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Abstract  

Background and aims The increasing input of anthropogenically-derived nitrogen (N) 

to ecosystems raises a crucial question: how do N inputs modify the soil microbial 

stability, and thus affect crop productivity?  

Methods Soils from an 8-year rice-wheat rotation experiment with increasing N-input 

rates were subjected to drying–rewetting (DW) cycles for investigating the resistance 

and resilience of soil functions, in terms of abundances of genes (potential functions) 

and activities of enzymes (quantifiable functions), to this stress, and particularly the 

contribution of resistance and resilience on crop production was evaluated.  
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Results Although the DW cycles had a stronger effect compared to N fertilization level, 

the N input was also important in explaining the variation in the resistance and 

resilience of functional genes and the activities of enzymes involved in C, N and P 

cycling. Crop yields benefited from both of high resistance and high resilience of soil  

microbial functions, though the resistance and resilience of soil enzyme activities 

exhibited a stronger contribution to crop yields compared to the functional genes and 

the overall contribution strength was conditioned by N input levels.  

Conclusions In addition to the well-known direct contribution of N fertilization on crop 

yields, N input plays an indirect role on crop production via conditioning the resistance 

and resilience of soil functions in response to repeated DW cycles.  

 

Keywords:  

climate change; soil microbial function; resistance and resilience; enzyme patterns; 

rice-wheat rotation.  

 

Introduction 

Soils face various environmental and anthropogenic pressures that alter their 

functional capacity to fulfil multiple ecosystem services, such as the biogeochemical 

cycling of elements and supporting crop productivity. To maintain these crucial 

functions, it is important to understand how soils respond to environmental changes or 

disturbances (Griffiths and Philippot 2013; Morillas et al. 2015). Current climate trends 

indicate an increasing number of soil drying-rewetting (DW) cycles resulting from 

increases in evapotranspiration and soil drought, which have received an increasing 

attention (Wetherald and Manabe, 2002; Barnard et al. 2013; Székely and Langenheder 

2017). Especially in the agricultural soil, the unreasonable management patterns, such 

as irrigation and crop-rotation can also result in the increase in the numbers of soil DW 

cycles. The response of soils to such stresses depends on their management and a 
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combination of both biotic and abiotic soil properties (Griffiths and Philippot 2013; 

Yuste et al. 2011). Specifically, the functional response of soils is strongly controlled 

by the intensity and the numbers of DW cycles (Butterly et al. 2009; Meisner et al. 

2013), which severely impacts a broad spectrum of microbial processes (Zhao and 

Running 2010).  

Soil moisture is a critical driver of the biogeochemical cycling of carbon (C), 

nitrogen (N) and phosphorus (P), and influences the transformation of organic matter 

(Cui et al. 1997; Moyano et al. 2013). These processes are mediated by soil 

microorganisms through the synthesis and secretion of extracellular enzymes, which 

have been widely used as sensitive indicators of ecosystem responses to stressors and 

as a proxy for a potential ecosystem recovery (Daou et al. 2016; Guénon et al. 2013; 

Hartmann et al. 2015; Loeppmann et al. 2016; Mooshammer et al. 2017; Su et al. 2015). 

Following a harsh DW cycle, microorganisms must invest energy to regulate osmotic 

pressure (Landesman and Dighton 2011; Manzoni et al. 2014), and their communities 

have to reassemble from the dormant or inactive stages, including spores (Székely and 

Langenheder 2017). The physiological responses of microorganisms and the microbial 

community re-organisation to soil drying and rewetting cycles require a large 

investment in resources, which may vary with impact histories and soil properties 

(Schimel et al. 2007; Székely and Langenheder 2017). Although microbial community 

composition has been shown to shift in response to DW cycles (Cruz-Martínez et al. 

2009; Waldrop and Firestone 2006), many microbial taxonomic groups also exhibit 

functional redundancy (Kuzyakov et al. 2009). As such, shift in microbial function such 

as in metabolism or enzyme synthesis may result in overall similar functionality even 

with an overall different microbial community under altered conditions (Barnard et al. 

2013; Morillas et al. 2015; Placella et al. 2012). Microbial functional groups driving 

organic matter decomposition, N mineralization and nitrification are known to be 

sensitive to DW cycles (Gao et al. 2016; Guénon et al. 2013; Phillips et al. 2015). 

However, whether the ability of microbial functions (represented by functional genes 

and enzymes driving C, N and P cycling) to withstand an external impact (resistance) 
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and their capacity for recovery to the pre-impact levels (resilience) depends on the 

management practice and the numbers of the stress event remains uncertain. 

Additionally, whether functional resistance and resilience may be used as indicators for 

soil fertility and thus contribute to the crop productivity is not yet clear. 

Nitrogen inputs in agroecosystems have increased ten-fold compared to 100 years 

ago (Canfield et al. 2010). N inputs enhance soil functionality such as biogeochemical 

cycling and crop production by impacts on microbial activity and nutrient mobilization 

(Chen et al. 2017; Gallo et al. 2004). N inputs modulate the responses of microbial 

functions, including functional gene abundances (potential functions) and enzyme 

activities (quantifiable functions) involved in C, N and P cycling, to the changes in 

numbers of DW cycles (Francaviglia et al. 2017; Morillas et al. 2015). Therefore, these 

responses may influence the biological contributions to soil functional resilience and 

increase the sustainability of farming systems with particular soil types and climatic 

conditions. We further speculate that agricultural production is not only largely limited 

by the extent to which agricultural nutrient requirements can be met (Zechmeister-

Boltenstern et al. 2011), but also depends on the resistance and resilience of microbial 

functions to external stresses, including DW cycles, which may also be influenced by 

long-term N inputs.  

The overall objective of this study was, therefore, to characterise the coupled 

effects between the repeated DW cycles and long-term N inputs on soil microbial 

functional groups and enzyme activities. We investigated whether the N fertilization 

modulated the resistance (the ability to withstand the stress) and resilience (the ability 

to recover from stress) of microbial functions in response to repeated DW cycles, and 

whether this resistance and resilience further affect soil functions with downstream 

consequences for crop production. For these purposes, soils from an 8-year rice-wheat 

rotation experiment with increasing N-input rates (Zhu et al. 2018) was subjected to 

DW cycles under controlled conditions. Quantitative PCR was employed to quantify 

the abundance of genes associated with major C, N transformations as well as P 

mineralization. The details of functional genes are summarized in Table S1. 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=agricultural
file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=productivity
file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=external


 5 

Additionally, the activities of soil enzymes related to C, N, and P cycling were assessed 

(see Table S2), and served as functional indicators. We hypothesized that 1) soil 

function would respond most strongly to the number of DW cycles, however, the level 

of N fertilization would increase the resistance and resilience of these functions to DW 

cycling stress; and 2) the N additions’ functional buffer to this stress will enhance crop 

yields. 

 

Materials and Methods 

Experimental field site and soil sampling  

Field experiments were carried out at the Institute of Agricultural Science 

Research at Rugao County (32˚44’N, 120˚49’E), Jiangsu Province, China. The fields 

were used for an annual rotation of winter wheat and summer rice, which is a typical 

crop production system in areas of Southeast China. The soils of this region are 

Vertisols developed in fluvial and lacustrine deposits and are also classified as a  

sandy loam, and the climate displays a high-frequency pattern of DW cycles. The mean 

annual temperature of this region is approximately 14.7 Ԩ with a mean annual 

precipitation of ~1056 mm. The basic soil physicochemical properties (0-20 cm) at the 

beginning of the field experiments were : (a) pH, 7.50; (b) total C, 14.5g kg-1; (c) total 

N, 1.52 g kg-1; (d) available P, 8.40 mg kg-1; and (e) available potassium, 78.4 mg kg-1. 

The experiment has been in operation since 2010 and includes 5 nitrogen-input levels: 

0, 140, 280, 470 and 660 kg N ha-1 year-1 (termed N0, N140, N280, N470 and N660, 

respectively) (Table S3). The details for the field treatment design were described 

previously by Zhu et al. (2018). Crop yields were recorded (Table S4). 

On 4 November 2017, soil samples for each N level were collected at a depth of 

0-20 cm from all replicate plots. Samples from each plot were composites of 6 

randomly located soil cores, which were sieved (<5 mm) to remove visible plant and 

organic debris. A fraction of each sample was stored at 4 °C for analysing the soil 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=physicochemical
file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=fraction
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physiochemical properties and enzyme activities, and another was stored at -20 °C for 

DNA extraction and other analysis.  

Design of DW cycles and soil sampling in the microcosm experiment 

Pre-incubation phase  

The remaining soils for each N level were subjected to the DW cycles in a 

microcosm experiment. First, physical, chemical and biological soil characteristics 

were measured. A pre-incubation period was then used to acclimate the soil microbial 

communities. The soil from each treatment was wetted to 50% of the water-holding 

capacity (WHC) (this is equivalent to about 25% soil water content), which is the 

optimum water content for microbial respiration in soils with similar textures (Setia et 

al. 2011), and each sample was mixed thoroughly in a plastic bag. This adjustment of 

soil moisture was relatively small, as the initial water content of the soils was already 

at or very close to 50% WHC. 50 g soil (dry weight equivalent) was then placed inside 

each of 20 ventilated canning jars (250 ml) per N treatment, and incubated in the dark 

at 25 ºC. To avoid soil drying and to allow for gas exchange, the jars were closed using 

plastic wrap with identical micropores and were weighed daily. Water loss was replaced 

daily through the addition of the lost mass to ensure that soil moisture remained at 50% 

WHC. During this pre-incubation, the soil respiration rate stabilised after 14 days (data 

not shown).  

Drying-rewetting phases  

At the end of the pre-incubation phase, soils from four randomly selected jars from 

the 20 from each N treatment were collected and stored at -20 °C for DNA extraction, 

determination of enzyme activities and other analyses. Soils from another 4 jars were 

kept at WHC of 50% during the entire course of the experimental period. The remaining 

soils in the 12 jars were subjected to drying/wetting cycles. The jars were incubated in 

darkness at 25 °C: the location of the samples within the incubation chamber and the 

order of samples were randomised. Three DW cycles (with 4 replicates per treatments) 

were carried out (Fig. 1). Each DW cycle consisted of a 2-week drying phase followed 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=remaining
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by a 2-week rewetting phase. We dried soils by removing the plastic wrap and 

incubating samples at 25 °C under forced air flow (soil moisture content have dropped 

to <5% WHC). To rewet the soils, we added deionised water using a syringe until the 

jars attained the weight that corresponded to 50% WHC. During the 2 weeks of the wet 

stage, soils were maintained at or very close to 50% WHC by weighing. The soils were 

subjected to different numbers of DW cycles. In the “Constant” treatment (C0), soils 

were constantly kept at 50% WHC, while in the “DW1”, “DW2” and “DW3” treatments, 

soils were subjected to one, two, or three DW cycles, respectively. Specifically, DW1 

experienced one DW cycle across 4 weeks; DW2 received two DW events across 8 

weeks; and DW3 received three DW events throughout the duration of the 12 weeks 

experiment (experiment timeline is shown in Fig. 1). DW soils were maintained at 50% 

WHC when not experiencing a DW cycle. 

Soils were collected at the end of every DW cycle. One half was immediately 

stored at -20 °C for subsequent DNA extraction and determination of enzyme activities, 

and the rest was stored at 4 °C for physicochemical analyses.  

Analysis of CO2 efflux from soil 

Total soil CO2 efflux was determined by the concentration of CO2 in the headspace 

of the jars using a gas chromatograph (Agilent 7890A, Agilent Ltd., Shanghai, China). 

The jar headspace was sampled using a fine needle polypropylene syringe through a 

rubber septum. We collected 30 ml gas samples from each jar, which were immediately 

measured. Following each CO2 sampling, the jars were vented to refresh the headspace 

and then resealed with plastic wrap until the next gas sampling. We collected samples 

from the headspace at the start and at the end of the incubation period for each drying 

and rewetting cycle. Additionally, we considered that consistently rewetting dry soil 

may produce a large pulse in respiration rates. As such, we also measured the CO2 

concentrations at 1, 2, 3, 5, 8 and 14 days after each rewetting. The initial air CO2 

concentration was used as a blank to subtract from the corresponding CO2 concentration 

at the end of the incubation. We calculated fluxes based on the change in CO2 

concentration in the jar, the internal volume of the jar, and the soil dry weight.  
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Determination of enzyme activities 

Soil samples were quickly analysed for enzyme activities (Table S2) by using the 

MUF-linked model substrates (Deforest 2009; Saiya-Cork et al. 2002) with some 

modifications. This method, which yields the highly fluorescent cleavage product 4-

methylumbelliferyl (MUF) upon hydrolysis, is very sensitive and allows for high-

throughput determination of enzyme activities. Briefly, the equivalent of 1.0 g dry 

mass of fresh soil was added to a 250 ml plastic bottle and homogenised with 100 ml 

of 50 mM acetate buffer using a polytron homogeniser. Considering that enzyme 

activity is sensitive to pH, the buffer pH was adjusted to the mean soil pH of the 

samples within 0.5 units. A magnetic stirrer was used to maintain a uniform 

suspension. Aliquots (200 ȝl each) of the soil suspension were placed into 96-well 

microplates that each contained 50 ȝl of modified universal buffer at optimal pH 

levels for the assayed enzyme activities. Subsequently, 50 ȝl of 200 ȝM MUF-labelled 

substrate solutions were added to each well of the microplate. The well contents were 

mixed by pipetting before the microplates were incubated at 25 °C for 4 h in the dark, 

following the procedure described by Deforest (2009). The fluorescence intensity was 

quantified using a microplate fluorometer (Scientific Fluoroskan Ascent FL, Thermo, 

America) with 365 nm excitation and 450 nm emission filters. Potential enzyme 

activities were expressed as nanomoles per gram per hour (the detailed calculation 

procedure is described by Deforest (2009)). 

Extraction of soil DNA  

Total genomic soil DNA was extracted from 0.25 g of soil per sample (dry weight 

equivalent) by using a Power Soil® DNA Isolation Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocol. The kit differs from MO BIO’s UltraClean® 

Soil DNA Isolation Kit by including a humic substance/brown colour removal 

procedure, which effectively removes PCR inhibitors from even the most difficult soil 

samples. The DNA extracts were purified with a Wizard DNA Clean-Up System 

(Axygen Bio, USA), as recommended by the manufacturer. DNA quality and quantity 

were determined spectrophotometrically (NanoDrop 2000, ThermoScientific), and 
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then replicate extractions were pooled and re-quantified and stored at -20 °C for 

subsequent analyses.  

Quantification of functional gene abundances  

Microbial functions were assessed by quantitative PCR of the key genes driving 

organic matter decomposition, organic P mineralisation and N transformations. 

Primer sequences for the target genes were adapted for qPCR based on previous 

studies (Table S1). After running a serial dilution on samples to test for PCR inhibition, 

the functional gene assay was performed with each sample in triplicate. Standard 

curves were obtained by using serial dilutions of a known amount of linearized 

plasmid DNA containing specific gene fragments (Butterly et al. 2016; Luo et al. 2018; 

Luo et al. 2017). Quantification was performed with an ABI 7500 Cycle Real-time 

PCR System (Applied Biosystems, Germany) in a 25 ȝl reaction that included 12.5 

ȝl of SYBR® Premix Ex Taq (2x) (Tli RnaseH Plus), 0.5 ȝl of ROX Reference Dye 

II (50x) (TAKARA, BIO, INC, Japan), 0.5 ȝl of each primer (forward primer and 

reverse primer), 1 ȝl of template, and 10 ȝl ddH2O to bring the final volume up to 25 

ȝl. The cycling conditions for each gene are listed in Table S1. Our method resulted 

in slightly different amplification efficiencies for these targeted genes with R2 values 

between 0.9916-0.9990 (Table S1). These data were used to correct gene abundance 

data before statistical analyses.  

Calculation of resistance and resilience 

The resistance (RS) of each variable was calculated as described by Orwin and 

Wardle (2004): 

)
|D|+C

| D|2
(1RS

00

0
                                                    (1)  

where D0 is difference in the value of the response variables between the constant 

moisture samples (C0) at the end of each drought period and the treated samples at the 

end of each drought period (D1, D2 or D3). This RS index increases monotonically 

with resistance, deals only with absolute differences between controlled and disturbed 
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soils, and is standardised by the control value to enable valid comparisons between 

soils. It is bounded by +1 and -1, where an index value of +1 indicates full resistance 

(i.e., the disturbance did not cause any change in the response variable), an index 

value of 0 indicates that there was a 100% change in the response variable compared 

to the control soil, and negative values indicate that there was a change of more than 

100% in the response variable compared to the control soil (Orwin and Wardle 2005).  

Resilience (RL) was also calculated as described by Orwin and Wardle (2004): 

1)
|D|+|D|

| D|2
(RL

0x

0
                                                  (2)  

where D0 is as above and DX is difference in the values of the response variables 

between the constant moisture samples (C0) at the end of each DW cycle and the 

treated samples (DW1, DW2, DW3) at the end of each DW cycle. This index is 

standardised by the amount of change initially caused by drought (D0), as this 

determines the state from which it has to recover. An index value of 1 indicates that 

the disturbed soil had completely recovered, and an index value of 0 indicates that 

either no recovery occurred after the end of the disturbance or that the disturbed soil 

is now equally different than the control soil but in the opposite direction. A negative 

value indicates that the disturbed soil is now further away from the control soil than 

it was initially.  

Statistical analyses  

Unless otherwise stated, significant differences of the data were determined 

using ANOVA, and the least significant difference (LSD) test was used to compare 

the means for each variable (p <0.05). All data were normally distributed based on 

the skewness and kurtosis coefficients and the visualisation of Q-Q plot tests. The 

non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity was 

performed by using R statistical software to explore differences in microbial functions 

and enzyme patterns of experimental soils among treatments. We used the following 

equation to normalise the abundances of C-, N- and P-cycling related genes and the 
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activities of C-, N- and P-cycling related enzymes belonging to the same functional 

group (Luo et al. 2018): 

䚷䚷...)3,2,1n; ...3,2,1i(n/])x/x(['x
n

1n

i 

1i

䚷ii   
 

                         (3) 

where xi is the individual gene abundance or enzyme activity of the sample, i and n 

indicate the number of samples and genes or enzymes studied, respectively, and x’ is 

the normalised gene abundance or enzyme activity of a certain functional group 

associated with C, N or P cycles. 

Permutational multivariate analysis of variance (PERMANOVA) and two-way 

ANOVA tests were employed to separate and quantitatively evaluate the effects of N-

input levels and the numbers of DW cycles on soil microbial functional capacity 

(characterized by abundances of functional genes and enzyme activities). Additionally, 

the similarities (ANOSIM) of potential microbial functions (gene abundances) and 

enzyme patterns were assessed by using the ‘adonis’ function in the vegan package of 

R. A heat-map was generated in R statistical software package to illustrate the 

independent and interactive effects of N-input levels and DW cycles on the resistance 

and resilience of individual gene abundances and enzyme activity. 

Multiple Regression Analysis was performed in R statistical software to test the 

individual contribution of resistance and resilience of C-, N- and P-cycling related 

variables (including functional genes and enzyme activities) on crop yields.  Structural 

equation modeling were constructed to determine whether the N inputs affected the 

resistance and resilience of soil microbial functions to DW cycles and whether this 

resistance and resilience further contributed to crop production. The modeling built by 

coupling factor analysis and path analysis and was run by using AMOS software (IBM 

SPSS AMOS 20.0.0). The crop yields for the modeling were represented by the annual 

average yields of wheat and rice in 2017. All of the resistance and resilience of 

individual genes and individual enzymes were filtered by factor analysis using AMOS 

software, and then the remaining genes or enzymes (contribution rate >0.50; p <0.05) 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=remaining


 12 

were used as the representative parameters describing the total resistance and resilience. 

The fit of the model was tested by using the maximum likelihood (Ȥ2) goodness-of-fit 

test with P-values and the root mean square error of approximation (RMSEA).  

 

Results 

CO2 efflux from soil 

The CO2 production from soils under continuously wet conditions (CW) remained 

approximately constant across 98 days (Fig. 2). The CO2 efflux of those with high N 

input exhibited a high tolerance to drying phases with the recovery of CO2 efflux 

occurring more rapidly during rewetting phases. In general, the background CO2 efflux 

of soils with high N input show a higher CO2 efflux than with low N input (Fig. 2).  

Functional gene abundances  

Quantitative PCR was used to quantify the abundances of genes associated with 

cellulose degradation (fungcbhIR and GH74), starch degradation (GH31), xylan (or 

arabinan) degradation (GH51), nitrification (archaeal (amoA-a) and bacterial (amoA-b) 

ammonia monooxygenase gene), N fixation (nifH), denitrification (narG, nirK, nirS, 

nosZ and norB), and organic P mineralisation (phoD and BPP). Roughly, the 

background abundances of functional genes we studied in the N-treated soils were 

higher than in the N0 soils. The abundances of amoA-a, amoA-b, nirS, narG, nifH, phoD 

and GH51 genes were the highest in the soil at N660, across the three DW cycles (Fig. 

S1).  

To visualise differences in the patterns of potential microbial functions among 

the N levels and the DW cycles, multiple gene abundances were employed to compute 

Bray-Curtis similarity matrices (Fig. 3A). Most of the functional indicators, such as 

BPP, GH31 and norB genes, contributed strongly to the NMDS ordination of the soils. 

The NMDS clearly separated the functional gene profiles among the DW cycles along 

the horizontal axis, and a clear separation of the profiles among the N levels along the 
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vertical axis (p <0.001; Fig. 3A). The numbers of DW cycles had a greater (76%; p 

<0.001) impact on the patterns of microbial functional genes than N-input levels (11%; 

p <0.001), based on PERMANOVA. The interactions between the two factors explained 

11% of the total variation (Fig. 3B). Both the DW cycles and N-input levels individually 

or interactively affected the abundances of individual functional genes (Table S5).  

Enzyme activity patterns 

In order to visualise the responses of soil functions to the repeated DW cycles, 

the activities of extracellular enzymes, including Į-1,4-glucosidase, ȕ-1,4-

glucosidase, ȕ-1,4-xylosidase and ȕ-D-cellobiohydrolase (polysaccharides 

decomposition), ȕ-1,4-N-acetyl-glucosaminidase and leucine amino peptidase (N 

assimilation), and phosphatase (organic P mineralization) were assessed. Roughly, the 

background activities of ȕ-1,4-N-Acetyl-glucosaminidase, phosphatase, Į-1,4-

Glucosidase, ȕ-1,4-Glucosidase and ȕ-D-Cellobiohydrolase in the N-treated soils were 

higher than in the N0 soils. The activities of leucine amino peptidase, Į-1,4-Glucosidase 

and ȕ-D-Cellobiohydrolase were the highest in the soils at N470 or N660, across the 

three DW cycles (Fig. S2).  

To visualise differences in the patterns of microbial activity among the N levels 

and the numbers of DW cycles, multiple enzyme activities were used to compute Bray-

Curtis similarity matrices (Fig. 4A). Most of the enzymes contributed strongly to the 

NMDS ordination of the N fertilization and DW cycles. The NMDS showed a 

separation of enzyme patterns based on the numbers of DW cycles along the horizontal 

axis, and based on N levels along the vertical axis (Fig. 4A). Enzyme patterns, from 

DW1 to DW3, gradually altered from the pre-treatment patterns. Similarly, both DW 

cycles and N-input levels impacted soil enzymes activities, while DW cycles had a 

greater (56%, p <0.001) impact than N-input levels (17%, p <0.001). The interactions 

between these two factors explained 27% of the total variation (PERMANOVA; Fig. 

4B). Both the numbers of DW cycles and the N input levels also individually and/or 

interactively affected the individual enzyme activities (two-way ANOVA; Table S6).  
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Resistance and resilience of soil functions to DW cycles 

Both resistance and resilience exhibited distinct sensitivities between functional 

genes to the impacts of N-inputs and the DW cycles (Fig. 5). The numbers of DW cycles 

showed a greater contribution to the variation in resistance and resilience of the amoA-

a, nifH, nirS, BPP and norB gene abundances than did N-input levels. The variations in 

those of the amoA-b, narG, nirK, phoD, fungcbhIR, GH31, GH51 and GH74 gene 

abundances were mainly attributed to N inputs (Fig. 5).  

The numbers of DW cycles showed a greater contribution to the variation in the 

resistance and resilience of phosphatase, Į-1,4-glucosidase, ȕ-1,4-glucosidase, ȕ-1,4-

xylosidase and ȕ-D-cellobiohydrolase activities than did the levels of N inputs (Fig. 

5). The variations in those of the ȕ-1,4-N-acetyl-glucosaminidase activity were mainly 

attributed to N inputs (Fig. 5). 

Contribution of soil resistance and resilience to crop yields 

Multiple regression models were used to predict the impacts of both the resistance 

and resilience of functional genes and enzymes on crop yields (Fig. 6A; Table S7). The 

resistance and resilience of soil enzymes to DW cycles had a higher contribution (closer 

correlation) to crop yields compared with the functional genes. The contribution of N-

cycling related enzymes to crop yields was predominantly attributed to resistance (75%, 

p <0.001), whereas that of C- and P-cycling related enzyme to yields was mainly based 

on their resilience (71% and 52%, respectively; p <0.001). Structural equation modeling 

was used to demonstrate the effect pathways of N inputs on crop yields. The modeling 

(explained over 70% of the total variation in crop yields) predicted the indirect and 

direct effects of N inputs on crop yields using the influences of the resistance and 

resilience of soil functional capacity (Fig. 6B). Despite that the contribution of N inputs 

to crop yield was predominantly due to direct effects, the modeling also showed notable 

indirect effects via increasing the resistance of functional genes (path coefficient =0.53) 

and the resilience of enzyme activities (0.64). The indirect effects of N inputs on crop 

yields were also supported by the resilience of functional genes (-0.72) and the 
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resistance of enzyme activities (-0.56) (Fig. 6B). These findings suggest that changes 

in the resistance and resilience of soil enzymes and functional genes were consistent 

with increases in crop yield along the gradient of increased N input rates (Figs. S3-4). 

 

Discussion  

Climate change is predicted to alter precipitation and drought patterns, resulting 

in more extreme conditions that can impact agricultural productivity in many parts of 

the world. However, field-based evidence demonstrating the response of soil functions 

to DW cycles remains very scarce, and, furthermore, is difficult to generalize (Barnard 

et al. 2013). Here, the results focused on changes in soil functional capacity highlighted 

the combined effects of long-term N inputs and repeated DW cycles on functional genes 

(that indicate potential functions) and enzyme activities (that indicate contemporary, 

quantifiable functions) as well as their resistance and resilience to DW cycles.  

Ecological perspective of DW cycles on soil microbial functions 

Repeated DW cycles are a principle driver of soil microbial functions involved in C-, 

N- and P-cycling, including functional gene abundances and enzyme activities (Figs. 

3-5). The efficiency of resource use and the physiological strategy of energy allocation 

by soil microorganisms can control the changes in functional gene abundances and 

enzyme activities (Guénon et al. 2013; Schimel et al. 2007). Soil resource availability 

is expected to control the stability of soil microbial functions against DW cycles 

(Morillas et al. 2015; Schimel et al. 2007). Previously, DW cycles have been shown to 

induce a large variation in soil nutrient dynamics (Borken and Matzner 2009; Xiang et 

al. 2008). To investigate the resistance and resilience of soil functions (e.g. nutrient 

cycles) to DW cycles, it is important to know how soil enzyme activities and functional 

gene abundances respond to this stress. A soil with high redundancy level of microbial 

community, that is many species performing a same function, likely act as a buffer 

against the effect of environmental change on soil functions (Pasari et al. 2013; 

Strickland et al. 2009). As such, shift in microbial function such as in metabolism or 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/%3fkeyword=agricultural
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enzyme synthesis may result in overall similar functionality even with an overall 

different microbial community under altered conditions (Barnard et al. 2013; Morillas 

et al. 2015; Placella et al. 2012). These fingdings can explain the results that the 

resistance and resilience of enzyme activities associated with C and N cycling were 

more strongly affected by DW cycles than the genes involved in C and N cycling (Fig. 

5). Previous studies have indicated that autotrophic nitrification genes (amoA-a and 

amoA-b) were also abundant in dry soils (Sullivan et al. 2012). The organic matter 

decomposition genes (such as fungcbhIR) are generally more drought-resilient than 

corresponding enzymes of organic matter decomposition owing to special microbes 

with these genes could continue to grow under water stress conditions (Daou et al. 2016; 

Guenet et al. 2012; Kellner et al. 2007). 

Distinct variation between functional gene abundances and enzymes activities in 

response to the repeated DW cycles (Figs. 3-5, S1-2) indicate that the functional 

composition of communities (in terms of genes involved in C- N- and P- cycling 

functions) was highly conserved throughout the disturbation relative to the enzymes 

activities. Microorganisms can actively synthesize and secrete enzymes to decrease the 

nutrient limitations by stress (Barnard et al. 2013; Placella et al. 2012). Changes in 

enzyme activities caused by stress not only strongly depend on the physiology or the 

function genes of the microbes but also on habitat attributes across DW cycles, e.g. 

disrupted large macroaggregates (Bünemann et al. 2013). In this study, the resistance 

and resilience of enzyme activities were strongly affected by an increase in the number 

of DW cycles (Fig. 5). The resistance of enzyme activities to drought depended on soil 

nutrient availability and on the direct physical effects of disturbances (Schimel et al. 

2007; Morillas et al. 2015; Luo et al. 2017). Inversely, the resilience depends on the 

survival and proliferation of microbes capable of producing new enzymes 

(Mooshammer et al. 2017; Waldrop et al. 2000). Hence, the quantifiable functions (in 

terms of enzymes activities) must have been determined by additional factors that were 

distinct from the factors shaping the functional structure of communities; that is, soil 

quantifiable functions and genetic potential function appeared ‘decoupled’ during the 
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DW cycles. 

Nitrogen inputs condition drought-induced change in soil microbial functions 

Higher levels of nutrient availability correspond to a greater capacity of the soil to 

maintain its original biological functions following DW cycles (Morillas et al. 2015). 

Nitrogen deposition elevated spatial heterogeneity of soil microbial community (Li et 

al. 2018; Ling et al. 2017). Heterogeneity might enable a population to cope better with 

an uncertain future (i.e. drought stress), and cells can switch stochastically between the 

different expression states under this circumstance (Thattai and Van 2004). Stochastic 

gene expression confers a short-term strategy for survival of individuals that is able to 

re-populate a community after interferences (Shade et al. 2012), thus it is identified as 

a key ability for microbial community resistance to pulse stress. Therefore, it is well 

established that a increase in resistance of microbial functional genes was present in N-

amended soils (Figs. 5, S1). Resource allocation processes bring N and P acquisition 

into stoichiometric balance (Finzi et al. 2011; Ratliff et al. 2015). Soil phosphatase 

contributes to SOM dephosphorylation and nutrient mineralization (Sinsabaugh 1994; 

Spohn and Kuzyakov 2013), which supported that phosphatase plays an important role 

in coupling of CǃN and P availability. Thus, the resistance and resilience of soil 

phosphatase activities and corresponding gene (phoD and BPP) abundances were 

related to N addition (Figs. 5, S1-2). N addition can aggravate microbial C limitation 

(Chen et al. 2018), which would be attributed to increased recalcitrant organic matter 

(alkali insoluble fraction, or humin) through condensation reactions between mineral N 

and organic matter (Sollins et al. 1996). Such circumstance may increase the relative 

abundance of microbial species with K-strategy to play a greater contribution on 

decomposing SOM (Chen et al. 2014). Slow-growing K-strategists tend to be resistant 

but not resilient to stress (Guénon et al. 2013; Schimel et al. 2007). Thus, these 

fingdings could explained the negative effect of N inputs on resilience of functional 

gene abundances (Fig. 6). 

High nutrient availability decreases the synthesis of enzymes, a strategy that 

maintains metabolic balance and energy utilization efficiency of organisms under 
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repeated DW cycles (Landesman and Dighton 2011; Manzoni et al. 2014). These 

mechanisms could explain the negative effects of N inputs on the resistance of enzyme 

activities (Fig. 6). Gene resistance supports the recovering capacity (resilience) of 

enzyme activities, especially when considering that the increasing extracellular 

enzymes may be explained by the release of organics into the soil by cell lysis (Daou 

et al. 2016; Warren and Biochemistry 2016). Thus, N inputs have a positive effect on 

the resilience of enzyme activities (Fig. 6). Collectively, all these findings suggest that 

soil functions responded most strongly to the number of DW cycles, however, the level 

of N input increase the resistance and resilience of these functions to DW cycling stress. 

Resistance and resilience of soil functions contribute to crop yields 

The contribution of N inputs to crop productivity was found to be primarily caused 

by direct effects (Fig. 6) (Zechmeister-Boltenstern et al. 2011). Specifically, the model 

predictions also showed that both of the resistance and resilience of soil microbial 

functions positively contribute to the increased crop yields (Fig. 6). Short-term bursts 

in N inputs and microbial mineralisation caused by DW cycles accelerate the cycling 

of nutrients and energy via affecting soil microbial functions (Fig. 5) (Herrmann et al. 

2002; Schimel et al. 1996), and consequently favoring microbial and plant growth 

(Wang et al. 2010; Wang et al. 2012). This process can remedy the gap of nutrient 

utilisation and release (Canarini et al. 2015), supporting the long-term stability of crop 

production. For example, repeated DW cycles of soils often induces not only a 

substantial pulse in soil respiration but also a leaching of available P (Bünemann et al. 

2013). From an ecophysiological perspective, microbes allocate their resource stocks 

in order to increase the acquisition of nutrient and energy (Bloom et al. 1985). To meet 

their needs for available P, microorganisms are expected to sacrifice N to get more 

available P via change at the level of either expression of P-cycling related genes (such 

as phoD and BPP) or the catalytic efficiency of phosphatases (Allison 2005; Houlton 

et al. 2008; Luo et al. 2017). Thus, the increase of resistance and resilience of phoD and 

BPP gene abundances and phosphatase activities to DW cycles could steady P 

absorption of crops by mediating organic P mineralisation to bioavailable inorganic P 
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(H2PO4
- and HPO4

2-). 

The potential of soil microbial functions can be equated to the abundance of' 

functional genes, whereas the implementation of these functions is due to the presence 

of their catalytic activity (Sinsabaugh et al. 2010). Shift in enzyme synthesis under 

disturbed conditions can therefore result in overall similar functionality even when the 

microbial communities are different. The resistance and resilience of soil enzyme 

activities to DW cycles, therefore, have larger direct effects on crop yields than 

functional gene abundances (Fig. 6). Indeed, crop yields can benefit from both of high 

resistance and resilience of soil microbial functions, as showed in the model (Fig. 6). 

The effects of N inputs on those of microbial functions can be either positive or negative, 

mainly depending on the changes to enzyme activities (Fig. 6). Both of the resistance 

and resilience should be maintain at the optimal status in practice for high crop yields, 

which can be achieved by optimal N inputs. Thus, a balanced nutrient input to 

agroecosystems is presumably a good recommendation in maintaining soil 

functionality with consequences for high crop production under altering climatic 

conditions. Field-based evidence regarding to the optimal N input for targeting high 

microbial functional stability is needed to further demonstrate and support our predicted 

results.  

Soil biological indicators for soil functional capacity, including functional genes 

and activities of enzymes associated with C, N and P cycling, were shown to be 

sensitive to both N-input levels and DW cycles. Although the DW cycles had a 

stronger effect compared to N fertilization level, the N input was also important in 

explaining the variation in the resistance and resilience of functional genes and the 

activities of enzymes involved in C, N and P cycling. Both resistance and resilience 

of soil functional capacity positively contributed to crop productivity, which can be 

conditioned by the N input rate. The resistance and resilience of soil enzyme activities 

exhibited a larger contribution to crop yields compared with the functional gene 

abundance. In conclusion, N inputs not only meet the nutrient requirements of plant 

growth directly but also regulate and balance the resistance and resilience of microbial 
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functions in response to DW cycles, resulting in the regulation of crop production and 

ecosystem productivity. 
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Figure legends 

 

Fig. 1. Schema of the experimental design showing the treatments and sampling timelines. Soil 

moisture dynamics are shown along with a timeline and sampling for each treatment. Each drying-

rewetting (DW) cycle includes a drought period (14 days) and rewetting period (14 days). The 

hollow arrows represent the sampling points.  

 

Fig. 2. The CO2 efflux from soil depending on N fertilization in each moisture treatment during 

incubation. The DW0, DW140, DW280, DW470 and DW660 treatments were subjected to drying-

rewetting events and had N0, N140, N280, N470 and N660 fertilization levels respectively. The 

CW0, CW140, CW280, CW470 and CW660 were kept at constant moisture, and were fertilised at 

N0, N140, N280, N470 and N660 levels respectively. Asterisks indicate significant differences at p 

< 0.05 and p < 0.01 probability levels (* and **, respectively; ns, not significant). 

 

Fig. 3. Panel (A): Nonmetric Multidimensional Scaling (NMDS) analysis of soil C-, N- and P-

cycling related gene abundances for the Pre (pre-incubation), DW1 (the first drying-rewetting cycle), 

DW2 (the second drying-rewetting cycle) and DW3 (the third drying-rewetting cycle) treatments 

for N fertilization levels. The NIL and NDW indicate nitrogen-input levels and the numbers of DW 

cycles, respectively. The arrows (bottom left) of the NIL and NDW effects represents the direction 

of the effects of nitrogen-input levels and the numbers of DW cycles, respectively. The fungcbhIR 

and GH74 are the bio-markers of cellulose degradation; GH31 is the bio-marker of starch 

degradation; GH51 is the bio-marker of xylan (or arabinan) degradation; amoA-a and amoA-b are 

the bio-markers of nitrification; nifH is the bio-marker for N-fixation; narG, nirK, nirS, nosZ and 

norB are the bio-markers of denitrification; phoD and BPP are the bio-markers of organic P 

mineralisation. The lengths of the arrows indicate the effect intensities of the response parameters. 

The description of all these genes is presented in Table S1. Panel (B), Permutational Multivariate 

Analysis of Variance (PERMANOVA) comparing the main and interactive effects of nitrogen-input 

levels and the numbers of DW cycles on functional gene abundances (999 permutations). Asterisks 

(***) indicate significant differences at p < 0.001 probability levels. N0, N140, N280, N470 and 

N660 stand for the soils acquiring 0, 140, 280, 470 and 660 kg N ha-1 year-1 respectively. 

 

Fig. 4. Panel (A): Nonmetric Multidimensional Scaling (NMDS) analysis of soil C-, N- and P-

acquisition enzyme activities for the Pre (pre-incubation), DW1 (the first drying-rewetting cycles), 

DW2 (the second drying-rewetting cycles) and DW3 (the third drying-rewetting cycles) treatments 

for nitrogen (N) fertilization levels. The arrows (upper left) of the NIL and NDW effects represents 

the direction of the N-input levels and the numbers of DW cycles, respectively. The NIL and NDW 

indicate N-input levels and the numbers of DW cycles, respectively. The lengths of the arrows 
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indicate the effect intensities of the response parameters, including leucine amino peptidase (LAP), 

ȕ-1,4-N-Acetyl-glucosaminidase (NAG), phosphomonoesterase (PPN), Į-1,4-Glucosidase (Į-G), 

ȕ-1,4-Glucosidase (ȕ-G), ȕ-1,4-Xylosidase (ȕ-X) and ȕ-D-Cellobiohydrolase (CBH), all of which 

are presented in Table S2. Panel (B), Permutational Multivariate Analysis of Variance 

(PERMANOVA) comparing the main and interactive effects of N-input levels and the numbers of 

DW cycles on soil enzyme patterns (999 permutations).  Asterisks (***) indicate significant 

differences at p < 0.001 probability levels. N0, N140, N280, N470 and N660 stand for the soils 

acquiring 0, 140, 280, 470 and 660 kg N ha-1 year-1, respectively. 

 

Fig. 5. The heat map illustrates the main and interactive effects of nitrogen-input levels (NIL) and 

the numbers of DW cycles (NDW) on the resistance and resilience of individual soil C-, N- and P-

cycling related gene abundances and enzyme activities, and the sensitivities of individual gene 

abundance and enzyme activity to NIL and DWF. The gradient colors denote the F values, and the 

bluer the color, the bigger the F value. The fungcbhIR and GH74 are the bio-markers of cellulose 

degradation; GH31 is the bio-marker of starch degradation; GH51 is the bio-marker of xylan (or 

arabinan) degradation; amoA-a and amoA-b are the bio-markers of nitrification; nifH is the bio-

marker for N-fixation; narG, nirK, nirS, nosZ and norB are the bio-markers of denitrification; phoD 

and BPP are the bio-markers of organic P mineralisation. LAP, Leucine amino peptidase; NAG, ȕ-

1,4-N-Acetyl-glucosaminidase, PPN, phosphomonoesterase, Į-G, Į-1,4-Glucosidase, ȕ-G, ȕ-1,4 -

Glucosidase, ȕ-X, ȕ-1,4-Xylosidase; CBH, ȕ-D-Cellobiohydrolase. Asterisks indicate significant 

differences at p < 0.05, p < 0.01 and p < 0.001 probability levels (*, ** and ***, respectively; white 

fields, not significant). 

 

Fig. 6. Panel (A): Multiple Regression Analysis was employed to test the individual contribution of 

resistance and resilience of C-, N- and P-cycling related variables (including functional genes and 

enzyme activities) to crop yields; Panel (B): Structural equation modeling showed that the effects 

of anthropogenic N inputs on the resistance (RS) and resilience (RL) of soil microbial functional 

capacity (including C-, N- and P-cycling related microbial groups and enzyme activities) to DW 

cycles, which further contribute to crop yields. Continuous and dashed arrows indicate the positive 

and negative effects, respectively. Numbers following the included variables show the explained 

percentage of their variance by their predictors. Numbers on arrows are standardized path 

coefficients. The models fit the data well. Stars denote for significance at p < 0.05, p < 0.01 and p 

< 0.001 probability levels (*, ** and ***, respectively). 
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Fig. S1. The abundance of C-, N- and P-cycling genes, including amoA-a (archaeal ammonia 

monooxygenase gene), amoA-b (bacterial ammonia monooxygenase gene), nirK, nirS, norB, narG, 

nifH, nosZ, BPP (beta-propeller phytase gene), phoD, fungcbhIR, GH31, GH51 and GH74 (GH: 

glycoside hydrolase family), based on gene copy numbers that were quantified by quantitative 

PCR. Bars represent mean ± standard deviation (SD).
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Fig. S2. The activities of the C-, N- and P-acquisition enzymes, including leucine amino 

peptidase (LAP), ȕ-1,4-N-Acetyl-glucosaminidase (NAG), phosphomonoesterase (PPN), 

Į-1,4-Glucosidase (Į-G), ȕ-1,4-Glucosidase (ȕ-G), ȕ-1,4-Xylosidase (ȕ-X) and 

ȕ-D-Cellobiohydrolase (CBH). Bars represent mean ± standard deviation (SD).
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Fig. S3. The models show the overall changes in the resistance of gene abundances and enzyme 

activities we studied to DW cycles along the gradient of increased rate of N input. DW1, DW2 and 

DW3 stand for the first, second and third drying-rewetting cycles, respectively.
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Fig. S4. The models show the overall changes in the resilience of gene abundances and enzyme 

activities we studied to DW cycles along the gradient of increased rate of N input. DW1, DW2 and 

DW3 stand for the first, second and third drying-rewetting cycles, respectively. 
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Table S1. The primers used for quantitative PCR and corresponding amplification cycling 

conditions. 

 

Primer set 

Target 

gene 

Amplicon 

length (bp) 

Amplification 

efficiencies 

Amplification 

cycling conditions 
References 

CrenamoA23F (ATGGTCTGGCTWAGACG) 

CrenamoA616R (GCCATCCATCTGTATGTCCA) 
amoA-a 624 98–102%  

40 cycle (95 °C 60s, 60°C 5s, 

72°C 34s) 

Könneke et al. (2005); 

Long et al. (2012) 

Bac-amoA-1F (GGGGTTTCTACTGGTGGT) 
amoA-b 491 95–101%  

 40 cycle (95 °C 60s, 60°C 

5s, 72°C 31s) 

Rasche et al. (2011); 

Szukics et al. ( 2012) Bac-amoA-2R (CCCCTCKGSAAAGCCTTCTTC) 

nifHF (AAAGGYGGWATCGGYAARTCCACCAC) 

nifHRb (TGSGCYTTGTCYTCRCGGATBGGCAT) 
nifH 413 90–98%  

 40 cycle (95 °C 60s, 60°C 

5s, 72°C 34s) 

Yergeau et al.(2007); 

Morales et al. (2010) 

narG-f (TCGCCSATYCCGGCSATGTC) 
narG 110 101–105%  

40 cycle (95 °C 60s, 60°C 5s, 

72°C 32s) 

Kandeler et al. (2009); 

Bru et al. (2011) narG-r (GAGTTGTACCAGTCRGCSGAYTCSG) 

nirK876 (ATYGGCGGVCAYGGCGA) 

nirK1040 (ATYGGCGGVCAYGGCGA) 
nirK 515 95–100%  

40 cycle (95 °C 60s, 60°C 5s, 

72°C 34s) 

Bárta et al. (2010); 

Bru et al. (2011) 

nirSCd3aF (AACGYSAAGGARACSGG) 
nirS 425 99–104%  

 40 cycle (95 °C 60s, 60°C 

5s, 72°C 34s) 

Kandeler et al. (2009); 

Bárta et al. (2010) nirSR3cd (GASTTCGGRTGSGTCTTSAYGAA) 

nosZ-F (CGCTGTTCITCGACAGYCAG) 

nosZ-R (ATGTGCAKIGCRTGGCAGAA) 
nosZ 380 100–104%  

40 cycle (95 °C 60s, 60°C 5s, 

72°C 34s) 

Rich et al. (2003); 

Luo et al. (2017a) 

cnorBBF (AIGTGGTCGAGAAGTGGCTCTA) 
norB 372 93–97%  

40 cycle (95 °C 60s, 60°C 5s, 

72°C 34s) 

Yu et al. (2014); 

Luo et al. (2017a) cnorBBR (TCTGIACGGTGAAGATCACC) 

ALPS-F730 (CAGTGGGACGACCACGAGGT)  

ALPS-1101 (GAGGCCGATCGGCATGTCG)  
phoD 371 93–102%  

40 cycle (95 °C 60s, 60°C 5s, 

72°C 34s) 

Sakurai et al. 2008 

Luo et al. (2017b) 

BPP-F (GACGCAGCCGA YGAYCCNGCNITNTGG)  
BPP 186 94–99%  

40 cycle (95 °C 60s, 57°C 

30s, 72°C 45s) 

Huang et al. (2009); 

Cotta et al. (2016) BPP-R (CAGGSCGCANRTCIACRTTRTT) 

fungcbhIF (ACCAAYTGCTAYACIRGYAA) fungcbhIR    100       98–102%     40 cycle (94 °C 30s, 48°C 

45s, 72°C 90s) 

Edwards et al. (2008); 

fungcbhIR( GCYTCCCAIATRTCCATC) Kellner and Vandenbol (2010) 

GH31_350F (CAYCARTGYMGITGGGGNTA) 
GH31        980        95–100%  

 40 cycle (95 °C 45s, 50°C 

45s, 72°C 100s) 
Kellner and Vandenbol (2010) 

GH31_660R (TTRTCICCNCCCCARTGNCC) 

GH51_280F (AGNTGGCARTGGAAYGCNAC) 

GH51_350R (ATYTGRTCDATIGCYTGYTG) 
GH51        225 96–104%  

40 cycle (95 °C 45s, 50°C 

45s, 72°C 100s) 
Kellner and Vandenbol (2010) 

GH74_130F (TTYAARGTIGGIGGNAAYATG) 

GH74_280R (CCRTCRTAIGGICCNGCNCC) 
GH51        460   98–105%  

40 cycle (95 °C 45s, 50°C 

45s, 72°C 100s) 
Kellner and Vandenbol (2010) 

GH31, GH51 and GH74 stand for the glycoside hydrolase family 31, glycoside hydrolase family 51 and glycoside 

hydrolase family 74, respectively. BPP, amoA-a and amoA-b stand for beta-propeller phytase gene, archaeal and 

bacterial ammonia monooxygenase gene, respectively. 
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Table S2. Extracellular enzymes with corresponding commission number (EC), corresponding 

substrate, and the abbreviation used in this study.  

1  The enzymes involved in this cycling process 

2  4-MUF, 4-methylumbelliferyl

Cor. Cycle1 Enzyme Abbreviation Substrate EC 

C-cycling  

Į-1,4-Glucosidase ĮG 4-MUF2-Į-D-glucoside 3.2.1.20 

ȕ-1,4-Glucosidase ȕG 4-MUF-ȕ-D-glucoside 3.2.1.21 

ȕ-1,4-Xylosidase ȕX 4-MUF-ȕ-D-xyloside 3.2.1.37 

ȕ-D-Cellobiohydrolase  CBH 4-MUF-ȕ-D-cellobioside 3.2.1.91 

N-cycling 
Leucine amino peptidase LAP L-Leucine-7-amino-4-methylcoumarin 3.4.11.1 

ȕ-1,4-N-Acetyl-glucosaminidase NAG 4-MUF-N-acetyl-ȕ-D-glucosaminide 3.2.1.30 

P-cycling Phosphomonoesterase PPN 4-MUF-phosphate 3.1.3 
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Table S3. The fertilization management practices, including application rates and fertilizer types. 

 

Experimental 

 treatments 

Amount of 

nitrogen 

(kg·ha-1·y-1) 

Fertilization managements 

  Wheat season Rice season 

N (kg·ha-1) P2O5 (kg·ha-1) K2O (kg·ha-1) N (kg·ha-1) P2O5 (kg·ha-1) K2O (kg·ha-1) 

N0 0 0 75 90 0 90 90 

N140 140 50 75 90 90 90 90 

N280 280 100 75 90 180 90 90 

N470 470 200 75 90 270 90 90 

N660 660 300 75 90 360 90 90 

N fertilizer: Urea; P fertilizer: Calcium superphosphateand; K fertilizer: Potassium chloride. 

file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/?keyword=calcium
file:///C:/Program%20Files%20(x86)/Youdao/Dict/7.5.1.0/resultui/dict/?keyword=superphosphate
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Table S4. Soil physical, chemical and biological properties were measured before the start of 

microcosm experiment, and the crop yields also list in this table. 

Nitrogen pH EC NH4
+-N NO3

--N Alk-N AP AK SOM Total N DOC MBC MBN Yield (kg ha-1) 

treatments (H2O) (ms cm-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (g kg-1) (g kg-1) (mg kg-1) (mg kg-1) (mg kg-1) Rice Wheat 

N0 7.47a 0.23bc 0.86a 13.20c 102.13c 57.14a 90.98a 19.3b 0.84b 66.59c 310.41a 45.60b 5973c 3006c 

N140 7.34c 0.22c 0.98a 14.15c 111.23b 45.45b 85.29b 22.26a 1.02a 76.83b 271.78b 56.99a 6611c 3958c 

N280 7.40b 0.24b 0.73b 14.71c 112.24b 36.70c 71.35c 22.08a 1.00a 95.71a 187.66d 40.28c 7492b 5758b 

N470 7.28d 0.26a 0.63b 17.96b 121.30a 36.15c 64.73c 22.28a 1.01a 87.92a 206.77c 43.88bc 9088a 7948a 

N660 7.25e 0.26a 0.71b 25.45a 122.04a 38.33c 64.17c 22.75a 1.03a 91.76a 179.07d 35.72d 8947a 7025ab 

a Values show replicate plot means and the standard deviation of the mean. Values followed by a different 
lowercase letter indicate significant differences according to Duncan’s LSD test (p < 0.05). 
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Table S5. The main and interactive contributions of nitrogen-input levels (NIL) and numbers of 
DW cycles (NDW) on the variations of individual functional gene abundance. 

Gene Encoding protein Functional process 

   Significance level (Abundance) 

N-input level  
Numbers of 

DW cycles  
NIL×NDW 

amoA-a Ammonia monooxygenase Nitrification 10.23 ** 5.43 * ns 

amoA-b Ammonia monooxygenase Nitrification 49.55 *** 45.84 *** ns 

nifH Nitrogenase Fe protein Nitrogen fixation 13.43** 28.35 *** 3.65 * 

narG Nitrate reductase alpha Denitrification 13.72 ** 18.77 *** 3.89 * 

nirK Nitrite reductase (Cu) Denitrification 6.45 * 10.65 ** 5.33 * 

nirS Nitrite reductase (cdl) Denitrification 8.43 ** 24.64 *** ns 

nosZ N2O reductas Denitrification 13.43 ** 34.45 *** 5.34 * 

norB NO reductase Denitrification 10.55 ** 129.24 *** ns 

phoD Alkaline phosphomonoesterase Organic phosphorus mineralization 17.51 *** 8.98 ** ns 

BPP phytase Organic phosphorus mineralization 10.43 ** 88.28 *** 6.00 * 

fungcbhIR cellulolytic enzymes Cellulose degradation 4.32 * 14.43 ** 7.98 ** 

GH31 Į-glucosidases Starch degradation ns 106.76 *** 15.32 ** 

GH51 alpha-L-arabinofuranosidase Xylan sidechain (arabinan) degradation 10.95 ** 58.99 *** ns 

GH74 
Endoglucanase or putative 

xyloglucan-specific endo-b-1,4-glucanase 
Cellulose degradation 20.22 ** 170.40 *** 4.34 * 

GH31, GH51 and GH74 stand for the glycoside hydrolase family 31, glycoside hydrolase family 51 and glycoside 

hydrolase family 74, respectively. BPP, amoA-a and amoA-b stand for beta-propeller phytase gene, archaeal and 

bacterial ammonia monooxygenase gene, respectively.  

*, ** and *** indicate, P < 0.05, P < 0.01 and P < 0.001, respectively; ns: no significant.
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Table S6. The main and interactive contributions of nitrogen-input levels (NIL) and numbers of 

DW cycles (NDW) on the variations of individual functional gene abundance. 

Cor. Cycle Enzyme Functional process 

   Significance level (activity) 

N-input level  
Numbers of DW 

cycles  
NIL×NDW 

N-acq. 
Leucine amino peptidase Cleaving of peptide bonds in proteins 13.85 **  4.5 * ns 

ȕ-1,4-N-Acetyl-glucosaminidase Hydrolysis of chitooligosaccharides 13.25 ***  5.84 * ns 

P-acq. Phosphomonoesterase Cleaving of PO4
3- from P-containing OM 3.85 * 266.68 *** ns 

C-acq. 

Į-1,4-Glucosidase Hydrolysis of soluble saccharides 6.26 * 39.35 ***  3.89 * 

ȕ-1,4-Glucosidase Hydrolysis of cellulose 45.67 ***  79.93 ***  4.33 * 

ȕ-1,4-Xylosidase Hydrolysis of hemicellulose 12.73 ***  45.29 ***  ns 

ȕ-D-Cellobiohydrolase Hydrolysis of cellulose 16.92 **  22.90 ***  ns 

OM: organic matter; *, ** and *** indicate, P < 0.05, P < 0.01 and P < 0.001, respectively; ns: no significant.
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Table S7. The contribution of resistance and resilience of microbial functional groups and enzyme 

activities to crop yields based on a multiple regression model 

Model                                                                p value 

Yield = 79555×Resistance-50336×Resilience+154958 p < 0.001  

Yield = -48346×Resistance-4842×Resilience+33800 p < 0.001  

Yield = 30378×Resistance-30273×Resilience+2712 p < 0.001  

Yield = 8790×Resistance-15566×Resilience+10374 p < 0.001  

Yield = 91396×Resistance-2950×ResilienceL-71765 p < 0.001  

Yield = -70237×Resistance-6700×Resilience+75645 p < 0.001  
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