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Abstract 

An automated micropitting test rig which uses the proven three point contact configuration 

was applied to study the effect of base oil polarity on micropitting behaviour in rolling-

sliding contacts. The tribological tests using one polar (Ester) and one non-polar (PAO) base 

oil mixed with four different additives were firstly done in a micropitting rig to study the 

friction, wear and micropitting performance. The tested specimen after tribological tests were 

examined by an optical microscope to study the micropitting on the surface. The X-ray 

Photoelectron Spectroscopy (XPS) was applied to obtain the related tribochemical 

information from the reaction layer. The results showed that higher wear and less micropits 

formed when testing with Ester based lubricants. This was related to the higher affinity to the 

steel surface of polar base oil molecules which can compete with additives to attach to the 

surface, resulting in a thinner reaction layer and shorter chain phosphates. 
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1. Introduction 

Micropitting is a commonly seen surface failure in machine elements (e.g. rolling element 

bearings) which work under heavy loading and rolling-sliding lubricated conditions. This 

phenomenon is acknowledged to be affected by material, surface roughness, lubricant, load, 

temperature, speed and slide to roll ratio (SRR). Oila et al. [1] studied these parameters and 

pointed out that load affected the initiation of micropitting most, while speed and slide to roll 

ratio showed the largest impact on the propagation of micropitting. The asperity contact stress 

was also considered to be a main factor to promote the formation of micropits [1], thus this 

contact fatigue phenomenon can be retarded by the increase of lambda ratio or reduce of 

surface roughness. However, recently Soltanahmadi et al. [2-3] found out that more micropits 

formed with enhanced reaction layer thickness between the contacting surfaces.  

Several studies have focused on the relationship between friction/wear coefficient and 

micropitting [1,4-7]. The reduction of frictional tractions during rolling/sliding can have an 

effect on reducing micropitting, mainly through reduced frictional heating [1]. However, 

Maya-Johnson et al. [4] reported that the addition of a friction modifier (a commercial 

friction modifier based on synthetic oils) into the lubricated contacts would in fact accelerate 

the rolling contact fatigue. Morales-Espejel et al. [5] summarized the relationship between 

wear and micropitting as follows: micropitting phenomenon was worsen with decreasing 

reaction layer thickness and increasing sliding once the wear was negligible, while 

micropitting area was reduced once the wear cannot be ignored as the rolling sliding contacts 

can be dominated by wear which was able to remove the asperity peaks and reduce the 

contact asperity. Brizmer et al. [6] researched the micropitting performance of different base 

oil/additives combinations in lubricated rolling contacts, and concluded that the micropitting 

phenomenon can be predicted by focusing on friction and wear performance although 

tribochemistry was expected to be the main impacting factor. A recent study by the authors [7] 

showed that the degree of micropitting cannot be evaluated only by friction and wear 

performance, and that the combination effect of wear and reaction layer thickness as well as 

chemical reaction products (e.g. iron oxide) in the layer should be considered.  

All the parameters mentioned above can change the physical properties of the contacting 

surfaces as well as the chemical nature of the system making an impact on the micropitting 

formation process. Base oil polarity is one of the least studied parameters on micropitting. 

However, commercial lubricants with base oils of different polarity can have different 

micropitting mechanisms. Naveira-Suarez et al. [8-9] studied the influence of base oil 

polarity on the tribological performance and derived reaction layer by testing base oil with 
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different polarities blended with zinc dialkyl dithiophosphate (ZDDP) under mixed rolling-

sliding conditions. They found that the derived reaction layer was thicker when ZDDP was 

blended with non-polar base oil, which was because that polar base oil molecules were more 

prone to attach to the contacting surface than the non-polar base oil molecules [8]. Base oil 

can then compete with the additive molecules to attach to the substrate, which would change 

the tribochemistry during the rubbing process. They came to a conclusion that base oil 

polarity should be considered to describe the base oil-additive interactions to study the 

tribological and tribochemical behaviours within the rolling-sliding contacts [9]. Naveira-

Suarez et al. [8-9] and Jablonka et al. [10] reported that the reaction layer thickness can be 

affected by base oil polarity, but this was not related to the micropitting behaviour. In this 

study, one polar (Ester) and one non-polar (PAO) base oil mixed with four surface-active 

additives were tested in a micropitting rig to study the effect of base oil polarity on 

micropitting in the rolling-sliding contacts. 

2. Experimental 

2.1 Micopitting rig 

The micropitting test rig in this study can be used under controlled slide-to-roll ratio, 

temperature, load, speed and different lubrication conditions. A detailed information on the 

micropitting test rig applied in this study has been provided in a previous paper by Cen et al. 

[7].  The overall appearance of the rig is shown in Fig. 1. A syringe was applied to fill the 

tested lubricants into the test chamber up to the level of ¼ of the bottom ring. Through the 

rotation of the bottom two rings, the lubricants can be dragged to the contacts between the 

centre roller and three surrounding rings. Load was applied onto the top ring and distributed 

into three contact loads. The roller and rings can be finished by grinding to desired roughness. 

A strain gauge located on the shaft which is connected to the top ring was used to measure 

the friction in the lubricated conditions. Friction signal was recorded during the test and the 

average value of last 30 minutes (when the signal was really stable) was considered as the 

friction coefficient of the test. An example of the recorded friction coeffient is shown in Fig. 

2 where the average value of 630-770 K cycles (the last 30 minutes of the test, after 770 K 

cycles the data was recorded when the system started to unload and speed down). 

The depth profile of the wear scar on the tested roller was obtained through Bruker’s 

NPFLEX Wyko technology, based on which the cross-section area of the wear scar can be 

calculated, and the whole wear volume equalled to the perimeter of the roller multiplies by 

the cross-section area (assuming the cross-section area was the same across the circumference 

of the roller wear scar). For each wear volume of the roller, three depth profiles were 
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obtained by Wyko measurement and the average value was used to calculate the wear volume. 

Before the wear measurement, the residual lubricant on the roller was removed by ultrasonic 

cleaning with acetone for 30 minutes. Details of the friction and wear acquisition process 

were shown in a previous paper by Cen et al. [7].   

 

(a)                                                                (b) 

Fig. 1. Micropitting rig: (a) chamber door closed for test; (b) chamber door open for illustration. 

 

Fig. 2. An example of the recorded friction coeffient during the test 
2.2 Materials and test conditions 

The roller and three identical rings are disassembled from SKF bearings. Information of 

the roller and rings applied in this study are shown in Table 1. 

Table 1.  Details of roller & rings used in the tests 

 Bearing code 
Diameter 

(mm) 

Roughness (Rq nm)-
transverse to the rolling 

direction 

Material (Steel 
code) 

Hardness 
(HRC) 

Roller SKF SRB 21309E 12.05 <50 

AISI 52100 59-66 

Ring 
SKF CRB NU 

209EC 
54.15  500±10 
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The lubricants used in this study are composed of one polar base oil (Ester) and one non-

polar base oil (PAO) as well as four additives which are ZDDP, S, P and Moly. Details of the 

base oil and additives are shown in Table 2. The ZDDP additive used in this research was 

solid powder thus the viscosity could not be obtained. The S, P additive did not contain 

phosphorus and sulphur respectively. The Moly additive contained neither phosphorus and 

sulphur content. The base oils and additives were all provided by SKF ERC, Netherlands and 

information other than the parameters in Table 2 were confidential from the supplier. Only 

one base oil (98wt%) and one additive (2wt%) were mixed together to get different test 

lubricants (wt%—the mass percentage of base oil, additive over the lubricant mixture). The 

mixture was obtained by in a glass beaker with a magnetic stirrer for 2 hours at 75C just 

before the micropitting tests. The mixtures were observed to be clear and with no deposits, 

which was considered that the additives were totally dissolved in the base oil. The 

micropitting test conditions [7] are shown in Table 3, where the conditions were set to 

simulate the industrial working condition of rolling element bearings.  Each test consisted of 

720,000 contacting cycles which was 2.5 hours in total and the friction and wear results were 

the mean values of three repeats. Lambda ratio (Ȝ) which can be used to identify the 

lubrication regime, is the ratio of minimum reaction layer thickness over the square root of 

the summation of square roughness of the two contacting surfaces (Eq.1).  ߣ ൌ ௛೘೔೙ටோ೜ǡೌమ ାோ೜ǡ್మ                                                   
Eq. 1 

where Rq,a and Rq,b represent the average roller roughness and average roughness of the three 

rings, respectively. The initial lambda ratio Ȝ of the test was 0.16 which indicated a boundary 

lubrication regime which was the most common seen lubricating condition for heavy loaded 

bearings. Initial contact pressure Pmax was calculated from Hertzian initial line contact 

equation. The minimum reaction layer thickness hmin was obtained by applying Dowson and 

Higginson equation (Eq.2) [7].  

௛೘೔೙ோ ൌ ʹǤ͸ͷ ൈ ሺʹܧߙᇱሻ଴Ǥହସ ൈ ቀ௎೐ఎబଶாᇲோቁ଴Ǥ଻ ൈ ቀ ௐଶாᇲோ௅ቁି଴Ǥଵଷ
                        

 Eq.2 

where hmin is minimum reaction layer thickness, R is effective radius of curvature, Į is the 

pressure–viscosity constant of the lubricant, E’ is the effective modulus of elasticity, Ue is the 

entrainment speed, 0  is the dynamic viscosity of the lubricant,  W is the applied load, and L 

is contacting length. 
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Table 2.  Details of base oils & additives used in the tests 

Base Oil & Additive 

Kinematic 
viscosity at 

40°C 
(mm2/s) 

Kinematic 
viscosity at 

100°C 
(mm2/s) 

Sulphur 
content 
(wt%) 

Phosphorus 
content 
(wt%) 

Description Designation     
Fully synthetic Group 

IV 
PAO 24.6 5.1 0.00055 <0.00030 

Synthetic ester Ester 26.8 5.2 0.00052 <0.00030 

Iso-butyl-zinc 
dithiophosphate 

ZDDP - - 23.400 11.300 

Sulphurized fatty acid 
methylester 

S 260±20 - 16±1 - 

Phosphoric acid ester  P 180±20 - - 13±1 

Molybdenum Ester Moly 280±20 - - - 

Table 3.  Test conditions 

Pmax (GPa) Temperature (°C) 
SRR 

˄%˅ 

Entrainment speed 

(m/s) 
lambda ratio (Ȝ) N,  K Cycles 

1.5 75 2 1 0.16 720 (2.5hours) 

2.3 Surface analysis techniques 

The roller surface images after tribological tests were firstly captured by a Leica stereo 

microscope to examine the micropitting level. The residual oil on the roller surface was 

gently removed by a tissue with isopropanol before the capture. Then, XPS measurements 

were carried out on the roller surface in a PHI 5000 VersaProbeTM X-ray photoelectron 

spectrometer (Ulvac-PHI Inc, Chanhassen, MN, US) with a monochromatized Al KĮ X-ray 

(1486.6eV) source [7]. The residual oil on the roller surface was removed by ultrasonic 

cleaning with n-heptane for 3 minutes prior to the XPS test. In XPS, a surface-sensitive 

quantitative spectroscopic technique is applied to obtain the composition of different 

elements as well as the chemical and electrical state of the elements within the tested material. 

Through irradiating a material with a beam of X-rays, the XPS spectra can be obtained and 

the kinetic energy and number of electrons that escape from the top 0 to 10 nm of the material 

can be measured simultaneously [2]. The residual chamber pressure was always below 1×10-7 

Pa during spectra acquisition.  

Scanning X-ray Image (SXI) was applied to look for specific features on the surface 

which identifies the wear track. Survey spectra and detailed spectra were collected only 

within the roller wear scar with a beam diameter of 100 ȝm, and the whole acquisition time 

was less than 120 minutes. Pass energy of 117.4 eV and 46.95 eV, step size of 1 eV and 0.1 

eV were applied in the survey and detailed spectra acquisition process, respectively. An 

https://en.wikipedia.org/wiki/Nanometre
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Argon ion source with 2 keV energy and 1 ȝA sputter current over an area of 2×2 mm2 was 

applied during the depth profiling acquisition (etching process) to estimate the reaction layer 

thickness on the roller surface. The etching process was terminated once the element 

concentration of O 1s signal becomes less than 5%. CASA XPS software (CasaXPS software 

version 2.3.15 Ltd., UK) was used to process the XPS data. The detailed spectra were fitted 

with Gaussian-Lorentzian curves with a Linear background. All peaks were charge corrected 

by shifting C 1s to 285.0 eV.  

3. Results and discussion 

3.1 Friction and wear results 

The two different base oils, as well as their combinations with four additives, were tested 

in the micropitting rig for 2.5 hours. The friction and wear data are shown in Fig. 3 (some of 

the error bars appear missing out because of the scale). It is quite clear that the polar base oil 

Ester (and its combination with additives) show higher wear than those of the non-polar base 

oil PAO. The friction of Ester pure and PAO pure are similar, while friction of PAO+ZDDP 

is higher than Ester+ZDDP. This is because that ZDDP reaction layer is known to increase 

the friction [12,13], where this friction increasing behaviour of ZDDP is reduced in polar 

base oil as Ester molecules can compete with ZDDP molecules to attach to the surface. 

Except blending with ZDDP additive, the friction of Ester series blended with other additives 

is higher than the friction of PAO series. This friction behaviour is in line with Tomala et al. 

[14] who showed that the friction coefficient of polar base oil (diethylenglycol) is higher than 

that of non-polar base oil (hexadecane). Besides, the friction coefficient of polar base oil 

Ester to Ester+all tested additives experienced an increase, while that of non-polar base oil 

PAO experienced an increase with ZDDP and P additives but a decrease with S and Moly 

additives. Especially, adding friction modifier (Moly) into Ester base oil increased the friction 

significantly, compared to PAO where Moly additive reduced the friction a lot.  This could be 

attributed to polar Ester molecules competing with the Moly additive to attach to the surface, 

thus limiting the availability of this additive on the surface to form a friction reduction layer. 

This friction behaviour will be related to the micropitting performance later in this study.  

Fig. 3 also shows that wear of base oils with additives was higher than the wear of base 

oil alone, with the exception that the addition of ZDDP and S into Ester base oil had limited 

effect in changing the wear. Naveira Suarez et al.[8,9] explained that the higher wear of polar 

base oil with ZDDP compared to non-polar base oil with ZDDP is due to that the polarity of 

base oil influences the adsorption rate of ZDDP on the surface. This is because polar base oil 

can compete with ZDDP to attach to the surface which limits the anti-wear performance of 
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ZDDP. The higher wear with polar base oil was also seen in pure sliding tests performed by 

Zhang et al.[15,16]. These studies [8,9,14-16] give an indication that additives blended with 

polar oil have less access to the surface to form a protective reaction layer. This will be 

discussed with the XPS etching results later in this paper.  Besides, the addition of P additive 

into base oils experienced a huge increase. This can be related to the acidity of the P additive 

that has an aggressive impact on the steel surface, which has been shown in pure sliding tests 

shown in a previous research [17].  

 

Fig. 3. Friction and wear results for the tested lubricants 
3.2 Micropitting results 

Table 4 shows the optical microscope images of rollers after tribological tests, which 

indicate the micropitting level on roller surfaces. The colours on the images are due to the 

presence of transparent surface films including boundary films, oxides, and traces of lubricant 

or solvent [18]. Seldom micropits were observed on the roller surface after the tests with 

Ester series, while few micropits were found with PAO Pure/+ZDDP/+S and a large amount 

of micropits were found with PAO+P/Moly. It can be concluded that non-polar base oil PAO 

and its combination with additives promote more micropits compared to polar base oil Ester. 

A possible explanation could be that the wear of Ester series is higher than PAO series 

(shown in Fig. 3) and the micropits formed during the rubbing process can be removed by the 

high wear, which has been proved by Morales-Espejel et al.[19]. Moreover, anti-wear 

additives like ZDDP can promote micropitting because they can slow down the removing 

speed of initial roughness on the surface as shown in previous researches [5,20-22]. But when 

these additives were blended with polar base oil Ester, their micropitting promoting effect 

would be reduced because of the competition of polar base oil and additive molecules to 

attach onto the surface. Thus, it is not surprising to see less or even no micropits when Ester 

series were tested.  
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Table 4. Optical microscope images of rollers after micropitting tests 

Oil Type Ester PAO 

Pure 

 

  

+ZDDP 

 

  

+P 

 

  

+S 

 

  

+Moly 

 

  

micropits 

micropits 

micropits 

micropits 

micropits 

micropits 

sliding 
direction 
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However, both Lainé et al. [18] and Morales-Espejel et al.[19] found that fewer micropits 

formed with a lower friction coefficient, and this is considered to be due to the reduction of 

the local tensile stress within the contact area.  In the current study, Ester base oil blended 

with other additives showed higher friction but resulted in fewer micropits on the wear scar 

than PAO series. This is a clear indication that micropitting behaviour cannot only be 

determined by friction and wear performance, and that the tribochemistry within the process 

should be considered. 

3.3 Surface chemical properties 

XPS was applied to study the tribochemical aspect of the micropitting formation process. 

As the effect of anti-wear additives on micropitting has been extensively studied, the roller 

surface after micropitting tests with Base oil+ZDDP/+P (P additive containing lubricants 

were chosen because PAO+P showed large quantities of micropits) were examined in XPS to 

study the tribochemistry involved. Both survey and detailed high-resolution spectra were 

obtained within the roller wear scar. Spectra from the survey scans were used to identify 

different peaks and to verify the contamination.  

Figs. 4-7 show the detailed spectra of carbon 1s, oxygen 1s, sulphur 2p, phosphorus 2p 

linked with zinc 3s and zinc 2p from the reaction layer generated from Ester+ZDDP, 

PAO+ZDDP, Ester+P and PAO+P respectively. The summary of binding energies of 

elements/components of the reaction layers and atomic concentrations of the layer elements 

from Figs. 4-7 are shown in Table 5. 

   

292 290 288 286 284 282
0

2000

4000

6000

8000

C
P

S

Binding Energy (eV)

(a) C 1s

536 535 534 533 532 531 530 529 528

3000

6000

9000

12000

C
P

S

Binding Energy (eV)

BO

NBO

Oxide

(b) O 1s



11 
 

172 170 168 166 164 162 160 158
900

1000

1100

1200

1300

S(II)S(VI)

C
P

S

Binding Energy (eV)

S 2p
1/2

S 2p
3/2 S 2p

3/2

S 2p
1/2

(c) S 2p

  

Fig. 4. XPS detailed spectra of (a) C1s, (b) O1s, (c) S2p, (d) P2p & Zn3s, (e) Fe2p and (f) Zn2p of the reaction 
layer derived from Ester+ZDDP roller sample 
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Fig. 5. XPS detailed spectra of (a) C1s, (b) O1s, (c) S2p, (d) P2p & Zn3s, (e) Fe2p and (f) Zn2p of the reaction 
layer derived from PAO+ZDDP roller sample 

For ZDDP containing lubricants derived reaction layers (Figs. 3-4), C 1s signal was 

originally found at 285.4 eV and 285.5 eV for Ester+ZDDP (Fig. 4) and PAO+ZDDP (Fig. 5) 

which were both calibrated to 285.0 eV (C-C, C-H) and this processing was applied to all the 

regions and components generated. The second component generated from C 1s was found at 

286.5±0.1 eV for Ester+ZDDP and at 286.4±0.1 eV for PAO+ZDDP which can be referred to 

C-O-P bond [23-24]. The third peak from C 1s was found at 288.8±0.1 eV for both 

Ester+ZDDP and PAO+ZDDP which can be referred to C-S bond [8].  

The O 1s peak was curve fitted to three components of fixed FWHM of 1.8 eV for both 

Ester+ZDDP and PAO+ZDDP. The three components are a) non-bridging oxygen (NBO) at 

531.5±0.1 eV for both Ester+ZDDP and PAO+ZDDP which originated from the phosphate 

chain –P=O and P-O-M (where M is metal Zn or Fe), b) bridging oxygen (BO) of P-O-P and 

sulphates at 533.2±0.1 eV for Ester+ZDDP and 533.1±0.1 eV for PAO+ZDDP, and c) a 

small peak of iron or zinc oxide at 529.2±0.1 eV for Ester+ZDDP and 529.1±0.1 eV for 

PAO+ZDDP [23-24]. NBO always contributes to short chain phosphates while BO 

contributes to long chain phosphates [25-27]. 

The S 2p peaks were curve fitted to two doublets of S 2p3/2 and S 2p1/2, where the area 

ratio and binding energy difference delta were fixed at 2:1 and 1.25 eV [8]. One S 2p3/2 peak 

was found at 161.9±0.1 eV for both Ester+ZDDP and PAO+ZDDP which can be related to 

oxidation state of S(II) and is believed to be Zn sulphide (ZnS) or (polythio)phosphate [28-

30], while it is difficult to distinguish (thio)phosphate and metal sulphide in XPS analysis [2]; 

another S 2p3/2 peak found at 168.4±0.1 eV for Ester+ZDDP and 168.3±0.1 eV for 

PAO+ZDDP of oxidation state of S(VI) and is referred to sulphates [28-30]. The role of 

sulphate and its presence in the ZDDP reaction layer was also confirmed by previous studies 

[2,29].  
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The P 2p peak was curve fitted to a doublet of P 2p3/2 and P 2p1/2, where the area ratio and 

binding energy difference delta were fixed at 2:1 and 0.85 eV [8]. The P 2p3/2 peak found at 

133.4±0.1 eV for both lubricants can be referred to phosphates [27]. There was also a peak 

originated from Zn 3s found at 140.4±0.1 eV for Ester+ZDDP and 140.2±0.1 eV for 

PAO+ZDDP. This component was considered in the element quantification of zinc rather 

than only considering Zn 2p [2]. 

The Fe 2p signal of Ester+ZDDP (Fig. 4) consisted of two main peaks which are Fe 2p3/2 

at 711±0.1 eV and Fe 2p1/2 at 723±0.1 eV. Curve fitting was only performed on Fe 2p3/2 

peak, of which the main components are iron in the metallic state (Fe0) at 706.5±0.1 eV, Fe(II) 

as oxide at 709.2±0.1 eV, Fe(III) as oxide at 710.8±0.1 eV and iron phosphate(FePO4) at 

713.9±0.1 eV which also contributed to the (poly)phosphate P 2p3/2 peak at 133.4±0.1 eV 

[26-27]. Thus, the small peak of metal oxide at 529.2±0.1 eV for Ester+ ZDDP can be 

assigned to iron oxide. The Fe 2p signal of PAO+ZDDP (Fig. 5) showed a very low signal-

to-noise ratio thus could not be analysed by curve fitting. The main component Zn 2p3/2 

contributed from Zn 2p was found at 1022.2±0.1 eV for Ester+ ZDDP and 1022.3±0.1 eV for 

PAO+ZDDP.   

  

  

Fig. 6. XPS detailed spectra of (a) C1s, (b) O1s, (c) P2p and (d) Fe2p of the reaction layer derived from Ester+P 
roller sample 
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Fig. 7. XPS detailed spectra of (a) C1s, (b) O1s, (c) P2p and (d) Fe2p of the reaction layer derived from PAO+P 
roller sample 

For P containing lubricants derived reaction layers (Figs. 5-6), C 1s signal was originally 

found at 285.4 eV and 284.8 eV for Ester+P (Fig. 6) and PAO+P (Fig. 7) which were both 

calibrated to 285.0 eV (C-C, C-H), thus all peaks were shifted accordingly. The C-O-P and 

C-S bonds for Ester+P and PAO+P were found at 286.7±0.1 eV,288.6±0.1 eV and 286.5±0.1 

eV, 288.8±0.1 eV respectively.  The O 1s peak was curve fitted to NBO, BO and oxide at a 
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lubricants derived layers were curve fitted with the same procedures as for ZDDP tribofilms 
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to oxidised Fe(III). Fe 2p3/2 peak detected on the PAO+P tribofilm was small, mainly 

dominated by the peak at 710.8±0.1 eV assigned to oxidised Fe(III).  

The chain length of polyphosphate has been reported to affect the tribological 

performance in rolling-sliding contacts by Martin et al.[31] and Nedelcu et al.[32]. BO/NBO 

ratio was reported by them [31-32] to evaluate the chain length of the phosphate. It is clear 

from Table 5 that BO/NBO values for polar base oil Ester+ZDDP/P derived layers were 
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lower than those of non-polar base oil PAO+ZDDP/P, which indicates that phosphate chain 

length derived from PAO containing lubricants were longer than Ester containing lubricants 

[31-32]. However, Soltanahmadi et al. [2] reported that BO/NBO ratio is not enough to 

evaluate the phosphate chain length as other non-phosphate peaks such as hydroxides can 

contribute to NBO peak, and binding energy of P-O-C can also overlap the BO peak region. 

Therefore, they [2] introduced the ratios of Zn/P, Fe/P and O/P to enhance the evaluation. 

Higher Zn/P, as well as O/P ratio, indicate a higher ratio of metal oxide/P2O5 which could be 

related to a shorter chain length of phosphate, and this phenomenon was also observed 

together with BO/NBO ratios [2]. Moreover, higher Fe/P ratio in iron phosphate reaction 

layer could be related to a shorter chain length of phosphates [33].  

Table 5 shows that the ratios of metal (Zn, Fe)/P and O/P from Ester based lubricants 

were higher than those of PAO based lubricants, which confirms that phosphate chain length 

with PAO based lubricants were longer than those of Ester based lubricants. Moreover, this 

finding was also confirmed by the O/P values of Ester based lubricants that were quite close 

to 4:1 (refer to PO4) which is the ratio of short chain length phosphate [28].  

      XPS depth profiling was applied to estimate the reaction layer thickness formed on the 

roller surface after micropitting tests. The etching process was terminated once the atomic 

concentration of O1s became lower than 5% [2,32]. The depth profiles of the reaction layers 

derived from the tested lubricants are shown in Fig. 8. Comparing Ester+ZDDP and 

PAO+ZDDP as well as Ester+P and PAO+P, it is quite clear that more etching time was 

spent to achieve a lower than 5% atomic concentration of O 1s signal for PAO based 

lubricants.  Therefore, it can be concluded that the reaction layer thicknesses derived from 

Ester based lubricants were lower than those of PAO based lubricants, which is in line with 

the findings from Suarez et al. [8-9]. This could also be confirmed by the XPS detail scan 

results shown in Figs. 3-6 where stronger Fe 2p signal and metallic iron Fe0 were only found 

in reaction layers derived from Ester based lubricants, which also indicates a thinner reaction 

layer formed on the surface [27].  
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Table 5. Binding energies of elements/components of the reaction layers and atomic concentrations of the layer 
elements(Zn, O, S) normalised to P 
   Ester+ZDDP PAO+ZDDP Ester+P PAO+P 

Binding energy (eV) C 1s C-C,C-H 
285.0 

(90.1%) 

285.0 

(91.2%) 

285.0 

(75.7%) 

285.0 

(86.1%) 

  C-O-P 
286.5 

(6.3%) 

286.4 

(6.9%) 

286.7 

(12.7%) 

286.5 

(11.3%) 

  C-S 
288.8 

(3.6%) 

288.8 

(1.9%) 

288.6 

(11.6%) 

288.8 

(2.6%) 

 O 1s BO 
533.2 

(22.6%) 

533.1 

(23.5%) 

533.2 

(18.1%) 

532.8 

(25.3%) 

  NBO 
531.5 

(76.0%) 

531.5 

(75.3%) 

531.5 

(73.8%) 

531.3 

(73.4%) 

  Oxide 
529.2 

(1.4%) 

529.1 

(1.2%) 

530.1 

(8.2%) 

529.2 

(1.3%) 

  BO/NBO ratio 0.297 0.312 0.245 0.350 

 P 2p3/2  133.4 133.4 133.4 133.3 

 Zn 3s  140.4 140.2 - - 

 S 2p3/2 Sulphide 
161.9 

(35.0%) 

161.9 

(26.9%) 
- - 

  Sulphate 
168.4 

(31.7%) 

168.3 

(39.8%) 
- - 

 Fe 2p3/2 Fe0 
706.5 

(10.3%) 
- 

707.3 

(34.8%) 
- 

  Fe (II) 
709.2 

(36.5%) 
- - - 

  Fe (III) 
710.8 

(39.5%) 
- 

710.6 

(65.2%) 
710.8 

  FePO4 
713.9 

(13.7%) 
- - - 

 Zn 2p3/2  1022.2 1022.3 - - 

Atomic concentration 

ratio (normalized to P) 
Zn/P  2.7 1.6 - - 

 Fe/P  0.08 - 0.13 0.03 

 O/P  3.5 1.8 3.9 1.6 

 S/P  0.28 0.14 - - 
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Fig. 8. XPS depth profile of the reaction layer derived from roller samples tested with: (a) Ester+ZDDP, (b) 
PAO+ZDDP, (c) Ester+P, (d) PAO+P.  

      Thicker reaction layer and longer phosphate chain length can digest the hard Lewis acid 

iron oxide wear particles according to the hard and soft acids and bases (HSAB) theory by Ho 

and Pearson [34-35]. Thus, it is not surprising to see the lower wear with PAO based 

lubricants (Fig. 3) because of the thicker reaction layer and longer phosphate chain length 

than Ester based lubricants. However, the thicker reaction layer which contains longer chain 

length phosphates formed on the roller surface tested with PAO based lubricants showed 

more micropits (Table 5). Pidduck et al. [36] showed that the top layer containing 

polyphosphates were viscous and soft, which can accommodate the shear stress inside the 

reaction layer during the rolling/sliding process rather than transferring it to the steel 

substrate [37]. Moreover, Spikes et al. [38] showed that short chain metal (poly)phosphates 

were more shear resistant and could be harder than the long chain phosphates, which enabled 

to accumulate more local stresses. Therefore, the local stress on the substrate shall be lower 

when the roller was tested with Ester based lubricants, thus the initiation and propagation 

processes of micropitting [39] can be hindered, resulting in less micropits on the surface.  

      The thinner reaction layer and shorter phosphate chain length formed with Ester based 

lubricants than PAO based lubricants was a result of the base oil polarity. Suarez et al. [8-9] 

explained that the higher affinity of the polar base oil molecules for the steel surface can limit 
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the access of the additive molecules to the surface which restrains additives’ ability to attach 

and form a protective reaction layer. This means that additive molecules mixed with polar 

base oil will have less access to form the reaction layer during the running in period. As a 

result, a thinner reaction layer can be expected with polar base oil. Meanwhile, limited access 

of additive molecules to participate in the reaction layer formation process could not provide 

the initially formed reaction layer with more source of additive to enhance the reaction layer, 

when the initially formed reaction layer (containing a lot of long chain phosphates) are 

experiencing severe decomposition at mean time. Therefore, long chain phosphates would 

experience a severer depolymerisation process and generate more short chain phosphates 

with polar base oil. This can be the reason that shorter chain length phosphates formed on the 

roller with polar base oil containing lubricants.  

     Fig. 8 also shows that more etching time was spent to achieve a lower than 5% atomic 

concentration of O 1s signal for ZDDP-containing lubricants than that of P-containing 

lubricants, which indicates that thinner reaction layer formed with P-containing lubricants. 

Table 5 shows that BO/NBO with Ester+ZDDP is higher than that with Ester+P, while this 

ratio is lower with PAO+ZDDP than that with PAO+P. However, the O/P ratio gives a 

opposite trend. Both the two ratios indicate that longer chain phosphates formed with 

Ester+ZDDP compared to Ester+P, while shorter chain phosphates formed with PAO+ZDDP 

compared to PAO+P. Thus, a universe trend can not be derived on the chain length of 

phosphates when comparing the ZDDP-containing lubricants with P-containing ones. 

Moreover, the Fe/P ratio is always lower with ZDDP-containing lubricants than that of P-

containing lubricants, which indicates that less iron can participate in the phosphate 

formation process with ZDDP-containing lubricants, where Zn can compete with Fe to form 

(polythio)phosphate. Meanwhile, P-containing lubricants always show higher wear (Fig. 3) 

but more micropits (Table 4) than ZDDP-containing lubricants tested with same base oil. 

Thus, ZDDP is proved to be more supreme than P additive in terms of wear and micropitting 

performance. However, Morales-Espejel et al.[19] stated that the micropits formed during the 

rubbing process can be removed by the high wear, which is in contrary to the findings from 

this study. Again, it can be concluded that micropitting behaviour cannot be judged by 

tribological performances alone.  

  

4.  Conclusions 

One polar base oil (Ester) and one non-polar base oil (PAO) blended with several 

additives were tested in a micropitting rig to study the effect of base oil polarity on the 
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micropitting behaviour. It was shown that higher wear but fewer micropits formed on the 

roller surface when tested with Ester based lubricants. The following conclusions can be 

addressed from this study: 

 Higher friction but fewer micropits with Ester series compared to PAO series 

indicates that micropitting behaviour cannot only be evaluated by tribological 

performances (e.g. friction, wear, roughness), tribochemistry needs to be considered. 

 Higher wear and fewer micropits formed with Ester based lubricants were resulting 

from the affinity of the polar base oil which can compete with additives to attach to 

the surface which limited the ability of additives to form a protective reaction layer. 

 Thinner reaction layer formed on the surface with polar base oil (Ester) containing 

lubricants, where the chain length of phosphates in the reaction layer were also shorter 

than those derived from non-polar base oil (PAO) containing lubricants.  

 Short chain (poly)phosphates can be more shear resistant and harder than the long 

chains, which enable the reaction layer to endure more local forces, thus postpone the 

initiation and propagation of micropitting formation process.  
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