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Abstract This paper presents a stabilization frame-

work integrated with the estimation of the terrain in-

clination to balance a humanoid on the changing slope

as an extension to our previous study [9]. In this pa-

per, the estimation of the terrain inclination is im-

proved for walking in place on an inclination-varying

slope. A passivity based admittance control utilizes

the force/torque sensing in feet to actively regulate

the impedance at the center of mass to stabilize the

robot. The logic-based inclination estimation algorithm

uses the feet to probe the terrain and deals with the

under-actuation. The equilibrium set-point in the ad-

mittance control is regulated based on the detected in-

clination. The effectiveness of the control framework is

validated on the humanoid robot COMAN and demon-

strated by estimating the terrain inclination, coping

with the under-actuation phase, adapting to the slope

with changing inclination during both standing and

walking. Experimental data are analyzed and discussed,

and the future work is suggested.

Keywords Stabilization; Compliance Control; Ad-

mittance Control

1 Introduction

Humanoids that interact in an uncertain environment

demand compliance at the contact interface to maintain
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stable interactions. Compliance can mitigate collision

forces, dissipate undesired energy, and thereby warrant

stable execution of tasks [3]. Meanwhile, the accompa-

nied passivity property of compliance is essential for

both manipulators with immovable bases [13] [1] and

walking robots [4] [5] to be self-stable.

The compliant property can be exploited for balanc-

ing the humanoids because the robot with compliance

naturally deforms under external forces, therefore the

magnitude of impacts is reduced. This allows more time

for the robot to react and attenuate undesired energy

delivered by the disturbances. The compliant behav-

ior can be realized through different control paradigms

based on impedance or admittance schemes. The real-

ization using the impedance control approach requires a

system to have fully torque controlled actuators such as

the Sarcos humanoid [5], [19], and the DLR-biped [14],

[15]. For the balance recovery, the common ground of

these torque control based works is the use of Cartesian

impedance control at the center of mass (COM), which

generates desired wrench and distributes contact forces

over the support polygon by controlling the joint torque

tracking.

The admittance based scheme implements compli-

ance control for the systems with position controlled

actuators and force/torque sensors at the end-effectors.

The past works demonstrated the effectiveness of com-

pliance particularly for absorbing landing impacts and

adapting terrain inclination. Kim et. al [6] proposed

PI control to superimpose an angular compensation of

the ankle joint using excessively filtered inclination er-

ror measured from the torso of the robot. The method

aimed at handling slow variation of the floor inclination,

but how to deal with the foot titling was not yet dis-

cussed. On the WL-16R biped locomotor, Sugahara et

al. used foot compliance control to decrease the landing
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Fig. 1 The compliant humanoid robot COMAN.

impact, and applied PD control with normalized gains

to compute the translational and angular acceleration

of the waist in order to generate the positional compen-

sation [21]. Their experiments demonstrated successful

adaptation to a surface with a constant inclination up

to 8◦. However, it was not shown further if the method

could adapt to a changing slope. Hashimoto at al. pro-

posed predictive attitude control for WL-16RII robot,

which integrated zero moment point (ZMP) errors to

compute the compensation for the pitch and roll an-

gles [2]. The integral control was only applied for a fixed

time window and reset at each footstep.

Heuristic methods inspired by humans [11] [17], such

as the ankle and hip strategies, were introduced as a

bio-inspired approach for the stance balancing control.

The work in [12] used virtual models to synthesize the

ankle and hip strategies. Other engineering techniques

such as linear quadratic regulator (LQR) and integral

control were also introduced to resemble the ankle and

hip strategies [18].

To the best of our knowledge, the above works pre-

sumed that the feet of the robot were always firmly flat

on the ground, and dealing with the under-actuation

during foot tilting was not discussed. This problem was

overlooked in the past, most probably because the ex-

ternal push applied by the human operator was insuffi-

cient to create the under-actuation for these adult-size

humanoids. The scope of our paper focuses on the cases

where the disturbance is large enough to create under-

actuation phase but not yet to completely tip over the

robot. For the cases out of our scope, where the distur-

bance is extremely large to topple the robot from the

standing posture, other strategies, such as the stepping

strategy, shall be adopted [20] [7] [16].

The novel contribution of this papers is a new sta-

bilization framework for balancing humanoids in the

stance posture under medium perturbations. It consists

of:

Table 1 Parameters used in the admittance control

m: mass of the system
l: nominal pendulum length from COM to pivot
Ic: inertia tensor around COM
I: inertia tensor around pivot I = Ic +ml2

θd: desired motor position reference
θs: angular deflexion due to resultant elasticity
q0: the equilibrium position of the pendulum
q: real link position of the pendulum
Ks: resultant physical stiffness around pivot
B: real viscous coefficient around pivot
Kd: desired spring constant of the impedance
Bd: desired viscous coefficient of the impedance

1. The compliance controller with steerable equilib-

rium to accommodate the inclination varying slope;

2. The estimation of the terrain inclination based on

the integration of sensory data from the inertial

measurement unit (IMU), the kinematics of the

robot, and the foot-ground contacts.

The compliance controller is based on an admittance

control approach using the force/torque feedback in the

feet to modify the COM position references for achiev-

ing the desired compliance and passivity. Compared to

our previous study [9], the presented work here pro-

vides more rigorous formulation of the overall control

principle, and significantly extends more experimental

validations, including the implementation of walking in

place on an inclination varying platform. The terrain in-

clination estimation algorithm is improved to be more

generic for both standing and walking scenarios by com-

bining the estimation from each foot depending on the

support phases. All the control algorithms were vali-

dated on the lower-body prototype of the COmpliant

HuMANoid (COMAN) robot.

The paper is organized as follows. Section 2 presents

the compliance control using the passivity based ad-

mittance scheme, elaborates the principles of the ter-

rain inclination estimation, and delineates the control

framework. Section 3 is the experimental validations of

the inclination estimation, the comparison study of the

stabilization effects, and the stabilization of standing

and walking on the slope with changing inclination. In

Section 4, we discuss the limitations of the algorithms.

We conclude the study and suggest future work in Sec-

tion 5.

2 Control Principles

Fig. 1 shows the kinematic configuration and the allo-

cation of stiff/compliant joints of the whole-body CO-

MAN. The compliant joint is made of series elastic actu-

ator (SEA). COMAN has 6 degrees of freedom (DOFs)

in each leg, 3 DOFs in the waist, 4 DOFs in each arm,
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Fig. 2 Simplified model for admittance control (sagittal
plane).

and 2 DOFs of a parallel mechanism in its neck. It is an

upgrade version based on the compliant leg prototype

in [22]. More technical details of the COMAN design

can be found in [23]. The used parameters in the fol-

lowing formulation and figures are listed in Table 1.

2.1 Compliance based Stabilization Control

In the control formulation, the origin of reference frame
∑

B is at the midpoint of two horizontal projections of

ankle joints. Note that
∑

B is a local frame virtually

attached at the polygon of support formed by two feet.

The robot is simplified as a single rigid body mounted

on the top of an inverted pendulum with mass m and

moment of inertia Ic around the COM, as shown in

Fig. 2(a). When the robot stands on a changing slope,
∑

B moves together with the virtual polygon whereas a

world coordinate
∑

W is constantly stationary. Let kp
and ks be the stiffness at the COM level contributed by

the PD gains from the motor controllers and the intrin-

sic joint elasticity respectively. Hence, the equivalent

torsional stiffness Ks at the COM is
kpks

kp+ks
in

∑

B .

It shall be noted that the formulation here is done in

the polar coordinate. Therefore, the rotational motion

around x axis corresponds to translational displacement

in the lateral plane, while the rotational motion around

y axis corresponds to translational displacement in the

sagittal plane, and vice versa.

Fig. 3(a) and Fig. 3(b) show the experimental iden-

tification of stiffness and damping respectively using

least square fitting. The stiffness are 2822 N·m/rad and

217 N·m/rad around x and y axis respectively. The

damping ratios are 0.27 and 0.072 around x and y axis

respectively. Given the inertia and identified stiffness,

these damping ratios correspond to the viscous coeffi-

cients of 47 N·m/(rad/s) and 3.5 N·m/(rad/s) around

x and y axis respectively. These identified parameters

were obtained at the neutral standing configuration
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Fig. 3 Identification of torsional stiffness and damping.

from the lower-body COMAN which was available dur-

ing the time of conducting the experiments.

Denote by α the inclination of the terrain surface.

The dynamics of this 1-DOF model in Fig. 2(a) is

Iq̈ = τext + τg +Ks(θd − q) +B(θ̇d − q̇), (1)

where τext is the resultant torque created by external

forces or torques around the local frame
∑

B , and τg is

the gravitational torque

τg = mgl sin(q + α). (2)

The advantage of formulating the controller in a

polar coordinate is that the external disturbance as a

wrench, namely force and torque, will appear in a uni-

fied term as the net torque τext in reference frame
∑

B .

As shown in Fig. 2(b), the desired spring Kd and

damping Bd are the property of interest to emulate,

but inertia tensor of the robot is not influenced by our

controller. In other words, the desired inertia is always

the same as that of the physical system Id = I, so the

controller does not shape the inertia property.

Define by q0 and q̇0 the position and the velocity of

the desired equilibrium set-point of the pendulum. The

dynamic equation of this desired system is

Iq̈ = τext +Kd(q0 − q) +Bd(q̇0 − q̇). (3)
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If the net torque exerted by the gravity and spring

deflexion is equal to the desired torque defined by the

virtual spring damper system such as

τg +Ks(θd − q) +B(θ̇d − q̇) = Kd(q0 − q) +Bd(q̇0 − q̇)

(4)

then these two systems appear to have the same dy-

namic response at the COM level.

Note that the term ‘Ks(θd−q)+B(θ̇d−q̇)’ in (4) im-

plies the feasibility of controlling the torque by changing

reference θd to satisfy (4) via active regulation of the

spring deflexion.

Rearrange (4), we obtain the relation between the

reference position θd based on the real COM position,

θd =
Kd

Ks

q0 +
Ks −Kd

Ks

q +
Bd −B

Ks

(q̇0 − q̇)−
τg

Ks

. (5)

Denote by τ the applied torque in
∑

B ,

{

τ = −Ksθs,

q = θd + θs.
(6)

So q and q̇ can be obtained as
{

q = θd −
τ
Ks

,

q̇ = θ̇d −
τ̇
Ks

.
(7)

Substitute (7) into (5), yields

θd =
Kd

Ks

q0 +
Bd −B

Ks

q̇0 +
Ks −Kd

Ks

θd −
Bd −B

Ks

θ̇d

−
Ks −Kd

K2
s

τ +
Bd −B

K2
s

τ̇ −
τg

Ks

.

(8)

The above is the formulation in a continuous time

representation. In a discrete-time system, the desired

angular velocity θ̇d can be substituted by the derivative

of the ideal reference using the implicit Euler method

θ̇d =
θd(i)− θd(i− 1)

T
. (9)

Substitute (9) into (8), the desired reference angle

θd is derived in a discrete form, given the feedback τ(i)

and the sampling time T at the i th control loop,

θd(i) =
T

KdT +Bd −B
A(i) +

Bd −B

KdT +Bd −B
θd(i− 1),

(10)

where A is an intermediate term

A(i) = Kdq0(i) + (Bd −B)q̇0(i) +
Kd −Ks

Ks

τ(i)

+
Bd −B

Ks

τ̇(i)− τg(i).

(11)

For a rigid actuation with no physical compliance in

the gear transmission, a variant of admittance formula

can be obtained by setting Ks → ∞ in (11), and the

resulting A becomes

A(i) = Kdq0(i) + (Bd −B)q̇0(i)− τ(i)− τg(i). (12)

If the robot stands on a slope of inclination α(i), the

gravity torque used in (11) and (12) is approximated by

τg(i) = mgl sin(θd(i− 1)−
τ(i)

Ks

+ α(i)). (13)

Equation (10) is the general equation to achieve the

admittance control for a 1-DOF system. Equation (11)

can be implemented for the system with intrinsic elas-

ticity, whereas (12) is suitable for a classical actuation

system with rigid transmission.

Our proposed admittance formula requires the force

and torque sensor feedback from feet to compute the

resultant torque created by the ground reaction forces.

This forms the input of our admittance scheme which

subsequently generates a modification of the reference

position as an output that deviates from the desired

set-point of equilibrium. Therefore, the reaction torque

applied to the system is indirectly controlled by mod-

ulating the COM reference. In reality, the real sys-

tem undoubtedly respects the physical causality of

‘force→motion’ for replicating the desired behavior of

a spring-damper system, and the admittance controller

functions as a way of rendering force and torque.

The level of compliance is adjusted by the desired

stiffness, and the passivity is warranted by introducing

sufficient active damping. As suggested by the identified

damping ratios shown in Fig. 3(b), the real system is

passive but under-damped. Hence, imposing additional

controlled viscosity can effectively increase the damping

ratio, and keep the system passive and stable.

2.2 Estimation of the Terrain Inclination

Without the visual perception of the environment,

the physical foot-ground contact is the only potential

means for a robot to perceive the terrain information

in a similar manner to haptic exploration. The proprio-

ception data computed from the measurement of IMU

and the kinematics of the robot from joint encoders are

combined together with the force/torque sensors in the

feet to determine the terrain inclination.

In the literature, most balancing controllers as-

sumed by default that the feet were perfectly aligned

with the ground surface. However, this is not a generic

scenario. Fig. 4 shows different contact cases to illus-

trate the relation between the inclination of the foot
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Fig. 4 Exploration of terrain inclination via foot-ground con-
tact.

and the terrain. We find that it is critical to apply differ-

ent control strategies depending on the contact phases

in order to guarantee a stable control action, because

stationary feet correspond to a fully actuated phase,

whereas the tilting feet belong to the under-actuated

phase. Hence, in general, the control law derived for

one case does not apply to another.

The real feet of the robot are not ideally rigid. Fig.

4 illustrates unavoidable foot deformation under a con-

siderable load during heel contact, particularly when

the ground reaction forces act at the edge of the foot.

Fig. 4 also shows a straightforward correlation of foot

and terrain inclination, depending on the center of pres-

sure (COP) location in the foot. We observe that when

the COP resides at the narrow strip near the edge of

the foot, the inclination of foot and terrain no longer

coincides with each other due to the deformation.

Therefore, the foot is only a valid probe of the ter-

rain inclination when it is loaded properly on the sur-

face, hence logical judgments are necessary to be intro-

duced into the terrain inclination estimation for clas-

sifying different foot-ground contacts. In the following

formulation, let us define α
l,r
f , αl,r

t and α̂t as the direct

inclination of the foot, the estimated inclinations of the

foot and the terrain respectively. The superscripts l, r

are used to denote the left and right foot respectively,

and the subscripts f, t stand for foot and terrain.

The orientation of the feet with respect to the world

frame are computed by the IMU measurement and the

kinematics calculated from all joint encoders

R
l,r
f = R

IMU
Rl,r, (14)

where R
IMU

is the orientation of the IMU computed

from the pitch and roll angles, excluding the yaw an-

gle which is the heading in the earth magnetic filed;

and Rl,r are the left/right foot orientations with respect

to the waist computed by the forward kinematics. The

IMU sensor is mounted on the waist of the robot.

Let kl
f and kr

f be the unit vectors along z axis in the

local frame of left/right foot
∑l,r

f , these normal vectors

with respect to the world frame are

kl,r
w = R

l,r
f kl,r

f . (15)

The inclination αx,y around x, y axis of each foot is

{

αl,r
x = atan2

(

−(kl,rw )y, (k
l,r
w )z

)

,

αl,r
y = atan2

(

(kl,rw )x, (k
l,r
w )z

)

.
(16)

To eliminate the incorrect estimations during the

under-actuation phase, the estimated terrain inclina-

tion αt of each foot is updated by the sampled incli-

nation of the foot αf only when the COP in the foot

exists in a constrained region, as shown by the dotted

area in Fig. 4, and the vertical ground reaction force Fz

is greater than the threshold Fmin
z . The reason is that

under these conditions the bending deformation of the

foot structure is negligible, hence the foot orientation

can be considered the same as the ground orientation.

Note that this concept is different from the conventional

definition of the safety margin in the ZMP based walk-

ing control.

{

αt(i) = αf (i), if X ∩Y ∩ F,

αt(i) = αf (i− 1), otherwise,
(17)

where






X =
{

x : x−
cop ≤ xcop ≤ x+

cop

}

,

Y =
{

y : y−cop ≤ ycop ≤ y+cop
}

,

F = Fz > Fmin
z .

(18)

These boundary limits of X and Y were experi-

mentally identified for each foot in a straightforward

manner. Take the x axis for example, we applied very

static external force along the positive direction of x

axis, and increased the force gradually until the rear

edge of the foot lifted up with a visible clearance from

the ground surface, e.g. 1-2 mm. The measured COP lo-

cation was then considered as one boundary limit. The

same procedure was repeated several times to obtain

an average value, and was the same for other axial di-

rections. These boundary values are: x−
cop = −0.03 m,

x+
cop = 0.10 m, y−cop = −0.04 m, y+cop = 0.04 m.

The threshold of the force/torque sensor in foot was

set as Fmin
z = 10N for keeping away from sensor noise

and the non-zero readings while foot was in aerial phase.

However, it should be noted that the measurable values

of xcop and ycop were confined by the real physical di-

mension of the foot (Fig. 4), but not by the thresholds

used in the inclination estimation (18).

The proposed logic condition X ∩Y ∩F suggests a

firm foot placement such that αt = αf is the most

probable case. The estimation αt holds its previous

value, if X ∩Y ∩ F is not satisfied. In other words, αt

relies on its history if no reliable detection is available.

For instance, when feet tilt, the foot inclination should

not be assigned to the estimation of terrain inclination,

so in this case αt 6= αf .
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By classifying the foot-ground contact into different

situations as in (14) to (18), we obtain the terrain incli-

nation estimation α
l,r
t from the left and right foot re-

spectively. Then, depending on the foot support phases,

i.e. left/right single support phase or double support

phase, the overall estimation α̂t of the terrain inclina-

tion is updated based on the support phases determined

by the vertical ground contact forces:















α̂t(i) = α
l
t(i), if F

l
z > Fmin

z ∧ F r
z < Fmin

z ,

α̂t(i) = α
r
t (i), if F

r
z > Fmin

z ∧ F l
z < Fmin

z ,

α̂t(i) = 0.5 · (αr
t (i) +α

l
t(i)), if F

l,r
z > Fmin

z ,

α̂t(i) = α̂t(i− 1), otherwise.

(19)

In other words, when the left foot is in contact with

the ground, i.e. F l
z > Fmin

z and F r
z < Fmin

z , the overall

terrain inclination α̂t is estimated from the left foot αl
t,

and vice versa. When both feet are in good contact with

the ground, i.e. F l,r
z > Fmin

z , then α̂t is the average of

the estimations from both feet.

It should be noted that this logical judgment in-

troduces discontinuous values into α̂t, when the foot-

ground interaction is changing. Therefore, for each esti-

mation, a first order low-pass filter is applied. Thus the

high frequency component introduced by the disconti-

nuity in α̂t is eliminated to obtain smoothly filtered es-

timation α̂
filter
t without causing unstable oscillation of

the equilibrium set-point in the compliance controller.

Compared to an over simplified approach where the

inclination of terrain is regarded the same as that of

the feet, where αt(i) = αf (i) without the logic condi-

tion (18) to delineate different scenarios of foot-ground

contact, our experimental comparison shows that our

proposed algorithm of using α̂
filter
t from (17), (18),

and (19) was very useful to prevent false estimations of

the terrain inclination, especially when there were slight

deformations of feet due to the ground reaction forces

acting on the edges of the feet, or during the under-

actuation phases when feet were rotating around their

edges. Moreover, the integration of compliance control,

as it will be shown in Section 2.3, produced compli-

ant and stable of foot-ground contact thus in turn war-

ranted a better estimation for (19). This difference will

be shown by the comparison study in Section 3.3, and

can also be seen from the accompanying video.

2.3 Control Framework

Suppose the feet of the robot are firm on the terrain sur-

face, namely the fully actuated phase, then balancing

on the changing slope simply requires the equilibrium

point in the admittance controller to move in the di-

rection opposite to the foot inclination. Though in fact,

z
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Fig. 5 Adaptation to inclined surface (a) wrong action, (b)
correct action.

z

x

y

ddd
zyx ,,

+

+

 

 

 

Fig. 6 Projection of planar motions to the spatial motion.

this is not always valid, as suggested in Fig. 5 where

the foot and the floor surface are not aligned.

Once the feet rotate, the under-actuation phase

emerges such that the torque around the edge is always

zero. If the robot continues steering the equilibrium op-

posite to the foot inclination as in the fully actuated

phase, then a larger torque will be produced, which in

turn tilts the foot even more. Consequently, this in-

creasing foot inclination will be sensed by the feedback

loop, which misleads the controller to produce an even

larger ankle torque, as shown by the red illustration

of torque in Fig. 5(a). All these co-actions constantly

inject more energy into the system with the similar ef-

fect of positive feedback. As a result, the system will be

unstable once the under-actuation phase is triggered.

Our study showed that the correct control action

to balance on an inclination varying slope was to adapt

the equilibrium set-point only to the terrain inclination,

as shown in Fig. 5(b), rather than the foot inclination.

Hence, the estimation of terrain inclination α̂
filter
t shall

be used to update the set-point q0 in (10) and (11).

Therefore, during the under-actuation, the whole robot

holds the same equilibrium point, behaves as a passive

spring-damper system, and actively dissipates excessive

energy until the feet conform back to the terrain sur-

face. Hence, the passivity of the system is constantly

guaranteed. Certainly, in this paper, we discuss only

the cases where the disturbance is moderate and not

large enough to completely tip over the robot.
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Fig. 7 Control framework for the stabilization on a slope
with changing inclination.

The equilibrium point of the desired spring-damper

system is updated with respect to the base frame
∑

B

by

q0 = −α̂
filter
t , (20)

as illustrated in Fig. 5(b). q0 is the 2D vector that con-

tains the inclination in the sagittal and lateral planes,

and is substituted into (11).

In
∑

B , denote by a = [0, 0, 1]T the unit normal

vector, and by b the unit vector along the updated

equilibrium point. The element of b is calculated by











bz = cos
(

atan2(
√

(tan q0,x)2 + (tan q0,y)2, 1)
)

,

bx = bz · tan q0,y,

by = bz · tan(−q0,x).

(21)

In
∑

B , according to the adjusted equilibrium, the

orientation of the torso is compensated as

Rtorso = Rrodrigues(n, ϕ) (22)

in order to keep the upper body in an upright posture

for the steady state. The intermediate variables are







n = a×b

‖a×b‖ ,

ϕ = acos
(

a·b
‖a·b‖

)

,
(23)

where n is the unit vector around which the angular

rotation of ϕ is performed, and Rrodrigues is Rodrigues’

rotation formula.

The tangential components of the resultant torque

in
∑

B are computed by

τx,y = (τ l + τ r + rfl × fl + rfr × fr)x,y , (24)

where τl, fl and τr, fr are the force and torque vectors

measured by the F/T sensor in left and right foot re-

spectively, and rfl and rfr are the position vectors from

the origin of
∑

B to the origins of the F/T sensor in the

left and right foot respectively.
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Fig. 8 Experiment I: sagittal inclination estimation on the
flat ground.

The 1-DOF admittance controller is applied in a de-

coupled manner around the x, y axis separately in the

spherical coordinate as shown in Fig. 6, since it is de-

rived in a rotational form. The feedback variables from

(20) and (24) are substituted into (10) to obtain de-

sired rotational reference position θxd and θ
y
d , where the

superscripts x, y indicate that the variables are defined

around the x, y axes. Then, the corresponding spatial

COM reference position in the Cartesian coordinate is

computed as






zd = l · cos(atan2(
√

(tan θxd)
2 + (tan θyd)

2, 1)),

xd = z · tan θyd ,

yd = z · tan(−θxd).

(25)

To balance in the standing posture, the desired po-

sition and orientation of the feet are constant in
∑

B .

The desired parameters, such as the torso orientation

from (22), the COM position from (25), the constant

position and orientation of the feet are the inputs of

the COM based inverse kinematics. Details of the COM

based inverse kinematics can be found in [8]. The out-

puts are the joint position references for the on-board

controllers embedded in the robot.

Fig. 7 shows the control framework. The central

module is the terrain inclination detection that esti-

mates the inclination of the slope and modulates the

equilibrium. The updated equilibrium is used in the

stabilization module for keeping the COM’s projection

at the origin of the support polygon, and also in the

attitude compensation for keeping the torso upright.

3 Experiments

To evaluate the proposed control framework, a series of

experiments were designed to validate the effectiveness

in an increasing complexity. The experimental videos

are available in the supplementary materials. The ex-

periments are as follows:
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Fig. 9 Experiment I: lateral inclination estimation on the
flat ground.
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Fig. 10 Experiment II: COP responses without/with stabi-
lization after a constant push.

1. Validation of terrain inclination estimation involv-

ing the under-actuation phase;

2. Comparison study of disturbance rejection without

and then with the stabilization control;

3. Comparison study of stabilization against an im-

pact without and then with the conditional logic

judgment in the terrain inclination estimation;

4. Standing stabilization on the slope with changing

inclination in both sagittal and lateral planes;

5. Walking in place on the slope with changing incli-

nation in sagittal and lateral plane respectively.

The control parameters used for the experiments

are as follows. For standing stabilization, the cutoff

frequency of the low-pass filters was 5 Hz for filter-

ing α̂t; the desired stiffness and viscous coefficient were

K
y
d = 110 N·m/rad, By

d = 50 N·m/(rad/s) around the y

axis (sagittal plane), andKx
d = 225 N·m/rad, Bx

d = 135

N·m/(rad/s) around the x axis (lateral plane). For

walking in place, the cutoff frequency for the lateral

inclination was reduced to 2 Hz due to the fluctuation

of estimated inclination during the change of support

foot; the desired stiffness and viscous coefficient were

K
y
d = 110 N·m/rad, By

d = 80 N·m/(rad/s) around the y

axis (sagittal plane), andKx
d = 800 N·m/rad, Bx

d = 400

N·m/(rad/s) around the x axis (lateral plane).

3.1 Experiment I

The first experiment validated the accuracy of the ter-

rain inclination estimation. The robot was placed on a

flat ground so the real terrain inclination shall be close

to zero. Constant and impulsive force disturbances were

applied in the sagittal and lateral plane respectively.

During the constant disturbance, the robot was pushed

until the feet tilted more than 5◦ and the corresponding

COP moved to the edge of support foot, as marked by

the under-actuation phases in Fig. 8 and Fig. 9.

Both the inclination estimation and the COP mea-

surement are included in Fig. 8 and Fig. 9 to show the

change of α̂filter
t related with the COP. When the COP

moved out of the threshold defined in (18), the feet

were no longer in firm contact with the ground. There-

fore, the estimation α̂
filter
t was no longer updated, and

differed from the direct foot inclination αf . We found

that (17) was particularly effective, because during the

under-actuation using low-pass filtering could not re-

solve the problem of a false estimation. On the contrary,

the conditional judgments proposed in (18) retained the

reasonable past estimation, discarded the improbable

value when feet were not aligned on the terrain surface,

and continued updating once (18) was satisfied.

The discontinuity introduced by the discrete update

in (17) can be smoothed by low-pass filters, the data in

Fig. 8 and Fig. 9 show the smoothly filtered estima-

tions. For the experiments done on the lab floor, the

average estimation of the sagittal inclination was −1.2◦

with standard deviation of 0.69◦, and the average esti-

mation of the lateral inclination was −0.66◦ with stan-

dard deviation of 0.71◦.

3.2 Experiment II

The second type of experiments examined the effec-

tiveness of the compliance based stabilization. In the

comparison study, the robot was pushed statically by

a constant force until the COM was placed at approxi-

mately 0.1 m, then the robot was released and fell back

freely. The steady state equilibriums for the x, y direc-

tions were 0.03 m and 0 m respectively.

The top figures in Fig. 10 show the oscillations of the

COP after the free landing. Without the stabilization,

the robot rocked back and forth, left and right due to

the ground impacts. The oscillation motion around the

edge of the feet can be indicated by the saturated COP

measurements at the maximum values. These undesired
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Im pact 

  

(a) Without the logic based judgment in the estimation of the terrain inclination.

Im pact 

  

(b) With the logic based judgment in the estimation of the terrain inclination.

Fig. 11 Experiment III: comparison of the terrain inclination estimation for stabilizing against an impact (time spaced 1/6 s
since 2nd snapshot).

responses lasted for more than 4 − 6 s in sagittal and

lateral planes. In contrast, these impacts were properly

absorbed and damped out within 1 s in both cases with

the active stabilization enabled, as shown by the bot-

tom figures in Fig. 10.

3.3 Experiment III

The comparison study here used an impact test to val-

idate the effectiveness of the conditional judgment (17)

and (18) in the terrain inclination estimation. A 5 kg

weight was suspended with a pendulum length of 0.75

m. The initial angle of launching the weight was 25◦, the

final angle at the instant of impact was 5◦. Therefore,

the velocity of the weight converted from the potential

energy at the instant of impact was 1.15 m/s. Both im-

pact instants are aligned at the 0.5 s and marked by

vertical lines in Fig. 12.

Fig. 11(a) shows the snapshots of the robot’s re-

sponse without the logic-based terrain estimation, and

Fig. 12(a) shows the corresponding COP response and

the inclination estimation. Without the conditional

judgment, α̂t = αf was always assumed, so that the

robot misinterpreted the foot inclination as the terrain

inclination during the under-actuation phase. On this

false assumption, the robot tilted up feet to adapt to a

fictitious slope as if it stood on an inclined surface, as

shown by the 5th snapshot in Fig. 11(a). In Fig. 12(a),

during 0.6−1.4 s, the COP was at the edge of rear feet,

the false inclination estimation was non-zero whereas

the real ground was actually flat. Therefore, the over-

tilting of the feet elongated the under-actuation phase

and the robot overthrew itself while falling back after

1.4 s, as shown by the forward falling in Fig. 11(a) and
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Fig. 12 Experiment III: estimation of foot/ground inclina-
tion and the COP response without (a) and then with (b) the
logic-based terrain estimation.

the drastic shift of the COP from the rear edge to the

frontal edge of the feet in Fig. 12(a).

In contrast, Fig. 11(b) shows a stable reaction in

response to the same impact. When the feet were ro-

tating around the rear edge as indicated by the mini-
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(a) Adapting to an inclined slope in the sagittal and lateral
plane respectively.

(b) Balancing on a slope with changing inclination in both
sagittal and lateral planes.

Fig. 13 Experiment IV: balancing on an inclination varying
slope.

mum COP readings in Fig. 12(b) during 0.6−1.2 s, the

logic-based terrain estimation ensured that the robot

kept the most recent and reliable estimation of terrain

inclination which was almost zero during this under-

actuation phase. In this case, the whole system with

the desired stiffness Kd and damping Bd guaranteed

the passivity property by keeping the same equilibrium

set-point in the admittance controller and by constantly

dissipating the excessive energy delivered from the im-

pact. Introducing the proposed conditional judgment in

terrain estimation was straightforward and effective to

prevent the feet from over-tilting, so the robot could re-

gain full-actuation phase as soon as the feet were back

in firm contact with the ground.

3.4 Experiment IV

The 4th experiment was a balancing task on a platform

with the sagittal and lateral inclination disturbances.

Fig. 13(a) qualitatively shows how the robot adapts to

the inclined surface in the sagittal and lateral plane

separately, and Fig. 13(b) displays the balancing per-

formance on the platform with inclination disturbances

in both sagittal and lateral planes.

The terrain inclination had an estimated amplitude

of 5◦ around x axis, and of 8◦ around y axis from the

estimation algorithm, as shown by the top figure in Fig.

14. The control algorithms allowed the robot to adapt
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Fig. 14 Experiment IV: inclination estimation and torso ori-
entation during inclination disturbance in both sagittal and
lateral planes.
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Fig. 15 Experiment IV: responses of COM and COP during
inclination disturbance in both sagittal and lateral planes.

to the inclined surface and to maintain the torso up-

right. The orientation of the torso had variations within

approximately 2◦, as shown by the bottom figure in Fig.

14. Unfortunately, our control system was not equipped

with an additional IMU for measuring the real orienta-

tion of the platform for the comparison with the esti-

mation. However, the results were reasonable since the

first experiment also served as benchmarking for the

accuracy of the estimation.

Fig. 15 shows the responses of COM and COP dur-

ing these inclination disturbances. The horizontal pro-

jection of COM was always within the size of the sup-

port polygon formed by two feet. Without the adap-

tation algorithm, the robot was not able to stand on

the changing slope because the horizontal projection

of COM would inevitably go out of the support region

even before the inclination reached the amplitude of 8◦

around y axis during these trials.

3.5 Experiment V

In addition to the standing stabilization, a preliminary

investigation was conducted on the implementation of
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(a) Walking in place without the stabilization.
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(b) Walking in place with the stabilization.

Fig. 16 Experiment V: comparison study of the stabilization
effect during walking.

the proposed stabilizer for walking. The applied walking

pattern was generated based on the COM state regula-

tion and more details can be referenced in [10]. Walking

in place was chosen here because two feet would only

change the vertical position but keep the same hori-

zontal position, thus a fixed coordinate
∑

B in our for-

mulation can still be used as an inertia frame which

was always in the center of the projections of two an-

kle joints. However, for generic walking gaits, the sta-

bilizer should be formulated based on an inertia frame

attached in each support polygon which switches dis-

cretely from step to step. Therefore, a generalization of

the proposed stabilization for generic walking is fairly

complicated. In the scope of this paper, we leave the so-

phisticated reformulation of the stabilization for generic

walking as a future work, and concentrate on the par-

ticular setup of walking in place as an initial study.

The walking pattern generated desired COM and

feet trajectories. The equilibrium point was adjusted

according to the terrain inclination estimation, and the

resultant torque with respect to
∑

B was computed by

the F/T sensor feedback and foot position vectors as

in (24). The output of the admittance controller was

(a) Sagittal inclination disturbance.

(b) Lateral inclination disturbance.

Fig. 17 Experiment V: walking in place with sagittal and
lateral inclination disturbance separately.

superimposed with the original COM trajectory to form

a new COM reference. The new COM reference and the

original feet trajectory were the inputs for the inverse

kinematics to generate joint position references.

Fig. 16 shows the ground reaction forces, the torso

orientation, and the COP measurements without and

then with the stabilization during walking on the flat

lab floor. The comparative study suggests that the sta-

bilization particularly decreased the oscillation of the

vertical ground reaction forces. Consequently, this re-

duction of undesired contact forces resulted in more

repetitive patterns of the body attitude as well as the

COP during the cyclic state of walking.

Fig. 17(a) and Fig. 18(a) show the snapshots and

data of walking in place on a platform with changing

inclination in the sagittal plane. The inclination of the

platform had maximum change of −20◦, the pitch angle

of the torso orientation was within ±5◦ deviation, and

the COP variation in the x axis of the support polygon

was between −0.02 m and 0.08 m.

Fig. 17(b) and Fig. 18(b) show the snapshots and

data of walking in place on a platform with changing

inclination in the lateral plane. The platform’s inclina-

tion had maximum change about −15◦, the roll angle

of the torso orientation was within ±10◦ deviation, and

the COP in the y axis of the support polygon varied

between two feet approximately within ±0.1 m.

It should be noted that the estimation of terrain in-

clination in the sagittal plane was more desirable than

that of the lateral plane. As shown in Fig. 4, each foot

is 19 cm long and 10 cm wide, so the dimension of the

foot along the x axis is much larger than that along the

y axis. Therefore, the larger size of the foot in the sagit-

tal plane permits more allowable time of firm contact
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(a) Sagittal inclination disturbance.
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(b) Lateral inclination disturbance.

Fig. 18 Experiment V: terrain inclination estimation, torso
orientation, and COP response under the sagittal and lateral
inclination disturbance respectively.

for each support foot to detect the terrain inclination.

On the contrary, the foot has much smaller area of con-

tact in the lateral plane, thus has more possibilities of

having longer under-actuation phase during which the

updating of terrain estimation is suspended.

This limitation introduced an undesired fluctuation

of α̂filter
t into the regulation of the equilibrium set-point

in the stabilization module, thus the torso orientation

had more deviation than that of the sagittal scenario,

as intuitively shown by Fig. 17(b) as well. This oscilla-

tion could possibly be reduced by further lowering the

cut-off frequency for α̂filter
t , however, this would also in

turn trade off the response rate to the inclination vari-

ation. This limitation also suggests the development of

feedback controllers based on the IMU for improving

the dynamical performance of the torso attitude con-

trol as part of the future work.

4 Discussion

The proposed stabilization demonstrates the success in

maintaining balance of a humanoid robot during stand-

ing and walking in place on a slope with changing incli-

nation. The control algorithms are formulated based on

a simplified model that captures the major dynamics of

the real system, and demonstrate the effectiveness by

the feedback control based stabilization.

The simplified model considers the entire robot as

a rigid body in the local reference frame attached to

the support polygon for implementing the 1-DOF reso-

lution at the COM level, therefore, two feet are always

parallel to form a planar polygon of support. Despite

the robot as a whole can adapt to an inclined surface,

the bottleneck is that each foot may not always conform

with the contact surface in general. Hence, it could be

interesting to investigate an improvement of modeling

the compliance control for each foot or leg separately for

the adaptation to more complex and rugged terrains.

The proposed terrain inclination estimation is based

on the foot-ground contact and needs a surface or an

area of contact. This means that if the contact region

reduces to a line or a point, then the terrain inclina-

tion is no longer detectable. This is true during the

under-actuation phase when the foot rotates. During

this period, there is no physical means to detect the in-

clination if the terrain surface continues to change, for

example, a moving rock.

In light of this limitation, therefore, the visual per-

ception could be very useful in this case to perceive the

change of inclination during under-actuation phases.

Hence, the integration of visual perception with our

proposed algorithm will produce a more robust terrain

estimation, and thus permit a more versatile walking in

complex terrains with soft surface or movable support.

5 Conclusion and Future Work

We proposed an admittance controller to achieve com-

pliant and passive stabilization for humanoid robots. By

integrating with the proposed terrain estimation algo-

rithm, the posture stabilization was further extended to

the adaptation to the slope with changing inclination.

The feasibility of this control framework was demon-

strated by the successful implementation on the com-

pliant humanoid COMAN with different experimental

trials in this paper.

A number of designed experiments demonstrated

that the robot could adapt to the inclined surface with

stabilized torso attitude in both sagittal and lateral

planes. The logic-based terrain estimation algorithm ex-

ploited the foot-ground contact as a viable means to de-
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tect the terrain inclination, and was effective to exclude

false estimations during the under-actuation phase. A

particular gait, i.e. walking on the spot, was selected for

a further validation because it required no complication

of modifying the proposed stabilization. The results of

stabilization during walking on the spot suggested that

the stabilizer reduced the ground impact and enabled

the robot to walk in an inclination varying platform.

Our future work will focus on the improvement of

the compliance control for each foot and leg separately,

and the integration of visual feedback with our pro-

posed method for a better estimation of the terrain

inclination. Finally, with these future works, we will

develop a more generic stabilization framework which

is compatible with the bipedal walking control towards

the agile locomotion of humanoid robots in complex

and challenging real world environments.
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