
This is a repository copy of Failure analysis of masonry wall panels subjected to in-plane 
and out-of-plane loading using the discrete element method.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/144556/

Version: Accepted Version

Article:

Bui, T-T, Limam, A and Sarhosis, V orcid.org/0000-0002-5748-7679 (2021) Failure analysis
of masonry wall panels subjected to in-plane and out-of-plane loading using the discrete 
element method. European Journal of Environmental and Civil Engineering, 25 (5). pp. 
876-892. ISSN 2116-7214 

https://doi.org/10.1080/19648189.2018.1552897

(c) 2019, Informa UK Limited, trading as Taylor & Francis Group. This is an author 
produced version of a paper published in the European Journal of Environmental and Civil 
Engineering. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Failure analysis of masonry wall panels subjected to in-plane and out-

of-plane loading using the discrete element method 

 

T. T. Bui1, A. Limam2, V. Sarhosis3 

1University of Lyon, INSA Lyon, GEOMAS, France, tan-trung.bui@insa-lyon.fr 

2University of Lyon, France, ali.limam@insa-lyon.fr 

3School of Engineering, Newcastle University, Newcastle, UK, vasilis.sarhosis@newcastle.ac.uk 

Abstract 

This paper aims to evaluate the ability of the Discrete Element Method (DEM) to accurately predict 

the mechanical behavior of modern brickwork and concrete block masonry wall panels subjected to 

in-plane and out-of-plane loading. The efficiency of the DEM is based on the suitability of the 

DEM models to predict the development and propagation of cracks up to collapse, the associated 

stress distributions and the ultimate load carrying capacity of masonry wall panels subjected to 

external loading. Numerical results are compared with experimental ones obtained from large-scale 

tests carried out in the laboratory. A good agreement between the numerical and the experimental 

results obtained which confirms the efficiency and robustness of the DEM to simulate the in-plane 

and out-of-plane non-linear behavior of modern masonry wall panels with sufficient accuracy. 

Moreover, a collection of verified material parameters is provided to be used by other researchers 

and engineers to develop reliable computational models and understand the mechanical behavior of 

masonry structures. Finally, computational results from this study can help prevent engineering 

failures and provide reference for stakeholders devising strategies for improving risk management 

and disaster prevention in masonry structures. 
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1 Introduction 

Masonry is a brittle, anisotropic, composite material that exhibits distinct directional properties 

due to the mortar joints which act as planes of weakness. When masonry is subjected to very low 

levels of stress, it behaves in a linear elastic manner. However, the behavior of masonry is 

characterized by high non-linearity after the formation of cracks and the subsequent redistribution 

of stresses through the uncracked material as the structure approaches to collapse. Research is 

needed to be able to understand the in-plane and out of plane behaviour of masonry construction 

subjected to external loading. In particular, it is important to understand the pre- and post-cracking 

behaviour and decide on the need for repair and/or strengthening. As experimental research is 

prohibitively expensive, it is fundamentally important to have a computational model available that 

can be used to predict the in-service and near-collapse behaviour with sufficient accuracy. Such 

model can then be used to investigate a range of complex problems and scenarios that would not, 

otherwise, be possible.   

According to Lourenço (1996), numerical models able to simulate the mechanical behavior of 

masonry can be classified into two major categories. These are: a) micro-models including detailed 

micro-models and simplified micro-models; and b) macro-models. Micro-models consider the 

various components which result in an accurate representation of the structure. Generally, such 

modelling approach is limited due to large calculation time required for a structural element to be 

analyzed. Also, the micro-modelling approach is commonly used when parts of a structure are to be 

modelled. On the other hand, at the macro-scale, models are relatively simple to use and require 

fewer input data. The macro-models are generally based on the use of homogenization techniques. 

Overall, the micro-modelling approach represents more accurately and rigorously the mechanical 

behavior of masonry structures. 

A wide variety of numerical methods are available to simulate the mechanical behavior of 

masonry structures and these can be classified into two main groups: a) Continuous models; and b) 

Discrete models. Continuous models are based on the continuum mechanics. The Finite Element 

Method (FEM) and the Boundary-Element Method (BEM) are typical examples of these 

approaches. The macro-modelling strategy is well suited for these continuous models. 

Developments in the plasticity theory have assisted significantly to mature these approaches 

(Lourenço, 1996; Lourenço, 2000). Within macro-models, cracking is represented by a “smeared-

crack” approach. Macro-models were initially developed by Rots et al. (1985) for the design of 

concrete structures. The “smeared-crack” approach takes into account the crack effect, which 

induces relaxation in stress of the material, via negative softening or hardening. The "smeared-

crack" approach was later extended to masonry structures by Lofti et al. (1991). The approach is 
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controlled by combining fracture energy to the element size. A drawback of the approach is that 

complete separation between masonry components (i.e. blocks) cannot be achieved. Moreover, 

when modelling masonry structures, this approach is highly dependent on the size of the mesh used 

in the development of the model. Lourenço and Rots (1997) developed models based on the FEM 

with interface elements to simulate the in-plane mechanical behavior of masonry walls. For an 

overview of the different computational methods used to simulate the mechanical behaviour of 

unreinforced masonry structures, the reader can be directed to Moradabadi and Laefer (2014). 

Discrete element method (DEM) has its origin in the early 1970s. It was initially used to simulate 

progressive rock movement using rigid block assemblies in two dimensions (Cundall 1971a, 

1971b). The method was later extended to predict the mechanical behavior of masonry structures 

(Munjiza, 2004; Lemos, 2007; Bui, 2014a; Sarhosis 2012; Sarhosis and Lemos 2018; Forgács et al. 

2017; Bui et al. 2017). Within DEM, the heterogeneous nature of the masonry is taken into account 

explicitly. In this way, the discontinuity of interfaces between masonry units/blocks can be 

described. So far, numerical models based on the DEM have been mainly applied to masonry 

structures where failure is predominantly induced by mechanisms in which the block deformability 

is limited or has no role at all (Sarhosis et al. 2014a; Sarhosis et al. 2015; Forgács et al. 2018). 

According to the method, masonry blocks can be represented as an assembly of rigid or deformable 

blocks which may take any arbitrary geometry. Rigid blocks do not change their geometry as a 

result of any applied loading. Deformable blocks are internally discretised into finite difference 

triangular zones. These zones are continuum elements as they occur in the finite element method 

(FEM). Mortar joints are represented as zero thickness interfaces between the blocks. 

Representation of the contacts between blocks is not based on joint elements, as it occurs in the 

discontinuous finite element models. Instead, the contact is represented by a set of point contacts, 

with no attempt to obtain a continuous stress distribution through the contact surface. The 

assignment of contacts allows the interface constitutive relations to be formulated in terms of the 

stresses and relative displacements across the joint. As with FEM, the unknowns are the nodal 

displacements and rotations of the blocks. However, unlike FEM, the unknowns in DEM are solved 

explicitly by differential equations from the known displacement, while Newton’s second law of 

motion gives the motion of the blocks resulting from known forces acting on them. So, large 

displacements and rotations of the blocks are allowed with the sequential contact detection and 

update of tasks automatically. This differs from FEM, where the method is not readily capable of 

updating the contact size or creating new contacts. DEM is also applicable for quasi-static problems 

using artificial viscous damping controlled by an adaptive algorithm. In view of the diversity and 
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complexity of non-linear behavior observed across the masonry structures, the validation of discrete 

modeling remains a crucial task.  

To date, many researchers have investigated the mechanical behaviour of masonry subjected to 

in-plane loading; simply because masonry structures are designed to withstand in-plane vertical 

load. However, not much research has been undertaken on the mechanical behavior of masonry 

subjected to out-of-plane loading. The flexural strength of masonry was represented mainly in 

relation to the resistance of walls to withstand wind load effects (Sarhosis et al 2014b). However, 

out-of-plane bending in masonry walls can also occure due to:  

a)  natural disasters such as earthquakes and floods (Kelman, 2003);  

b) snow avalanches and mud after a landslide (Colas, 2009);  

c) accidental damages such as the explosions inside buildings (Thomas, 1971);  

d) accidental impacts like vehicle hitting a wall of a building (Kelman, 2003); and 

e) terrorist attacks. 

The aim of this paper is to evaluate the efficiency of the DEM to accurately predict the 

mechanical behavior of different brickwork and blockwork masonry wall panels subjected to 

external in-plane and out-of-plane loading. The commercial three-dimensional software 3DEC 

developed by Itasca has been used in this study (Itasca, 2018). The efficiency of the DEM was 

assessed based on the suitability of the model to predict the development and the propagation of 

cracks up to collapse, the associated stress distributions in the wall panels at the different magnitude 

of applied loading and the ultimate load bearing capacity. Numerical results were compared to 

experimental ones from testing full-scale masonry wall panels in the laboratory. Moreover, a 

collection of verified material parameters is provided.  

2 Overview of the Discrete Element Method for modelling masonry  

The three-dimensional numerical code 3DEC based on the DEM, and developed by Itasca, has 

been used in this study. Within 3DEC, the domain is represented as an assemblage of rigid or 

deformable discrete blocks (brick or concrete masonry units) connected together by zero thickness 

interfaces representing mortar joints. In masonry structures, damage is often consecrated in the 

mortar joints rather than the masonry units (Bui et al., 2017). Within DEM, masonry units can be 

represented as rigid blocks. Rigid blocks does not change their geometry as a result of any applied 

loading. Rigid blocks are able to undergo only translational and rotational motion; which reduces 

significantly the computational time required to run the numerical simulations. Deformable blocks 

are internally discretised into finite number of constant strain tetrahedral elements (Lemos, 2007). 

These zones are continuum elements, as in the finite element method (FEM). However, unlike 
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FEM, in DEM, a compatible finite element mesh between the blocks and the joints is not required. 

So, large displacements and rotations of the blocks are allowed with the sequential contact detection 

and update of tasks automatically. This differs from FEM where the method is not readily capable 

of updating the contact size or creating new contacts. Despite these advantages, comparatively to 

FEM, the diversity and complexity of non-linear behavior observed across the masonry structures 

subjected to external loads necessitates careful validations.  

 

a)    b)  c)  

 

Figure 1: a) Detailed micro-modelling masonry wall; b) Simplified micro-modelling masonry wall; 

c) Mohr-Coulomb model of joint with tension cut-off. 

  

a) Representation of the mortar joint interface  

Within DEM, mortar joints are represented as zero-thickness interfaces, while the units are 

slightly expanded in size in order to keep the geometry of the structure unchanged (Figure 1b). In 

this way, it is possible to consider masonry as a set of blocks bonded together by potential fracture 

slip lines at the mortar joints. Several researchers, including Andreaus et al, (1999a & b), have 

studied the interaction of masonry blocks using the classical simple Coulomb constitutive model, 

characterized with only three input parameters including: a) the normal stiffness; b) the shear 

stiffness; and c) the friction angle. However, today, there are advanced models developed in which 

take into account the frictional resistance, the tensile and shear-bond strength too. Such models also 

consider a representative fracture energy as well as they avoid numerical perturbations that may be 

induced by sudden bond failure (Sarhosis 2012; Sarhosis & Sheng 2014; Lemos 2007; Giamundo et 

al. 2014). Interaction between the blocks is enabled based on constitutive relationships such as the 

Mohr-Coulomb with a tension cut-off (Figure 1a). This interface constitutive model considers apart 

from dilation, both shear and tensile failure. In the elastic range, the behavior is governed by normal 

and shear stiffness of the interfaces 𝑘𝑛 and 𝑘𝑠 according to: 

  {𝜎} = [𝐾]{𝑢}       or      {𝜏𝑠𝜎𝑛} = [ 𝑘𝑠  0  0   𝑘𝑛] [𝑢𝑠𝑢𝑛]        (1) 

Block Mortar Unit Joint


c

 3 n1
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where 𝜎𝑛 is the normal loading; 𝑢𝑛 is the normal displacement; 𝜏𝑠 is the shear stress; and  𝑢𝑠 is the 

shear displacement. The maximum shear force is given by Equation (2):   

 𝜏𝑚𝑎𝑥 = 𝑐 + 𝜎𝑛(𝑚𝑎𝑥) ∙ tan 𝜑     (2) 

where c and φ are the interface cohesion and friction angle accordingly. When shear strength is 

reached, it drops until a residual strength is achieved (Figure 2a). The residual shear strength (𝜏𝑟𝑒𝑠) 

can be calculated from Equation (3): 

 𝜏𝑟𝑒𝑠 = 𝜎𝑛(𝑚𝑎𝑥) ∙ tan 𝜑 (3) 

 

Figure 2: Representation of the interface behaviour: a) Mohr-Coulomb slip model; b) Bilinear 

dilatant model; c) Behavior under uniaxial loading. 

 

From Figure 2b, the interface begins to dilate when it fails in shear, at shear displacement ∆𝑢𝑠(𝑒𝑙𝑎𝑠). The dilation (𝜓 ) can then be estimated from Equation (4):  Δ𝑢𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 = ∆𝑢𝑠 tan 𝜓       (4) 

 

where Δ𝑢𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 is the normal displacement and ∆𝑢𝑠 is the shear displacement. Also, the normal 

stress (𝜎𝑛,𝑡𝑜𝑡𝑎𝑙) can be adjusted to take into account the effect of dilatation: 𝜎𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑛,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜎𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑛. Δ𝑢𝑛 + 𝑘𝑛. Δ𝑢𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛= 𝑘𝑛. Δ𝑢𝑛 + 𝑘𝑛. Δ𝑢𝑠 tan 𝜓 

(5) 

where 𝜎𝑛,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 is the elastic normal stress, 𝜎𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 is the normal stress due to dilation, 𝑘𝑛 and 𝑘𝑠 is the normal and shear stiffnesses, Δ𝑢𝑛 is the change in normal displacement, Δ𝑢𝑛,𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛 is 

the change in normal displacement as a result of the dilation, and Δ𝑢𝑠 is the change in shear 

displacement. In the present f dilation, the shear displacement is in the plastic phase (us >us(elas), 

Figure 2a). The normal displacement is assumed linear until a value equal to Zdil is reached (Figure 

2b). If shear displacement increments are in the same direction as the total shear displacement, then 

dilatation angle increases. However, if the shear increments are in the opposite direction, dilation 
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angle decreases. The interface behavior under uniaxial loads is shown in Figure 2c, where T is the 

interface tensile strength. Before the tensile failure (n < T) is achieved, an elastic behavior is 

assumed. 

 

b) Representation of the masonry block units 

Masonry block units can behave as linear elastic or elasto-plastic based on the Mohr-Coulomb 

criterion. The Mohr-Coulomb criterion is expressed in terms of the principal stresses σ1, σ2, and σ3, 

which constitute the three components of the generalized stress vector (n = 3), whereby for the three 

principal stresses, it must satisfy: σ1 ≤ σ2 ≤ σ3. Components of the corresponding generalized strain 

vector are the principal strains 1, 2, 3.
 This criterion can be represented in the plane (σ1, σ3), as 

illustrated in Figure 3 (compressive stresses are negative). The failure envelope (f) (σ1, σ3) = 0 is 

defined from point A to B by the Mohr-Coulomb shear failure criterion fs = 0 with fs=σ1 −
σ3Nφ+2c√Nφ ; and from B to C by a tensile failure criterion as per ft = 0 with ft = σ3 – σt ; where φ 

is the friction angle, c is the cohesion, σt is the tensile strength, and Nφ= 1+sinφ
1-sinφ

.  

The tensile strength of the material cannot exceed the value of σ3 corresponding to the 

intersection point of the straight lines fs = 0 and σ1 = σ3 in the (σ1, σ3) plane. The maximum stress 

(σmax
t ) is given by:  

 σmax
t = c

tanφ
           (6) 

The potential function, gs, used to define the shear plastic flow, corresponds to a non-associated 

law according to the equation gs = σ1 − σ3Nψ, where ψ is the dilation angle and NΨ= 1+sinψ
1-sinψ

.   

If the shear failure takes place, the stress point is placed on the curve fs = 0 using a flow law 

which is derived by using the potential function gs. If tensile failure is reached, the new stress point 

is simply reset to satisfy the relationship ft equal to zero (Figure 3) and no flow rule is used in this 

case. 
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Figure 3: Mohr-Coulomb failure criterion used for plastic block behavior (Itasca 2018)  

 

3 DEM of masonry structures subjected to in-plane and out-of-plane loading 

3.1 Masonry wall panels subjected to combined shear and vertical pre-compression 

The first study investigates the suitability of the model to predict the in-plane behaviour of a 

brickwork masonry wall panel subjected to combined shear and axial pre-compression. The 

developed numerical model compared against experimental test results obtained by testing two 

masonry wall panels (ZW1 and ZW2) made of concrete blocks and bonded together with mortar 

(Lurati et al 1990). The walls had dimensions equal to 3,600 mm × 2,000 mm × 150 mm (width × 

height × thickness) and were constructed by 10 rows of stretcher bonded concrete blocks. The 

dimensions of the blocks were 300 mm × 200 mm × 150 mm. Two partition walls were also 

attached at the ends of each of the main wall. The partition walls (ref. Figure 4a) had dimensions 

equal to 150 mm × 2,000 mm × 600 mm (width × height × thickness). Also, two concrete beams 

were positioned at the base and at the upper end of the wall to ensure an optimal transfer of the 

loading in the upper part and a fixed condition at the base. The three dimensional geometric model 

representing the masonry wall panels tested in the laboratory developed using 3DEC is shown in 

Figure 4b. To allow for the 10 mm thick mortar joints in the real wall panels, each masonry unit 

was based on the nominal brick size used in the laboratory built panels increased by 5 mm. Vertical 

pre-compression equal to 419 kN and 833 kN applied on the walls ZW1 and ZW2 respectively. An 

external horizontal load was also applied incrementally to the upper beam until the panel could no 

longer carry the applied load. The constitutive law to be used for representing the material behavior 

will affect the simulation results. The suitability of two different constitutive laws to represent the 
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behavior of the concrete block units were investigated. So, concrete blocks were modelled based on: 

a) a linear elastic behaviour; b) an elasto-plastic behaviour according to Mohr-Coulomb constitutive 

law. The mechanical properties for the block and mortar joints are shown in Table 1 and Table 2 

respectively and are obtained from Lurati et al. (1990). 

 

a)  b)  

Figure 4: a) Geometry and application of load for ZW1 and ZW2 test panels (arrows denote the 

location of load and all units are in mm); b) Geometry of the model developed at 3DEC. 

 

Table 1.  Properties of the masonry units and the zero thickness interfaces; masonry blocks behave 

in a linear elastic manner. 

Masonry block properties Joint Interface properties 

Unit 

Weight 

[kg/m3] 

Bulk 

modulus 

[MN/m3] 

Shear 

modulus 

[MN/m3] 

Joint normal 

stiffness 

[MN/m3] 

Joint shear 

stiffness 

[MN/m3] 

Joint tensile 

strength 

[MPa] 

Joint cohesive 

strength 

[MPa] 

Joint friction 

angle 

[Degrees] 

Joint dilatation 

angle 

[Degrees] 

2,000 1.188E4 4.01E3 7.463E5 2.467E5 0.4 0.5 39 0 

 

Table 2.  Properties of the masonry units and the zero thickness interfaces; masonry blocks behave 

in an elasto-plastic manner based on the Mohr-Coulomb constitutive law. 

Masonry blocks     Joint Interfaces 

Unit 

Weight 

[kg/m3] 

Bulk 

modulus 

[MN/m3] 

Cohesive 

Strength 

[MPa] 

  

Tensile 

Strength 

[MPa] 

Friction 

anlge 

[Degrees] 

Dilation 

angle 

[Degrees] 

Joint 

normal 

stiffness 

[MN/m3] 

Joint 

shear 

stiffness 

[MN/m3] 

Joint 

tensile 

strength 

[MPa] 

Joint 

cohesive 

strength 

[MPa] 

Joint 

friction 

angle 

[Degrees] 

Joint 

dilatation 

angle 

[Degrees] 

2,000 1.188E4 2.37 1.32 35 12 7.463E5 2.467E5 0.4 0.5 39 0 
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                                                  (a)                                                                  (b) 

Figure 5: Load-displacement curves. Comparison of experimental results against those predicted by 

the numerical model: (a) blocks modelled as linear elastic; and (b) blocks modelled using the elasto-

plastic Mohr Coulomb constitutive law. 

Table 3.  Comparison of experimental against numerical results 

Test Wall Ultimate load (kN) Difference 

 
Experimental 

results 

Numerical 

results 
(%) 

ZW1 353 346 1.98 

ZW2 634 660 4.10 

 

Figure 5 compares the experimental against the numerical results predicted using DEM. From 

the results analysis, and since failure is mainly at the brick-to-mortar interface, it is shown that both 

models are capable of predicting the load against horizontal displacement relationship for the wall 

panels ZW1 and ZW2 with adequate accuracy (maximum deviation is 4%; Table 3). In Figure 5a, 

the peaks in the post-cracking behavior indicate sudden crack formation and stress redistribution in 

the panel following cracking. Such behavior was not observed in the case where the blocks assumed 

as elasto-plastic. Instead, failure was dominated at the mortar joints rather than at the masonry 

blocks (Figure 5b). 
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 Elastic block 

 ZW1 ZW2 

Experiment 

(a) 

 
 

Contour 

Displacement 

(b) 

 
 

Max 

Principle  

Strain 

(c) 

  

 

Figure 6: Comparison of experimental against numerical results based on the assumption that 

blocks behave in a linear elastic manner: a) Experimental failure mode; b) Numerical failure mode; 

c) Distribution of principal strain in the wall. 

 

   Experimental against numerical results were also compared qualitatively. The failure modes 

obtained by experimentally testing the ZW1 and the ZW2 wall panels were compared against the 

failure modes predicted from the numerical models taking into consideration the two different 

constitutive relationships used for representing the masonry blocks. From Figure 6a, during the 

experiment, a single diagonal crack run along the joints and blocks of the wall panel. However, the 

failure mode estimated by the numerical model under the assumption that the masonry block 

behaves in a linear elastic manner is dissimilar, since two diagonal cracks observed for the ZW2 test 

(Figure 6b and Figure 6c).  

On the other hand, when the masonry block assumed to behave in an elastic-plastic behavior, a 

good agreement between the experimental and numerical failure mode was obtained (Figure 7). So, 

comparing the two different constitutive laws used to represent the mechanical behavior of masonry 

blocks, it was found that at very low levels of stress, a linear-elastic constitutive law is sufficient to 

simulate the mechanical behavior of masonry. Such type of masonry construction is that 

characterized by low bond strength i.e. where the masonry unit/mortar joint interface is sufficiently 

low to have a dominant effect on the mechanical behavior such as the formation of cracks, re-

distribution of stresses after cracking and the formation of collapse mechanisms (Sarhosis 2012; 
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Sarhosis & Sheng 2014). However, at high stress levels, a nonlinear elastic-plastic model which can 

simulate crack formation, shear and/or crushing in the masonry blocks is required in order to more 

accurately reproduce the phenomena observed in the laboratory. 

 

 Elasto-plastic block 

 ZW1 ZW2 

Contour  

Displa- 

cement 

   [m] 

(a) 

  

Max 

Principle  

Strain 

(b) 

  

Plastic 

Zone 

(c) 

 

  
 

 
 

 

Figure 7: Comparison of experimental against numerical results based on the assumption that the 

blocks behave in an elasto-plastic behavior according to Mohr-Coulomb constitutive law: a) 

Numerical failure mode; b) Distribution of max principal strain in the wall; c) Plastic zone in the 

blocks 
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3.2 Out of plane loading 

a) Solid rectangular masonry wall panels 

The second case study deals with the development of a numerical model based on the DEM to 

study the out-of-plane behavior of a rectangular blockwork masonry wall panel. The developed 

numerical model was compared against experimental results obtained from the literature and 

reported at Gazzola et al. (1985). The mechanical behavior of three walls (WII, WP1 and WF) 

containing hollow concrete block units bonded with 10 mm mortar was studied. All walls were 

rectangular in shape with dimensions 5,000 mm × 2,000 mm (length × height). Also, walls were 

constructed with concrete block units’ with dimensions equal to 190 mm × 390 mm × 150 mm 

(height × width × thickness). Panels WII and WP1 were supported on the four edges. Panel WF was 

supported on three edges while the top edge was left free. Also, for the panel WP1, an in-plane 

confining pressure equal to 0.2 N/mm2 was assigned and kept constant during the experiment.  

For the test-setup, a backup wall composed of plywood on a steel grid framework was tied back 

to the support frame to enclose the airbag placed between it and the test wall. The airbag was 

fabricated to cover the entire area of the wall. The 100 mm side pieces of the air bag matched the 

standard distance between the test wall and the backup wall. The air bag was inflated using a 690 

kPa supply incorporating a pressure reduction valve and low pressure regulator on the intake. 

Lateral pressure was applied to all panels incrementally, with the use of airbags, until they could no 

longer carry any further load. The crack patterns obtained from the experimental study are shown in 

Figure 8. 

a)  b)  

Figure 8: Crack patterns obtained from the experimental study: a) WII; b) WF (Gazzola et al. 

(1985). 

Three dimensional geometric models representing the masonry wall panels tested in the 

laboratory were developed in 3DEC. To allow for the 10 mm thick mortar joints in the real wall 

panels, each masonry unit was based on the nominal brick size used in the laboratory built panels 

increased by 5 mm in each dimension to give a block size of 200 mm × 400 mm × 150 mm (height 

× width × thickness). It was assumed that the masonry units would exhibit linear elastic behavior 
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and that slip along the mortar joints would be the predominant failure mechanism. Mortar joints 

were represented using a Mohr-Coulomb failure surface combined with a tension cut-off. The 

material parameters used for the development of the computational models are shown in Table 4, 

whereas the material parameters used in the computational models are shown in Table 4. These 

values used by Gazzola et al., (1985) and Lourenco (1997) were proposed in their respective study 

after calibrating the overall stiffness of the wall (K = 4.744E6 Pa/m).  

Table 5 compares the failure load for each panel obtained experimentally with the ones predicted 

by the numerical model based on the DEM. From Table 5, the DEM model can predict the ultimate 

load that the masonry wall panels can carry with sufficient accuracy. The values of the ultimate load 

predicted from the numerical model are close to the experimental results, with a maximum 

deviation of 5% for the WII wall panel.    

Table 4.  Properties of the masonry units and the zero thickness joint interfaces 

Masonry unit properties Joint Interface properties 

Young’s 

modulus 

[N/m2] 

Poisson’s 

ratio 

 

Joint 

normal 

stiffness 

[Pa/m] 

Joint shear 

stiffness 

[Pa/m] 

 

Joint tensile 

strength 

[N/mm2] 

Joint 

cohesive 

strength 

[N/mm2] 

Joint 

friction 

angle 

[°] 

Joint 

dilatation 

angle 

[°] 

15,000 0.2 7.68E9 7.68E9 0.157 0.5966 36 0 

 

Table 5.  Comparison of experimental against numerical failure load  

Wall 

Experimental failure 

Load 

(kPa) 

Numerical failure load  

by FEM (Lourenço, 1997) 

Numerical failure load  

by DEM 

  
Load 

(kPa) 

Difference 

(%) 

Load 

(kPa) 

Difference 

(%) 

WII 6,820 6,630 2.9 7,320 -5.0 

WP1 8,820 9,720 -9.5 8,990 -1.9 

WF 3,900 3,560 9.6 3,550 3.5 

 

Figure 9 shows the failure mechanisms for the WII, WP1 and WF panels as obtained by the 

numerical model based on DEM. The experimental crack patterns are similar to those predicted by 

the yield line theory. The influence of in-plane normal pressure for the panels WII and WP1 is 

evident. From Table 5, it is also evident that the failure load increases with the confining pressure. 

This is due to the fact that the masonry wall panel is spanning in the direction where the normal 
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compressive stress is applied. Remarkably, the effect of in-plane action prevents horizontal cracks 

near the top and bottom of the panel WII (Figure 9).  

 

     

   

                            WII                                                WP1                                               WF 

 

Figure 9: Failure mode obtained by DEM for the panels WII, WP1 and WF. 

b) Brickwork masonry wall panels containing an opening  

A numerical model was developed to simulate the mechanical behavior of the test wall SB02 

containing a central opening. The numerical results were compared with those obtained from the 

experimental testing carried out by Chong et al. (1994). The dimensions of the wall were 5,600 mm 

× 2,475 mm × 102.5 mm (length × height × thickness). The central opening had dimensions of 

2,260 mm × 1,125 mm × 102.5 mm (length × height × thickness). The SB02 test wall was 

constructed using bricks in stretcher bond with dimensions equal to 215 mm × 65 mm × 102.5 mm 

(height × width × thickness).The mortar joints were all nominally 10 mm thick.  

The vertical edges were simply supported while the top edge left free. For the test-setup, the 

lateral load was generated by admitting compressed air into polythene bags sandwiched between the 

rear face of the panels and the steel reaction frame. Each bag was 2.475 m high by l.4 m width and 

was placed directly against the rear of the test panel, and against sheets of 12 mm thick plywood 

bearing onto the steel reaction frame. Timber beams were used to stiffen the plywood. A full scale 

5.6 m length panel has been loaded by four airbags. The panels were loaded incrementally until 

failure. Load was applied in the out-of-plane direction of the masonry wall panels using airbags. 

Mid-span displacements on the top of the wall were recorded at all times. The crack patterns of the 

test wall SB02 obtained from the experimental study is shown in Figure 10.  Table 4 shows the 
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material parameters used in the developed computational models and adopted from Chong et al. 

(1994), Gazzola et al. (1985) and (Lourenço, 1997). 

 

 

Figure 10: Crack patterns in the experimental study (SB02) 

Figure 11a compares the experimental against the numerical load against mid-span displacement 

relationship as obtained from both the finite element method using a continuous model of elasto-

plastic orthotropic type (Lourenço, 1997) and that of the discrete element method using the 

commercial software 3DEC. From Figure 10, both FEM and DEM models were able to predict the 

ultimate load with sufficient accuracy. Figure 11b shows the failure mechanisms obtained 

numerically using DEM. Also, from Figure 11b, the crack development at failure is in accordance 

with the one given by the yield line theory. 

 

Table 6.  Properties of the masonry units and the interfaces 

Block Joint Interface 

Young’s 

modulus 

Poisson’s 

ratio 

Normal 

stiffness 

Tangent 

stiffness 

Tensile 

strength 

Cohesion Friction 

angle 

Dilatancy 

angle 

 [N/mm2]  [Pa/m] [Pa/m] [N/mm2] [N/mm2]         [°] [°] 

14,000 0.2 10E9 10E9 0.32 0.32 36 0 
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                                            a)                                                                b) 

Figure 11: Comparison of experimental against numerical results: a) Pressure against mid-span 

displacement relationship (SB02); b) Failure mode predicted by the numerical model. 

c) Rectangular masonry wall panel connected with shear walls 

The last case study deals with the simulation of two full scale rectangular masonry wall panels 

constructed with hollow concrete blocks running in a stretcher bonded blockwork and connected 

with two shear walls. The wall panels intended to represent the external face of a typical load-

bearing wall. The top of the main wall was free to move, while the bottom and two sides were 

restrained. The main wall was 2,900 mm × 2,000 mm × 200 mm (lengthwidthheight) and the two 

shear walls attached on the edges of the main wall had dimensions 1,500 mm × 2,000 mm × 200 

mm. Horizontal steel reinforcement (3 bars with a 6mm diameter) was installed on the top end of 

the wall. Also, a vertical steel reinforcement (2 bars with a 12mm diameter) was installed at each 

corner, in accordance with the constructive process and standards (EN 1996-1-1, 2005). Only the 

masonry block units which contained steel reinforcement were filled with concrete. For the test-

setup, the main wall was subjected to a quasi-static loading of uniform pressure applied to the 

outside face by six inflatable cushions or water bags (Figure 12). The reaction wall (a reaction 

frame) consisted of a set of metal HEB beams, anchored on the laboratory test slab by pre-stressed 

steel bars (Bui, 2014b). 
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Figure 12: Experimental test arrangement  

Three-dimensional discrete element models of the masonry structure tested in the laboratory were 

developed in 3DEC software (Figure 13b). Each block of the wall had dimensions equal to 500 mm 

x 200 mm x 200 mm (length  width  height). The bottom part of the walls was fixed in all 

directions. The block and zero thickness interface parameters used for the development of the 

computational model were obtained from (Bui et al., 2014b; Bui, 2013) and are shown in Table 7 . 

Horizontal and vertical reinforcement was modelled using 1D elements assuming to behave in an 

elastic perfectly plastic manner (Figure 13c). The 1D element allows the modelling of a shearing 

resistance along their length, as provided by the shear resistance (sbond) between the grout. The 

cable element was divided into a number of segments of equal in size lengths and passed through 

the joints, with nodal points located at each end of the segment. Shearing resistance was represented 

by spring/slider connections (kbond/sbond) between the structural nodes and the block zones in 

which the nodes are located. The tensile yield strength of steel reinforcement was taken equal to 

400 MPa. A high grout shear stiffness and cohesive strength was assigned to the 1D element nodes; 

since reinforcement was embedded in the masonry wall. The bond beam at the top of the walls 

contained three 6 mm diameter reinforcing elements. The vertical reinforcement elements (2 bars 

with a 12 mm diameter) were placed at each corner of the wall. First, the numerical model was 

brought into equilibrium state under its own self-weight. Then, a controlled pressure was assigned 

to the masonry wall specimen. The load-deflection curve obtained numerically is relatively similar 

to the one obtained experimentally (Figure 14). Also, good agreement between the numerical and 

experimental cracking patterns obtained (Figure 15). 
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Table 7.  Properties of the masonry units and the interfaces 

Block        Interface 

Density Bulk 

modulus 

Shear 

modulus 

Normal 

stiffness 

Shear 

stiffness 

Tensile 

strength 

Cohesion Friction 

angle 

Dilatanc

y angle 

[kg/m3] [MPa]  [MPa] [Gpa/m]  [Gpa/m]  [N/mm2] [N/mm2]   (°)  (°) 

2,500 3,200 2,700 14 14 0.3 0.45 48 36 

 

 

                             a)                                                 b)                                                          c) 

Figure 13: a) Geometry of the masonry structure tested in the laboratory; b) Development of the 

computational model using 3DEC (cable modelling in blue colour); c) Representation of the one-

dimensional reinforcing element in DEM. 

 

  

Figure 14: Comparison of experimental and numerical pressure against mid-span displacement 

relationship 
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a)  b)   

c)  d)   

Figure 15: a) b) DEM: Fracture surface in the joint interface (principal wall and return wall); c) 

d) failure mode obtained in experimental simulation (main wall and shear wall). 

 

d) Parametric study: geometric ratio and boundary conditions effects 

A parametric study to investigate the influence of: a) the geometric ratio length over height (L/H) 

of the panels; and b) the influence of the boundary conditions on the ultimate load carrying capacity 

of the walls subjected to out-of-plane loading was undertaken. Geometric models representing the 

masonry wall panels WII (fixed at four edges) and WF (fixed at three edges) tested in the laboratory 

by Gazzola et al. (1985) were developed in the numerical model based on the DEM. To allow for 

the 10 mm thick mortar joint in the real wall panels, each masonry unit was based on the nominal 

brick size used in the laboratory built panels increased by 5 mm in each direction to give a block 

size equal to 190 mm × 390 mm × 150 mm (height × width × thickness).  The ration of the L/H 

varied from 0.43 to 4.29 but the height (H) of the wall was kept constant and equal to 2,000 mm. It 

was assumed that the bricks would exhibit linear elastic behavior and that slip along the mortar 

joints would be the predominant failure mechanism. The material properties for the mortar joint 

interface are shown in Table 4. Also, the normal and shear stiffnesses were kept constant and equal 

to 7.68 × 109 Pa/m. Load in the form of a uniform pressure was applied incrementally in the 

structure until collapse occurred. Figure 16 illustrates the relationship between failure loads against 

the length over height ration for the different boundary conditions studied. From Figure 16, as the 

L/H increases, the load carrying capacity of the masonry wall panel reduces. Furthermore, for L/H 

greater than 2.25, the ultimate load that the masonry wall panel can carry is almost constant. A 
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remarkable increase in the ultimate load carrying capacity was observed when the L/H was less than 

1. Similar results were also obtained from Essawy (2004) using numerical models developed based 

on the FEM. Such findings are consistent with the theory of the yield lines (Johanson, 1972). The 

behavioral tendency in the case of the masonry wall panel fixed at three edges is similar to that 

observed in the case of the masonry wall panel fixed at four edges. However, by changing the 

boundary condition in the wall panel from four to three fixed edges, decreased from 10% to 50% 

the ultimate load that the panel can carry.  

 

 

Figure 16: Influence of geometric properties and boundary conditions on the load carrying capacity 

of the masonry wall panel. 

4 Conclusions 

Today, a wide variety of numerical methods have been developed in the literature to simulate the 

mechanical behavior of masonry structures. The choice of the most appropriate tool for the analysis 

of masonry structures requires a good understanding of both the constitutive model and the input 

material properties to be selected by the modeler. This article evaluates the efficiency and 

performance of the discrete element method to simulate the mechanical behavior of different 

masonry wall panels subjected to in-plane and out-of-plane loading. The assessment consisted of a 

comparison of the results from full-scale laboratory tests to the behaviour predicted using the 

discrete element modelling software, 3DEC. More specifically, the suitability of the model is based 

on its ability to predict the development and propagation of cracks up to collapse, the associated 

stress distributions in the wall panels at different magnitudes of the applied loading and the ultimate 

load carrying capacity. 
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From the results analysis, it was found that the heterogeneous nature of masonry and the 

discontinuity at block interfaces can be well described by a discrete element approach. The 

numerical simulations were in good agreement with experimental results. In particular, the 

conducted simulations allowed us to quantify with sufficient accuracy the bearing capacity of the 

structures as well as the cracking initiation and propagation. In addition, the nonlinear behavior 

observed in the experimental load-deflection curves were globally correctly reproduced from the 

initiation up to the final failure. This, traduces that crack appearance and propagation, were 

correctly reproduced. Stress redistributions inherent to cracks were also well represented, which 

allowed us to identify areas of potential crack propagation and to predict the failure mechanism 

traducing the correct estimation of the bearing capacity as well as the characterization of the 

collapse mode of the structure. 

Difficulties in the choice of input parameters arise mostly due to the shortage of experimental 

data, the proper characterization of the masonry material constituents (blocks and mortar) and the 

masonry specimen. On the other hand, there is still a challenge to discontinuous idealizations for 

large and complex geometrical structures, as it is essential to simplify them. However, this requires 

experience and a good insight in the expected structural behavior.  

For masonry structures, the DEM allows to simulate rupture phenomena taking into account the 

discontinuous nature of masonry in an elegant and robust way. 

 

 

References  

A. Munjiza, “The combined finite-discrete element method”, New York: Wiley, 2004.  

A.W. Hendry, B.P. Sinha, S.R. Davies, “Design of masonry structures”, London: E&FN Spon, 

2004. 

Andreaus, U., Casini, P., Dynamics of three-block assemblies with unilateral deformable contacts. 

Part 1: Contact modelling, Earthquake Engineering and Structural Dynamics, Volume 28, Issue 

12, December 1999a, Pages 1621-1636. 

Andreaus, U., Casini, P., Dynamics of three-block assemblies with unilateral deformable contacts. 

Part 2: Actual application, Earthquake Engineering and Structural Dynamics, Volume 28, Issue 

12, December 1999b, Pages 1637-1649. 

Bui T.T, Limam A, Bui Q B. “Characterization of vibration and damage in masonry structures: 

experimental and numerical analysis”. European Journal of Environmental and Civil 

Engineering, 2014a. 



23 

 

Bui T.T. “Masonry walls submitted to out-of-plane loading: experimental and numerical study”. 

PhD Thesis, INSA Lyon, 2013, http://www.sudoc.fr/183858298 

Bui T.T, Limam A. Out-of-plane behaviour of hollow concrete block masonry walls unstrengthened 

and strengthened with CFRP composite. Composites Part B: Engineering, Volume 67, 

December 2014b, Pages 527-542, 2014 

Bui T.T, Limam A, Sarhosis V, Hjiaj M. 2017. Discrete element modelling of the in-plane and out-

of-plane behaviour of dry-joint masonry wall constructions. Engineering Structures, 136, 277-

294. 

Chong, V.L. Southcombe, C., and May, I.M. (1994). “The behaviour of laterally loaded masonry 

panels with openings.” Proc., 3rd Int. 

Colas A.S., Mechanical modeling of dry stone retaining walls by calculation at failure and 

experimentation scale 1”, PhD Thesis, ENTPE, Vaulx-en-Velin, 2009. 

Cundall P. A., A computer model for simulating progressive, large scale movements in blocky rock 

systems, Proc. Int. Symp. Rock Fracture, ISRM, Nancy, Vol. 1, Paper II–8, 1971a. 

Cundall P. A., “The measurement and analysis of acceleration in rock slopes”, Ph.D. Thesis, 

Imperial College of Science and Technology, University of London, 1971b 

E.A. Gazzola, R.G. Drysdale, A.S Essawy. Bending of concrete masonry walls at different angles to 

the bed joint. Proc. 3rd North. Amer. Mas. Conf., Arlington, TX, USA, Paper 27, 1985. 

Essawy, A. S., “Strength of Block Masonry Walls Subject to Lateral Loading”, Thèse de doctorat, 

McMaster University. 

EN 1996-1-1. 2005. “Design of masonry structures. Part 1-1: general rules for reinforced and 

unreinforced masonry. ” CEN, Brussels. 

Forgács T, Sarhosis V, Bagi K. Minimum thickness of semi-circular skewed masonry arches. 

Engineering Structures, 140(1), 317–336, 2017. 

Forgács T., Sarhosis V., Bagi K., Influence of construction method on the load bearing capacity of 

skew masonry arches. Engineering Structures, 168, 612-627, 2018. 

Gazzola E.A., Drysdale R.G., “A component failure criterion for blockwork in flexure”, Proc., 

Structures ASCE, S.C. Anand, ed., New Orleans, 134-153, 1986. 

Giamundo V., Sarhosis V., Lignola G.P., Sheng Y., Manfredi G. Evaluation of different 

computational modelling strategies for modelling low strength masonry, Engineering Structures, 

201473, 160-169. DOI: 10.1016/j.engstruct.2014.05.007 

Itasca, 3DEC – Three Dimensional Distinct Element Code, Version 6.0, Itasca, Minneapolis, 2018. 



24 

 

J.G. Rots, “Structural masonry: an experimental/numerical basis for practical design rules”, 

Rotterdam: Balkema, 1997.  

Johansen, K.W., “Yield-line formulae for slabs, Cement and Concrete Association”, London, 1972. 

Kelman I., Spence R., “A Limit Analysis of Unreinforced Masonry Failing Under Flood Water 

Pressures”, Masonry International, vol. 16, no. 2, 51-61, 2003. 

Lemos J.V., “Discrete Element Modeling of Masonry Structures”, International Journal of 

Architectural Heritage, 1:190-213, 2007. 

Lofti H.R., Shing P.B.: “An appraisal of smeared crack models for masonry shear wall analysis”, 

Computer and Structure, vol.41, issue 5, 413-425, 1991. 

Lurati F., Thürlimann B., “Tests in concrete masonry walls (in German)”, Report No. 8401-3, 

Institute of Structural Engineering, ETH Zurich, Zurich, Switzer-land, 1990. 

Lourenço, P.B. “Aspects related to the out-of-plane numerical modeling of masonry”, Mas Int, 

14:31–4, 2000.  

Lourenço P.B., Rots J.G., “Multisurface interface model for analysis of masonry structures”, ASCE 

J. Eng Mech, 123:660–8, 1997. 

Lourenço P.B.. Computational strategies for masonry structures. PhD Thesis, Delft University of 

Technology, the Netherlands, 1996. 

Lourenço P.B.,. An anisotropic macro-model for masonry plates and shells: Implementation and 

validation. Rep. No. 03.21.1.3.07, Univ. of Delft, Holland and Univ. of Minho, Guimaraes, 

Portugal, 1997. 

Moradabadi, E., Laefer, D. Opportunities in Numerical Modelling of Pre-existing Damage of 

Historical Masonry Buildings (paper 1600). In 9th International Masonry Conference 

Guimarães, Portugal. 2014. 

Rots J.G., Nauta P., Kusters G.M.A., Blaauwendraad J., “Smeared crack approach and fracture 

localization in concrete”, Heron, 30(1), p.3-48, 1985. 

Sarhosis V., Garrity S.W., Sheng Y. Influence of the brick-mortar interface on the mechanical 

response of low bond strength masonry lintels, Engineering Structures, 2015. 88, 1-11. DOI: 

10.1016/j.engstruct.2014.12.014  

Sarhosis V., Oliveira D.V., Lemos J.V., Lourenco P. The effect of the angle of skew on the 

mechanical behaviour of arches, Journal of Mechanics Research Communications, 2014a. 61, 

53-49. DOI: 10.1016/j.mechrescom.2014.07.008.  

Sarhosis V. Computational modelling of low bond strength masonry. PhD thesis. University of 

Leeds, UK. 2012. 



25 

 

Sarhosis V., Sheng Y. Identification of material parameters for low bond strength masonry, 

Engineering Structures, 2014. 60, 100-110. DOI: 10.1016/j.engstruct.2013.12.013.  

Sarhosis V., Tsavdaridis K., Giannopoulos G. Discrete Element Modelling of masonry in-filled 

steel frames with multiple window openings subjected to lateral load variations, Open 

Construction and Building Technology Journal, 2014b. 8(1), 93-103.  

Sarhosis V., Lemos J.V. Detailed micro-modelling of masonry using the discrete element method. 

Computers and Structures, 2018. 206, 66-81. 

Thomas K., “Structural Brickwork – materials and performance”, The Structural Engineer, 49 (10). 

441 – 450, October 1971. 

 


