat and momentum is much smaller than that induced

by turbulent motions. Hence we introduce a turbulent

thermal diffusivity κ, and a turbulent kinematic viscos-

ity ν, with representative values at z = 0 of κr and νr re-
spectively, together with an entropy based diffusion (see

Braginsky & Roberts 1995). Furthermore, we assume
that the thermal conductivity, k = ρ̄ cp κ, is constant

(and hence κ varies with depth).

On scaling lengths with the layer depth d, and times

with the thermal relaxation time d2/κr, the evolution of

the perturbations to the reference state in the velocity

u, and entropy s, (dropping subscripts “1”) is governed

by the following dimensionless set of equations (e.g. Miz-
erski & Tobias 2011):

∂u

∂t
+ u · ∇u =−∇

(

p

ρ̄

)

+RaPr s ez + PrDv, (5)

∇. (ρ̄u) = 0, (6)

∂s

∂t
+u · ∇s =

uz

1 + θz
+

1

ρ̄

(

∇2s+
θ

T

∂s

∂z

)

+ Cq Q, (7)

with

Q = 2

3
∑

i=1

(

∂ui

∂xi

)2

+
2

3
(∇ · u)

2
+

3
∑

i<j

(

∂ui

∂xj

+
∂uj

∂xi

)2

.

(8)

The quantities Dv and Cq take different forms depen-

dent on the choice of prescription for the viscosity. If the

dynamic viscosity, µ = ρ̄ ν, is assumed constant, then

Dv =
1

ρ̄

(

∇2u+
1

3
∇ (∇ · u)

)

, Cq =
−θ

RaT ρ̄
. (9)

Conversely, if the kinematic viscosity is assumed con-

stant, then

Dv = ∇2u+
1

3
∇ (∇ · u)+

d ln ρ̄

dz

(

∂u

∂z
+∇uz −

2

3
(∇ · u)ez

)

,

Cq =
−θ

RaT
. (10)

The Rayleigh number Ra and Prandtl number Pr ap-

pearing in equation (5) are constants, defined by their

values at the bottom of the layer:

Ra =
gd3ε

νrκr

, P r =
νr
κr

. (11)

For stratified convection, one may also define z-

dependent versions of the Rayleigh and Prandtl num-

bers, Ra(z) and Pr(z), defined as in (11) but with ν and
κ rather than νr and κr. For constant µ, Ra(z) ∝ ρ̄2,

Pr(z) = constant; for constant ν, Ra(z) ∝ ρ̄, Pr(z) ∝ ρ̄.

An important aspect of the above formulation of the

anelastic equations is that the Boussinesq equations are
recovered exactly by imposing θ = 0; in this case the

variable s is identified not with the entropy, but with
the temperature.

We consider a domain that is square and periodic in

the horizontal directions, of size λ×λ×1. On z = 0 and

z = 1, we adopt stress-free and impermeable velocity

boundary conditions; the system is also assumed to have

uniform entropy (with s = 0) on z = 0 and z = 1. The

layer of fluid is initially at rest with only small random
entropy perturbations.

We have developed a computational code to solve

the anelastic equations (5)–(7) in a Cartesian domain.
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Derivatives in the horizontal directions are computed
using FFTs, via the FFTW library, and in the verti-

cal direction by a 4th order finite-difference representa-

tion. Time stepping is achieved through a semi-implicit

scheme, in which the nonlinear terms are treated by a

second order Adams-Bashforth method and the linear

terms by a Crank-Nicolson scheme. The pressure is han-
dled via a poloidal-toroidal decomposition. Implemen-
tation of the boundary conditions requires use of the in-

fluence matrix method (Boronski & Tuckerman 2007).

The code has been parallelized using MPI, with a pencil-

based decomposition. Further details of the numerical

approach are contained in the Appendix.

3. STRATIFIED ANELASTIC CONVECTION:

CONSTANT DYNAMIC VISCOSITY

In this section, we concentrate on the case of con-

stant dynamic viscosity µ, and explore the influence

of density stratification on thermal convection by con-

sidering four representative cases. As our benchmark

example, we consider Boussinesq (unstratified) convec-

tion (i.e. θ = 0), for which a direct comparison can be
made with the results of Cattaneo (1999). We then con-

sider three further anelastic configurations (AC) with

non-zero (negative) values of θ: a mildly stratified case

with θ = −0.6, giving a density contrast χ across the

layer of χ = 4 (AC4); a strongly stratified case with
θ = −0.92 and χ = 50 (AC50); and an intermediate case

with θ = −0.89 and χ = 30 (AC30). Following Catta-
neo (1999), for the BC simulation we set Ra = 500 000,

Pr = 1 and λ = 10; if Rac denotes the critical Rayleigh

number for the onset of convection, then the degree of

supercriticality is given here by Ra/Rac ≈ 760. As the

stratification is increased, it becomes harder to drive

convection, i.e. Rac increases (see e.g. Currie & Tobias

2016). Thus, to make meaningful comparisons between
the three cases, we increase Ra for the AC runs in order

to maintain the same degree of supercriticality at refer-

ence level z = 0; the parameter values are summarized

in Table 2.

We consider the formation and evolution of the con-

vective network from three different perspectives. In
Section 3.1 we describe the broad features of the con-

vection for the four cases by considering the distribution

of the temperature (for the Boussinesq case) or the en-

tropy (for the anelastic cases); in Section 3.2 we look in

detail at how the network evolves in time by calculat-
ing the dispersion of a passive scalar introduced into the

flow; in Section 3.3 we analyse the time-averaged con-
vective network by considering the spectral distribution

of kinetic energy. Rather than discuss the convection

in terms of granules or mesogranules, in these sections

we shall refer to either convective cells or the convective
network.

3.1. Convective Networks

Figure 1 shows the temporal evolution of the volume-

averaged kinetic energy E for the four cases. After an
initial (linear) phase of exponential growth, the energy

settles into a statistically stationary state. It is interest-

ing to note that, although the degree of supercriticality

(i.e. Ra/Rac) is the same for all four cases, there is some

variation in the level of the energy in the saturated state
and, furthermore, that the dependence of E on θ is non-

monotonic.
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Figure 1. Time evolution of the averaged kinetic energy
E(t) for the four configurations.

The influence of stratification can be seen clearly in

Figure 2, which depicts horizontal slices of temperature

or entropy fluctuations at different depths for cases BC

Table 2. Parameter values for the four cases: λ is the aspect
ratio, Pr is the Prandtl number, θ and χ are, respectively,
the temperature difference and corresponding density contrast
across the layer, Ra is the Rayleigh number and Rac its critical
value for convection.

Parameters BC AC4 AC30 AC50

λ 10 10 10 10

Pr 1 1 1 1

θ 0 −0.60 -0.89 -0.92

χ 1 4 30 50

Ra 5× 105 1.2× 106 2.65× 106 2.95× 106

Rac 657.51 1566.89 3503.18 3885.07
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(a) (b)

Figure 2. Horizontal slices of (a) temperature fluctuations for BC, and (b) entropy fluctuations for AC4, at heights z = 0.9
(top), z = 0.5 (middle) and z = 0.1 (bottom).
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and AC4. Boussinesq convection is characterized by a
symmetry about the mid-plane (z = 0.5), as can be

seen from the general morphology of the convective net-
works towards the bottom and top of the domain. Near
the bottom (z = 0.1), one can see a network of con-
vective cells of different sizes, together with turbulent

motions; the large convective cells are associated with
warm upflows. Near the top of the domain (z = 0.9),

the network of cells is similar to that at the bottom,

but now with convective cells delineated by cold down-

flows. As expected from the Boussinesq symmetry, the

BC case does not exhibit any particularly distinct cells

or structures on the mid-plane. For anelastic convec-

tion, the z-symmetry is broken, as can be seen clearly

for the case of AC4 shown in Figure 2b. At the top of

the domain, there is a convective network with a range

of scales, not dissimilar to that of Boussinesq convection.

On the mid-plane, the outline of some of the largest cells

are still discernible; as previously observed by Bushby

et al. (2012), only the strongest downflows penetrate
deeply into the convective region. At the bottom of the

domain, and in sharp contrast to the Boussinesq case,

there is no vestige of the convective network; the flow is

highly turbulent, interspersed with light bridges depict-

ing warm upflows.
In order to explore any influence of the horizontal ex-

tent of the domain, we have also performed the BC and

AC4 simulations at the larger aspect ratio of λ = 20.

Figure 3 shows horizontal slices at z = 0.9 of tempera-

ture (BC) and entropy (AC4) for these two additional

configurations, which should be compared with the cor-

responding cases for λ = 10, shown in the top row of
Figure 2. The general structure and characteristic sizes

of the cells are very similar for the λ = 10 and λ = 20
cases, suggesting that with λ = 10 the convection is not

strongly constrained by the size of the domain. It should

though be pointed out that in the BC case at the larger

aspect ratio, the largest convective cells can have more

degrees of freedom for their orientation.
The nature of the convective network for the strongly-

stratified AC50 case can be seen in Figure 4, which
shows slices of the entropy fluctuations and the verti-

cal vorticity at three heights in the domain. There is

now a marked asymmetry between the top and bottom

of the domain. Considering the entropy near the top of

the domain, there is a well-defined laminar network of

cells, with no evidence of turbulent small-scale behavior.
Comparison with the network for the BC configurations
(Figure 2a) shows that the largest convective cells ob-

servable are somewhat smaller in the strongly-stratified

case. Associated with the network in the entropy fluc-

tuations is a corresponding emerging network of vertical

(a)

(b)

Figure 3. Horizontal slices of (a) temperature fluctuations
for BC, and (b) entropy fluctuations for AC4, both with
aspect ratio λ = 20; the height z = 0.9.

vorticity; small patches of concentrated vorticity form

where the convective cells merge. As for the mildly-

stratified (AC4) case, it is only the cells of greatest hor-

izontal extent that propagate deeply; at the mid-plane,

the imprint of the largest cells at the surface survives,

visible in both the entropy and vorticity. At the bottom

of the domain the flow is turbulent, which is particularly

evident in the distribution of vertical vorticity, with no

evidence remaining of the convective network.
Corresponding convective patterns can also be iden-

tified in the velocity components. Figure 5 shows hori-
zontal slices of all three components of the velocity for

the AC50 case, taken at the same time as the entropy

snapshots in Figure 4. As has been widely observed in
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(a) (b)

Figure 4. Horizontal slices of (a) entropy fluctuations and (b) vertical vorticity for the AC50 configuration, at heights z = 0.9
(top row), z = 0.5 (middle), and z = 0.1 (bottom).
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(a) (b)

Figure 5. Horizontal slices at (a) z = 0.9 and (b) and z = 0.1 for the AC50 configuration, for the velocity components in the
x (top row), y (middle), and z (bottom) directions, taken at the same time as the snapshots in Figure 4.
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previous simulations of convection, at the top of the do-
main there is a strong correlation between the vertical

velocity and the entropy fluctuations; thus all scales of

the convective network are evident. In the horizontal

velocity components, by contrast, only the large-scale

convective cells can be identified. Near the bottom of

the domain, where the flow is highly turbulent, the con-
vective network is less evident — as it is in the entropy
distribution. The vertical velocity and entropy fluctua-

tions are again correlated, and some structures can be

identified; this is no longer the case for the horizontal

components.

3.2. Influence of the Convective Network on a Passive

Scalar

A complementary approach to visualising the convec-
tive network (which samples its Eulerian representa-

tion), and particularly to tracking its temporal evolu-

tion, is to compute the motion of passive tracer parti-

cles or ‘corks’ (therefore, to some extent, gaining insight

into the horizontal Lagrangian statistics). This idea was

first introduced by Simon & Weiss (1989) in order to

understand the evolving photospheric network. Simon
& Weiss (1989) considered a model cellular flow and

showed how the corks, advected solely by the horizontal

component of the velocity, first moved to map out a lin-

ear network, before congregating in isolated concentra-

tions at longer times; such behavior is reminiscent of the

radial magnetic field observed in the photosphere. The

notion of tracking corks has subsequently been used in

numerical simulations of convectively-driven flows (Cat-

taneo et al. 2001; Bushby & Favier 2014), in which the
corks are again advected into the interstices of the con-

vective network.

An alternative, though related, approach to track-

ing the motion of discrete passive tracer particles is to

consider the temporal evolution of a continuous passive

scalar — what we shall refer to here as ‘ink’. In particu-

lar, we consider the advection by the horizontal velocity
of an initially uniform distribution of ink. If the scalar
field φ denotes the concentration of ink, then its evo-

lution is governed by the advection-diffusion equation

∂φ

∂t
+∇h · (uφ) = Sc(z)∇

2
hφ, (12)

where the subscript h denotes horizontal derivatives.

For numerical expediency, we take the Schmidt number

Sc to be a function of z. We are interested in the pat-

tern mapped out by the ink on various horizontal planes;
given the changes in the flow characteristics with depth,

it turns out to be convenient to have Sc increasing as
1/ρ̄, with the value of unity at z = 0.

Here we consider the evolution of the passive scalar
for the strongly stratified case (AC50). The ink is intro-

duced at some time t0 in the fully nonlinear stationary
regime. Figure 6 shows snapshots of the distribution of

ink near the top and bottom of the domain at three

representative times. At the top of the domain, the

ink is pushed quickly between the cells, mapping out
the convective network, as shown by the distribution
at t′ = t − t0 = 0.00375. The ink then starts to be-

come concentrated at the corners of the cells, but with
the overall network still visible, as shown by the plot at
t′ = 0.009075. The long-term distribution, as shown by

the plot at t′ = 0.0525, is marked by a disjoint concen-

tration of ink at the corners of the convective network.
The behavior at the bottom of the domain is slightly
different. At t′ = 0.00375, there is a hint of a net-

work emerging, but, owing to the turbulent motions, it
is much harder to distinguish than near the top. At
t′ = 0.009075, a clearer network is emerging at the bot-

tom of the domain, although the turbulent motions are
still visible. At long times (t′ = 0.0525), the ink again
accumulates in a few locations, although, in contrast to
the top of the domain, it is redistributed by the tur-

bulent motions. The most noticeable characteristics of

the evolution of a continuous passive scalar — its accu-

mulation between convective cells and its redistribution

by the turbulent motions — are very similar to those

observed by Bushby et al. (2012) in a weakly stratified
system using discrete tracer particles.

3.3. Spectral Distribution of Kinetic Energy

In Sections 3.1 and 3.2 we have seen the emergence of
a convective network through the temporal evolution of

the entropy and of a passive scalar. Here we supplement

these studies by investigating the spectral distribution

of kinetic energy. In order to do so, we employ a formu-

lation of the kinetic energy spectrum used extensively in

simulations of turbulent convection (e.g. Bushby et al.

2012). For a given height z, and time t, we evaluate the
spectral distribution of kinetic energy

Ek(kh, z, t) =
ρ̄(z)

2

∑

kx

∑

ky

|ûkx,ky
(z, t)|2, (13)

where ûkx,ky
is the two-dimensional Fourier transform

(in horizontal planes) of the velocity field, with the

summations over all horizontal wavenumbers such that

k2x + k2y = k2h. We also consider the separate decom-

positions of the energies of the horizontal and vertical

motions.
Figure 7 shows spectra for the four cases, which have

been both depth averaged and time averaged over 10–15

turnover times. In this figure alone, the energy spec-
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(a) (b)

Figure 6. Distribution of ink at (a) z = 0.9 and (b) z = 0.1 at elapsed times t′ = 0.00375 (top), t′ = 0.009075 (middle) and
t′ = 0.0525 (bottom) for the AC50 configuration. Initially (i.e. t′ = 0) the ink is uniformly distributed with a value arbitrarily
fixed to φ = 100. The color scale is the same for all plots, chosen to cover the entire range at t′ = 0.00375. The turnover time is
τ ≈ 0.025 at z = 0.9, and τ ≈ 0.036 at z = 0.1. The top row corresponds to the same time as the snapshots in Figures 4 and 5.
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Figure 7. Time- and depth-averaged kinetic energy spectra
for the four different cases.

tra have been normalized so that the changes in spatial

scales between the different cases become more appar-

ent. There is a clear peak of energy at a large scale, with

the peak moving to a larger wavenumber (smaller scale)

as the stratification increases. The difference between

the BC and AC4 cases remains small, but is more sig-

nificant in the cases of AC30 and AC50, which are very

similar.

Whereas Figure 7 provides an idea of the distribu-

tion of energy over horizontal scales for the domain as a

whole, it is important also to consider the energy distri-

bution at different heights. Figure 8 shows the kinetic

energy spectra at z = 0.1, 0.5 and 0.9 for the AC4 and

AC50 cases. Two significant observations can be made.

First, the effect of the midplane symmetry of the layer

can still be observed at large scales for the weakly strat-

ified case but not for the case of strong stratification.

In the latter, the kinetic energy is in fact significantly

reduced with height, particularly at small scales; this

is consistent with the snapshots of the entropy and the

passive scalar presented earlier and also with the stud-

ies of compressible convection by Bushby et al. (2012)

and Bushby & Favier (2014). From equations (5) and

(7), it can be seen that the dissipation terms scale as 1/ρ̄
(throughDv and Cq); the dissipation therefore increases

with height, suppressing any small-scale turbulence near
the top of the domain. The second point to note is that,
even for the strongly stratified case, the most energetic
scale does not change with depth, as noted by Bushby

et al. (2012) in their mildly stratified, fully compressible

simulations. The results for the BC configuration are
not shown here, but the spectra at z = 0.1 and z = 0.9

are identical, owing to the Boussinesq symmetry.
Figure 9 shows, separately, time- and depth-averaged

spectra of the kinetic energy associated with horizon-
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Figure 8. Kinetic energy spectra at different heights for
(a) AC4 and (b) AC50 configurations.

tal and vertical motions, for the BC, AC4 and AC50

cases (AC30 and AC50 being extremely similar). At

large scales, the bulk of the energy is contained in the

horizontal motions. We note also that the migration to
smaller scales with increasing stratification can be seen
equally in both the horizontal and vertical spectra.

In addition, Figure 10 shows time-averaged spectra of

the kinetic energy contained in the horizontal and verti-
cal motions for the AC50 case at three different depths.

At each depth, the horizontal motions are dominated
by the large scales; there is a well-defined peak in the
spectrum, but also significant energy in the largest scales
possible. By contrast, the vertical motions have little en-

ergy in the very largest scales, but there is then a plateau

in the spectrum over a range of wavenumbers, before the

energy falls off at large k. At the top of the layer, these
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Figure 10. Time-averaged spectra of the energy contained
in the horizontal motions (solid lines) and in the vertical
motions (dashed lines), at different heights for AC50.

spectra are consistent with the plots in Figure 5a, in

which there is an absence of small granules in the snap-

shots of the horizontal velocity components, but a wider

range of scales in the vertical velocity. At depth, where

the motions are much more turbulent, such features are
less apparent (Figure 5b), even though the shapes of the

spectra are essentially the same at all depths.

Finally, Figure 11 presents instantaneous spectral dis-

tributions of the fluctuations of ink and entropy at

depths z = 0.1 and z = 0.9, obtained at the same time-

step as the snapshots in Figure 6. The most significant

feature is that the spectra of the two different quanti-
ties are extremely similar: at both depths, they have
a peak at the same wavenumber, which corresponds to

that of the peak in the kinetic energy spectrum. Thus,

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100

 

k
h
 

z=0.1

z=0.1

z=0.9

z=0.9

Figure 11. Spectral distributions of entropy (solid lines)
and ink (dashed lines) at t′ = 0.00375 for z = 0.9 (green)
and z = 0.1 (red) in the AC50 case. Data were normalized
to the intensity of the spectral distribution at the lowest wave
number.

as expected, the dominant scale in both the entropy fluc-

tuations and the ink is that of the horizontal motions.

4. CONSTANT KINEMATIC VISCOSITY

As described in the introduction, two possible, widely

used prescriptions for the viscosity are those of constant

dynamic viscosity and constant kinematic viscosity. The

results of the previous section were obtained for the case

of constant µ; it is therefore of interest also to con-
sider the case of constant ν, and to examine whether

the main conclusions still hold. To this end, in this sec-

tion we study the AC30 configuration (see Table 2), but

with constant ν, and compare the results against those

obtained for AC30 with constant µ. Recall, from Sec-
tion 2, that Ra(z) decreases with height more slowly for

the case of constant ν. Unsurprisingly therefore, with
all other parameters the same, the degree of supercrit-

icality is higher for the case of constant ν; the average

kinetic energy 〈Ek〉 ≈ 2.2× 104 for constant µ, whereas

〈Ek〉 ≈ 2.8× 104 for constant ν.

4.1. Convective Networks

In order to investigate the influence of the particu-

lar prescription for the viscosity, we first consider the

nature of the convective networks. Figure 12 compares
snapshots of the entropy slices at three depths for the

two cases of constant dynamic viscosity and constant
kinematic viscosity. For both configurations the flow is
highly turbulent at the bottom of the domain, and a

convective network is hard to identify. Conversely, near
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(a) (b)

Figure 12. Horizontal slices of entropy fluctuations for the AC30 configuration, at heights z = 0.9 (top row), z = 0.5 (middle),
and z = 0.1 (bottom), with (a) constant dynamic viscosity and (b) constant kinematic viscosity.
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Figure 13. Time-averaged spectra of the kinetic energy
contained (a) in the horizontal motions and (b) in the ver-
tical motions, at different heights, for AC30 with constant
dynamic viscosity (solid lines) and constant kinematic vis-
cosity (dashed lines).

the top, a clear network is apparent in both cases, with

a range of convective cell sizes. The main difference be-

tween the two cases is that the turbulence extends fur-

ther into the domain for constant kinematic viscosity.

This is evidenced by comparison of the entropy snap-

shots at z = 0.5; whereas the network is clearly outlined

in the case of constant dynamic viscosity, the cell bound-

aries, though discernible, are much more turbulent for

the case of constant kinematic viscosity.

4.2. Spectral Distribution of Kinetic Energy

As in Section 3, it is instructive to complement the vi-

sualisation of the convective network obtained through

snapshots of the flow with an analysis of the spectra of

the horizontal and vertical kinetic energies. Figure 13

shows the spectral distribution of the kinetic energy con-

tained in the horizontal and vertical motions at differ-

ent depths, for both prescriptions of the viscosity. As

expected from the entropy snapshots in Figure 12, there

is increased energy in the small scales for the case with
constant kinematic viscosity, in both the vertical and
horizontal motions. On the other hand, the energies

in the large scale structures are close. The kinetic en-

ergy is dominated by the horizontal motions; for these,

the most energetic convective scale is the same at all

depths and for both configurations. Interestingly, near

the top of the layer, the dominant scale of the weaker

vertical motions is smaller than that established by the

dominant horizontal flows. Thus, the choice of viscosity

prescription influences the small scales and the degree of

turbulence, but has little impact on the highly energetic

convective cells observed at large scales.

5. DISCUSSION

In this paper we have investigated the role of stratifica-

tion in modifying spatial scale selection in a local model

of anelastic convection. By employing the computation-

ally more tractable anelastic approximation, we have

been able to study density ratios far in excess of those

attainable in fully compressible models. Both the Eule-

rian and Lagrangian properties of the turbulent convec-

tion are modified by the presence of strong stratification.

The midplane symmetry of the Boussinesq approxima-

tion is broken as the stratification is increased, leading

to convection that has a well-defined, reasonably lami-

nar cellular structure near the top of the domain, but

a much more turbulent nature at depth. Furthermore,

the initial increase in stratification away from the un-
stratified case produces a marked shift to smaller-scale
convection, as can be seen from comparison of the en-
ergy spectra for the BC and AC4 cases. However, it is

of interest to note that, for a given degree of supercrit-

icality, the convective structure eventually becomes in-

dependent of further increases in the stratification, the

spectra of AC30 and AC50 being essentially identical.
Our main focus has been on the case for which the dy-
namic viscosity µ and the thermal conductivity k are

constant, and hence the kinematic viscosity ν and ther-

mal diffusivity κ increase with height. We have though,

for comparison, also considered one case in which the
kinematic viscosity is constant. Although the overall na-

ture of the convection — i.e. laminar cell structure near
the surface but with more turbulent flows at depth —
is unchanged, the suppression of small-scale turbulence

with height is less pronounced.
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From our simulations it is clear that in the upper re-
gions of the domain there is a characteristic scale of

convection, as shown in Figures 2 and 4. From study

of the dispersion of a passive scalar, it can be seen that

the dominant scale is essentially the largest scale that

emerges from the smaller-scale convective cells. One

might therefore deem this to be the ‘mesogranular’ scale.
What is important to note though is that this scale
cannot be attributed to a different physical formation

mechanism to the smaller-scale ‘granular’ convection.

The presence or absence of this dominant mesogranular

large-scale has been attributed to the dynamics of vor-

ticity, with strong vortex patches on small scales lead-

ing to the formation of such dominant scales (Bushby

& Favier 2014). Our simulations for strong stratifica-

tions lend support to this theory. Furthermore, it is of

interest to note that changing from a constant dynamic

viscosity µ to a constant kinematic viscosity ν does not
affect the small-scale vorticity sufficiently to suppress

the formation of the dominant scale. It is though worth
pointing out that it is very difficult to pick out spatial
scales from spectral analysis since the lack of phase in-
formation leads to sharp gradients in the velocity across

a wide range of scales. A wavelet and multifractal anal-

ysis of the type performed by Lawrence et al. (1997) for
solar magnetic fields may prove more revealing. Finally,

we note that by identifying the ‘granular scale’ as the
most energetic scale, as is also typically done observa-
tionally, the granular scale does not change with depth.
If, alternatively, one were to define a ‘typical’ granule

size, then this would increase with depth (for example,

from comparison of the entropy slices at z = 0.9 and
z = 0.5 in Figure 4).

We conclude by discussing possibilities for further in-
vestigations. At large enough scales, rotational effects

will cease to be negligible; it will therefore be important

to consider extended domains in order to identify how

far down the spectrum the effects of rotation are felt.

This will have direct relevance for understanding the

interactions in the Sun between all scales from super-

granules to granules. Furthermore, it is also of interest

to identify how reducing the thermal Prandtl number to

more realistic values affects scale selection and energy
transport. Our study to date has been purely hydro-
dynamic. Work is in progress to extend this to con-
sider the interaction between the convection and mag-

netic fields; more precisely, we shall investigate both the

processing of large-scale flux generated elsewhere (thus

modelling the injection of flux from a large-scale solar

dynamo) and magnetic field generated by the small-scale
dynamo action of the convection itself. The computa-
tionally tractable anelastic system considered here will
allow the investigation of dynamo action in highly strat-

ified turbulent domains.
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APPENDIX

A. NUMERICAL ALGORITHM

Here we give details of the numerical algorithm employed to solve the equations of anelastic convection (i.e. equa-

tions (5)–(7)) in Cartesian geometry. Since periodicity is assumed in the horizontal (x, y) plane, we adopt standard

Fast Fourier Transforms in these directions; two dimensional Fourier coefficients are indicated with hats. The equations

are discretized in z using a fourth order finite-difference scheme with an evenly spaced grid. They thus form large
systems of algebraic equations, which we solve via an LU decomposition using the LAPACK library.

In the anelastic formalism, ∇ · (ρ̄u) = 0 (equation (6)); hence 〈uz〉h = 0 and the momentum can be expressed as

ρ̄u = ρ̄〈ux〉hex + ρ̄〈uy〉hey +∇× (ρ̄Γez) +∇×∇× (ρ̄P̃ez), (A1)

where Γ and P̃ are toroidal and poloidal scalar fields respectively, and 〈·〉h denotes a horizontal average. For simplicity

in the notation we also introduce P = ρ̄P̃ .
The momentum equation (5) can then be expressed in terms of these toroidal and poloidal components. The evolution

equation for P arises from the z component of the curl of the curl of the momentum equation whilst the evolution of
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Γ is obtained from the z component of the curl of the momentum equation. The resulting equations are different for
the two prescriptions of viscosity, so we consider these separately.

First we consider the case of constant dynamic viscosity µ. Then, in Fourier space for wavenumbers (kx, ky) 6= (0, 0),

the evolution of P̂ and Γ̂ is governed by the following equations:

∂ D̂2
−P̂

∂t
= N̂P + PrD̂

2
−D̂

2
−P̂ , (A2)

with

N̂P = −
i

k2

(

kx
∂X̂

∂z
+ ky

∂Ŷ

∂z

)

− Ẑ −RaPr ŝ+
4

3

Prm
2θ2

ρ̄2(1 + θz)2
k2P̂ ; (A3)

and
∂Γ̂

∂t
= N̂Γ +

Pr

ρ̄
∇̂2Γ̂, with N̂Γ =

i

k2

(

kxŶ − kyX̂
)

; (A4)

here k2 = k2x + k2y, X = −u · ∇ux, Y = −u · ∇uy, Z = −u · ∇uz. The differential operators are defined by

∇̂2 = −k2 +
∂2

∂z2
, D̂2

− =
1

ρ̄

(

∇̂2 −
d ln ρ̄

dz

∂

∂z

)

. (A5)

In addition, we need to consider the evolution of the horizontally averaged velocity. Both non-zero components are
governed by the same equation, namely

∂〈u〉h
∂t

= −〈u · ∇u〉h +
Pr

ρ̄

∂2〈u〉h
∂z2

, (A6)

with u = ux or u = uy.
For the case of constant kinematic viscosity ν, we first express Dv from expression (10) in the alternative form

Dv = ∇2u+
d ln ρ̄

dz

(

∂u

∂z
+

2

3
∇uz +

(2m+ 1)θ

3(1 + θz)
uzez

)

. (A7)

The evolution of P̂ and Γ̂ is then governed by the following equations:

∂ D̂2
−P̂

∂t
= N̂P + PrD̂

2
+D̂

2
−P̂ , (A8)

with

N̂P = −
i

k2

(

kx
∂X̂

∂z
+ ky

∂Ŷ

∂z

)

− Ẑ −RaPr ŝ+
Prmθ2

ρ̄(1 + θz)2

(

−
∂2

∂z2
+

mθ

(1 + θz)

∂

∂z
+

(3 + 2m)θk2

3

)

P̂ ; (A9)

and
∂Γ̂

∂t
= N̂Γ + PrD̂

2
+Γ̂, with N̂Γ =

i

k2

(

kxŶ − kyX̂
)

. (A10)

The differential operator D̂2
+ is defined by

D̂2
+ = ∇̂2 +

d ln ρ̄

dz

∂

∂z
; (A11)

note that the operators D̂2
− and D̂2

+ differ not only in the sign of the second term, but also in the factor of 1/ρ̄.

The evolution of the horizontally averaged velocity in this case is governed by

∂〈u〉h
∂t

= −〈u · ∇u〉h + Pr

∂2〈u〉h
∂z2

+ Pr

d ln ρ̄

dz

∂〈u〉h
∂z

, (A12)

with u = ux or u = uy.
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The evolution equations for P̂ , Γ̂, 〈ux〉h and 〈uy〉h must be complemented by either stress-free and impermeable
boundary conditions, expressed as

∂〈ux〉h
∂z

=
∂〈uy〉h
∂z

= 0 and P̂ = D̂2
−P̂ =

∂Γ̂

∂z
= 0 at z = 0, 1; (A13)

or no-slip and impermeable boundary conditions, which take the form

〈ux〉h = 〈uy〉h = 0 and P̂ =
∂P̂

∂z
= Γ̂ = 0 at z = 0, 1. (A14)

Using the same formalism, the evolution of entropy is governed, in Fourier space, by

∂ŝ

∂t
= N̂s +

1

ρ̄

(

∇̂2 +
θ

T̄

∂

∂z

)

ŝ, with N̂s = Ŝ +
k2 P̂

ρ̄(1 + θz)
+ CqQ̂, (A15)

where S = −u·∇s, Q is defined in equation (8) and Cq is given either by equation (9) (constant µ) or (10) (constant ν).

The boundary conditions for the entropy are ŝ = 0 at z = 0, 1.
We note that the Fourier modes Γ̂(kx, ky) and ŝ(kx, ky), and the averaged velocities 〈ux〉h and 〈uy〉h are all solutions

to formally similar mathematical problems, which can be expressed, for a generic field F (t, z), as an evolution equation

of the form
∂F

∂t
= NF + LF, (A16)

where NF comprises nonlinear terms and L is a second order differential operator in space. Boundary conditions on
F are either Dirichlet or Neumann conditions, namely F = 0 or ∂F/∂z = 0 at z = 0, 1.

Here we describe in detail the procedure for advancing the generic field F in time. The linear and nonlinear terms

in (A16) are treated separately. The linear terms are advanced using a second order Crank-Nicolson scheme, and the

nonlinear terms by an explicit second order Adams-Bashforth scheme (with the first time step an Euler step). The

time discretization of equations (A16) thus yields

(

1−
∆t

2
L

)

Fn+1 =
∆t

2

(

3Nn
F −Nn−1

F

)

+

(

1 +
∆t

2
L

)

Fn, (A17)

where the superscript n represents t = n∆t, with ∆t being a fixed time step. The system of algebraic equations

resulting from the spatial discretization of (A17) and of the boundary conditions is solved, at every time step, for
Fn+1. The algorithm described here applies straightforwardly to Γ̂(kx, ky), ŝ(kx, ky), 〈ux〉h and 〈uy〉h.

The poloidal field P̂ (kx, ky) requires special attention however, owing to the form of the linear terms in the evolution

equation (A2) and that of the boundary conditions. The case of stress-free boundary conditions, P̂ = D̂2
−P̂ = 0 at

z = 0, 1, can be treated readily in a two-step procedure partly analogous to that used for the other fields. First,

noticing that (A2) is an equation of the form (A16), for F = D̂2
−P̂ , with boundary conditions F = 0 at z = 0, 1, we

use the algorithm (A17) to compute Fn+1. Then we solve, for Pn+1, the discretized version of the elliptic equation

D̂2
−P̂

n+1 = Fn+1 with P̂n+1 = 0 at z = 0, 1. (A18)

The implementation of no-slip boundary conditions, P̂ = ∂P̂ /∂z = 0 at z = 0, 1, is however, not so straightforward

and requires the use of Green’s functions and the computation of an influence matrix (Boronski & Tuckerman 2007).

Indeed, in this case, it is not possible to solve (A16) for F = D̂2
−P̂ as we have no information about D̂2

−P̂ at

the boundaries. Instead, we discretize equation (A2) in time, again using Crank-Nicolson and Adams-Bashforth

algorithms, and reformulate the discretized equation. At every time step, we first solve

D̂2
−Λ̂

n+1
0 =

∆t

2

(

3N̂n
P − N̂n−1

P

)

with Λ̂n+1
0 = 0 at z = 0, 1; (A19)

once Λn+1
0 is known, we can compute P̂n+1

0 by solving

(

1−
Pr∆t

2
D̂2

∓

)

P̂n+1
0 = Λ̂n+1

0 +

(

1 +
Pr∆t

2
D̂∓

2
)

P̂n with P̂n+1
0 = 0 at z = 0, 1, (A20)
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where the operator D̂2
∓ becomes D̂2

− for the case of constant µ and D̂2
+ for constant ν. At this stage, the poloidal

component P̂n+1
0 , the discrete solution of the evolution equation (A2), satisfies only one of the two sets of boundary

conditions, Pn+1
0 = 0 at z = 0, 1. We need to invoke Green’s functions and the computation of an influence matrix to

implement the second boundary conditions on P̂ . To achieve this, we construct, at every time step, a poloidal field

consisting of P̂n+1
0 and a linear combination of two Green’s functions,

P̂n+1 = P̂n+1
0 + a Ĝ(1) + b Ĝ(2). (A21)

The Green’s functions Ĝ(1) and Ĝ(2) are computed, in preprocessing, by solving, for G, the time-independent linear

equations

D̂2
−Λ̂ = 0 and

(

1−
Pr∆t

2
D̂2

+

)

Ĝ = Λ̂. (A22)

This system is solved twice: once, for G(1), with boundary conditions

Λ̂ = 1 at z = 0 , Λ̂ = 0 at z = 1 and G = 0 at z = 0, 1; (A23)

and a second time, for Ĝ(2), with boundary conditions

Λ̂ = 0 at z = 0 , Λ̂ = 1 at z = 1 and G = 0 at z = 0, 1. (A24)

Clearly, the poloidal field defined by (A21) satisfies the condition P̂n+1 = 0 at z = 0, 1 and is the solution to the

discretized evolution equation for P̂ ,
(

1−
Pr∆t

2
D̂2

∓

)

D̂2
−P̂

n+1 =
∆t

2

(

3N̂n
P − N̂n−1

P

)

+

(

1 +
Pr∆t

2
D̂2

∓

)

D̂2
−P̂

n. (A25)

The coefficients a and b in the expression (A21) can then be chosen such that the second set of boundary conditions

can be satisfied. Thus, ∂P̂n+1/∂z = 0 at z = 0, 1 if a and b are solutions to the influence system




∂zĜ
(1)(z = 0) ∂zĜ

(2)(z = 0)

∂zĜ
(1)(z = 1) ∂zĜ

(2)(z = 1)









a

b



 = −





∂zP̂
n+1
0 (z = 0)

∂zP̂
n+1
0 (z = 1)



 . (A26)

Flows with stress-free boundary conditions can be computed in a similar fashion. Replacing the operator ∂/∂z by D̂2
− in

the influence matrix guarantees that the condition D̂2
−P̂

n+1 = 0 at z = 0, 1 is satisfied. For convenience, our numerical

code uses influence matrices for both no-slip and stress-free boundary conditions. The additional computational cost

of using Green’s functions for stress-free boundary conditions, although not strictly required, is minimal.

When the horizontally-averaged velocity and both the toroidal and poloidal fields have been advanced in time, the
velocity can be updated using

u =









〈ux〉h

〈uy〉h

0









+



















∂Γ

∂y
+

1

ρ̄

∂2P

∂x∂z

−
∂Γ

∂x
+

1

ρ̄

∂2P

∂y∂z

−
1

ρ̄

∂2P

∂x2
−

1

ρ̄

∂2P

∂y2



















. (A27)

The time stepping scheme for the horizontal passive scalar is different from that for the velocity or the entropy

fluctuations. Since there are no vertical motions, the equation can be expressed in Fourier space in the following form:

∂φ̂

∂t
+ Sc(z0)k

2φ̂ = N̂φ, (A28)

with Nφ = −∇h · (uφ), and where z0 is the height at which the passive scalar equation is solved. The dissipative term

is treated exactly by an integrating factor; the nonlinear term is handled by a second order Adams-Bashforth scheme

(with an Euler first step). The time discretization for the passive scalar therefore yields

φ̂n+1 = exp
(

−Sc(z0)k
2∆t

)

(

φ̂n +
3

2
∆tN̂

n
φ − exp

(

−Sc(z0)k
2∆t

) 1

2
∆tN̂

n−1
φ

)

. (A29)



AASTEX sample article 19

Note that the volume average of φ is constant over time, a fact that can be used to verify the accuracy of the code.
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