
This is a repository copy of K-branching UIO sequences for partially specified observable
non-deterministic FSMs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/144448/

Version: Accepted Version

Article:

El-Fakih, K., Hierons, R. orcid.org/0000-0002-4771-1446 and Turker, U.C. (2021) K-
branching UIO sequences for partially specified observable non-deterministic FSMs. IEEE
Transactions on Software Engineering, 47 (5). pp. 1029-1040. ISSN 0098-5589

https://doi.org/10.1109/TSE.2019.2911076

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 1

K-branching UIO sequences for partially
specified observable non-deterministic FSMs

Khaled El-Fakih, Robert M. Hierons, Senior Member, IEEE and Uraz Cengiz Türker

Abstract—In black-box testing, test sequences may be constructed from systems modelled as deterministic finite-state machines

(DFSMs) or, more generally, observable non-deterministic finite state machines (ONFSMs). Test sequences usually contain state

identification sequences, with unique input output sequences (UIOS) often being used with DFSMs. This paper extends the notion of

UIOS to ONFSMs. One challenge is that, as a result of non-determinism, the application of an input sequence can lead to exponentially

many expected output sequences. To address this scalability problem, we introduce K-UIOS: UIOS that lead to at most K output

sequences from states of M . We show that checking K-UIO existence is PSPACE-Complete if the problem is suitably bounded;

otherwise it is in EXPSPACE and PSPACE-Hard. We provide a massively parallel algorithm for constructing K-UIOS and the results of

experiments on randomly generated and real FSM specifications. The proposed algorithm was able to construct UIOS in cases where

the existing UIO generation algorithm could not and was able to construct UIOS from FSMs with 38K states and 400K transitions.

Index Terms—Software engineering/software/program verification, software engineering/testing and debugging, Software

engineering/test design, Finite State Machine, Unique Input Output Sequence generation, General Purpose Graphics Processing

Units.

✦

1 INTRODUCTION

T ESTING is an indispensable yet costly part of software
development. One promising approach to reduce devel-

opment cost is to use Model Based Testing (MBT) tools and
techniques. MBT methods base testing on a model of the
system under test (SUT). Such a model is typically defined in
terms of states and transitions between states and this has
led to interest in testing from a finite state machine (FSM).
FSM-based approaches to MBT have been used in areas
such as sequential circuits [1], lexical analysis [2], software
design [3], communication protocols [3], [4], [5], [6], object-
oriented systems [7], and web services [8], [9], [10], [11].
Such techniques have been shown to be effective when used
in significant industrial projects [12]. Note that an FSM may
represent the semantics of another model written in a more
expressive language.

The literature contains many approaches that automati-
cally generate test sequences from FSMs [6], [13], [14], [15],
[16], [17], [18], [19]. For related surveys and experiments
the reader may refer to [20], [21]. Let us suppose that we
are testing from FSM M and, given state s of M and input
sequence x̄, let M(s, x̄) denote the set of output sequences
that M can produce if x̄ is applied in state s. Almost
all techniques for testing from FSMs use sequences that
distinguish states, where x̄ distinguishes states s and s′ of M
if M(s, x̄) and M(s′, x̄) are disjoint. Such sequences are used
to check the state of the SUT reached by an input sequence.

Several approaches have been developed for distinguish-
ing the states of a deterministic FSM (DFSM). In some
cases one has a distinguishing sequence, which is an input
sequence that distinguishes all of the states of M , and
these were used in the first FSM-based test generation

• Author names are given according to the Hardy-Littlewood Rule, i.e.,
author names are provided in alphabetical order regarding the family
names in ascending order.

algorithm [14]. However, an FSM may not have a dis-
tinguishing sequence and instead one might use a unique
input output sequence (UIO) for a state s′: an input sequence
that distinguishes s′ from all other states of M . Such a
sequence need not distinguish any other pairs of states of
M . Although not all FSMs have a UIO for each state, it has
been reported that in practice most FSMs do have UIOS [22]
and this has led to the development of many test generation
methods that use UIOS [13], [16], [22], [23], [24], [25], [26],
[27], [28]. Unfortunately, UIOS can be exponential long [29]
and so there has been interest in methods that relatively
efficiently generate UIOS [30], [31], [32], [33]. In order to
increase scalability and speed up UIO derivation, Hierons
and Türker introduced a massively parallel algorithm to
construct UIOS from DFSMs [34]. The P-UIO algorithm
scaled well; it required only a few seconds to construct UIOS

from FSMs with a million states.
Traditionally, the focus has been on testing from a DFSM.

However, non-determinism in a model can arise through
abstraction or through the SUT being non-deterministic as
a result of, for example, it being multi-threaded and there
being alternative interleavings. This has led to interest in
non-deterministic FSMs and, in particular, to observable non-
deterministic FSMs (ONFSMs); those where for every state s,
input x and output y there is at most one transition from s
that has input x and output y [35], [36]. A number of authors
have explored distinguishing sequences for ONFSMs [29],
[37], [38], [39], [40], [41]. However, it appears that there are
no published scalable algorithms for generating UIOS from
ONFSMs. Naturally, there is a need to generalise the concept
of a UIO to ONFSMs and algorithms that generate UIOS

from DFSMs cannot be directly used.
Due to non-determinism, the number of possible output

sequences that can result from applying input sequence x̄
to state s of ONFSM M can grow exponentially with the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 2

length of x̄. Since we are interested in algorithms that scale
to large ONFSMs, this paper introduces the notion of a
K-branching UIO (K-UIO): a UIO x̄ that can result in at
most K output sequences (when applied in a state s′ of M).
We prove that the problem of deciding whether state s of
ONFSM M has a K-UIO is in EXPSPACE and is PSPACE-
hard; if we bound K by a polynomial in terms of the size of
M then the problem is PSPACE-complete. We also extend
the notion of a unique predecessor, used by Naik [33] when
generating UIOS from DFSMs, to K-UIOS and ONFSMs.
We then introduce a parallel K-UIO generation algorithm
for use on GPUs and evaluate it by comparing it against a
breadth-first algorithm.

This paper is organised as follows. Section 2 defines
FSMs and associated notation/terminology. Section 3 intro-
duces K-UIOS and generalises unique predecessors. Sec-
tion 4 investigates the complexity of deciding whether an
ONFSM has a K-UIO for state s. In Sections 5 and 6 we
outline the new algorithm for generating K-UIOS from
an ONFSM. Section 7 describes the experiments carried
out and, finally, Section 8 draws conclusions and describes
possible lines of future work.

2 PRELIMINARIES

Definition 2.1. A non-deterministic FSM (NFSM) is de-
fined by a tuple M = (S, s0, X, Y, h) where: S =
{s1, s2, . . . , sn} is a finite set of states, s0 ∈ S is the
initial state, X = {x1, x2, . . . , xr} is the finite set of
inputs, Y = {y1, y2, . . . , yv} is the finite set of outputs,
and h ⊆ S × X × Y × S is the set of transitions. We
assume that X is disjoint from Y .

Tuple τ = (s, x, y, s′) ∈ h is a transition of M and has
starting state s, ending state s′, and label x/y. The label x/y
has input portion x and output portion y. We can interpret τ
as meaning that if M receives input x when in state s then
it can output y and move to state s′. M can then receive
another input when in state s′.

We use ε to denote the empty sequence and given se-
quences x̄ and x̄′, x̄x̄′ denotes the concatenation of x̄ and x̄′.
Given input/output pairs x1/y1, . . . , xk/yk, x1/y1 . . . xk/yk
and also x1x2 . . . xk/y1y2 . . . yk denote the corresponding
input/output sequence (or trace) σ: the sequence that starts
with x1/y1, then ... and finally xk/yk. Further, i(σ) =
x1 . . . xk and o(σ) = y1 . . . yk denote the input and output
portions respectively of σ.

An NFSM is an observable NFSM (ONFSM) if for all
s ∈ S, x ∈ X , and y ∈ Y there is at most one state s′ ∈
S such that (s, x, y, s′) ∈ h. Throughout this paper M =
(S, s0, X, Y, h) will denote an ONFSM from which we are
testing and we use ‘FSM’ to denote such machines. An input
x is defined in state s if there exists some s′ and y such that
(s, x, y, s′) ∈ h. We allow partial FSMs: an input x might not
be defined in some state s; if an FSM is not partial then it is
completely-specified.

An FSM can be represented by a directed graph. Figure 1
represent an FSM M1 with state set {s1, s2, s3, s4}, input set
{x}, and output set {y1, y2, y3}. A node represents a state
and a directed edge with label x/y, from a node with label
s to a node with label s′, denotes transition τ = (s, x, y, s′).

s1

s2

s3

s4

x/y1

x
/
y 2

x/y1

x/y
2

x/y2
x/y1

x/y1

x
/
y
2

Figure 1: Example FSM M1.

The behaviour of an FSM M is defined in terms
of the labels of walks leaving the initial state; such la-
bels of walks are called traces. A walk ρ of M is a se-
quence (s1, x1, y1, s2)(s2, x2, y2, s3) . . . (sk, xk, yk, sk+1) of
consecutive transitions and ρ has starting state s1, ending
state sk+1, and label x1/y1 . . . xk/yk. For example, ρ1 =
(s1, x, y1, s1)(s1, x, y2, s2)(s2, x, y2, s3) is a walk of M1; ρ1
has starting state s1, ending state s3, and label x/y1 x/y2 x/y2.
Here x/y1 x/y2 x/y2 is a trace of M1.

We can extend the notion of an input being defined in
state s to input sequences as follows.

Definition 2.2. Input sequence x̄ is defined in state s of M if
either x̄ = ε or x̄ = x̄′x for input sequence x̄′ and input
x such that the following conditions hold:

1) x̄′ is defined in state s; and
2) x is defined in every state s′ of M that is the ending

state of a walk ρ of M that has starting state s and a
label whose input portion is x̄′.

FSM M defines the language L(M) of labels of walks
with starting state s0 and LM (s) denotes the language
obtained if we make s the initial state. Thus, LM (s) =
{x1 . . . xm/y1 . . . ym ∈ X∗/Y ∗|∃s1, . . . , sm+1.s1 = s∧∀1 ≤
i ≤ m.(si, xi, yi, si+1) ∈ h}. For example, x/y1x/y2 ∈
LM1

(s1). Given S′ ⊆ S, LM (S′) = ∪s∈S′LM (s) is the
set of traces that can be produced if the initial state of
M is in S′. Given state s and input sequence x̄ we use
M(s, x̄) = {σ ∈ LM (s)|i(σ) = x̄} to denote the set of traces
in LM (s) that have input portion x̄. Given state set S′ ⊆ S,
M(S′, x̄) = ∪s∈S′M(s, x̄) denotes the set of traces that can
result from applying x̄ to a state in S′.

States s, s′ of M are equivalent if LM (s) = LM (s′) and
FSMs M and N are equivalent if L(M) = L(N). FSM M
is minimal if there is no equivalent FSM with fewer states.
FSM M is strongly connected if for every ordered pair (s, s′)
of states, M has a walk with starting state s and ending state
s′. As usual, in this paper we consider only minimal FSMs.
This is not a restriction since an (observable) FSM can be
rewritten to an equivalent minimal FSM in polynomial time
using any technique that minimises a deterministic finite
automaton.

3 K-UIOS AND UNIQUE-PREDECESSORS

In this section, we initially define K-UIOS and we then
generalise the notion of a unique predecessor [33].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 3

Definition 3.1. Given FSM M , an input sequence x̄ is a
unique input output sequence for state s of M if x̄ is defined
in all states of M and M(s, x̄) ∩M(S \ {s}, x̄) = ∅.

As discussed in Section 1, during testing we may prefer
to have UIOS that lead to a limited number of traces (say K
traces) and now we define what it means a UIO to be a K-
branching UIO sequence.

Definition 3.2. Given FSM M , input sequence x̄ is a K-
branching UIO (K-UIO) for state s of M if x̄ is a UIO
for s and |M(s′, x̄)| ≤ K for all s′ ∈ S.

We now define the problem investigated in this paper.

Definition 3.3. The K-UIO problem is to decide whether
state s of an ONFSM has a K-UIO.

Naik [33] introduced unique-predecessors for use in
generating UIOS for a DFSM. Given transition (s, x, y, s′)
of DFSM D, s is a unique-predecessor of s′ if (s, x, y, s′) is
the only transition of D that has input x, output y, and
ending state s′. This has the following useful property: if x̄
is a UIO for s′ then xx̄ is a UIO for s. As a result, once a
UIO has been found for a state, it may be possible to use
unique-predecessors to generate UIOS for other states of
D. The following definition is provided in [33] and we use
the term det-unique predecessor to distinguish it from the
generalised notion below.

Definition 3.4. Let us suppose that D is a DFSM with state
set S. Given state s ∈ S, state s′ ∈ S \ {s} is a det-
unique predecessor for s if there exists a transition τ with
start(τ) = s′, end(τ) = s and label(τ) = x/y such that
there exists no transition τ ′ 6= τ with end(τ) = s and
label(τ) = x/y.

We would like to define a similar notion for FSMs and
K-UIOS but this is complicated by non-determinism and
the need to bound the size of the M(s′, x̄). The following
generalisation allows non-determinism but, in using this,
we will require that an input sequence x̄ is a UIO for all
states in a set S′ (the states reached by x).

Definition 3.5. Given S′ ⊆ S, state s is a unique predecessor
of S′ through input x if the following hold.

1) S′ = {s′′ ∈ S|∃y ∈ Y.(s, x, y, s′′) ∈ h}.
2) For all s1 ∈ S′ and y ∈ Y such that (s, x, y, s1) ∈

h, there does not exist s2 ∈ S \ {s} such that
(s2, x, y, s1) ∈ h.

The first condition requires that S′ is the set of states
reached from s by x. Let us suppose that we apply x in state
s, observe output y, and M moves to s′ ∈ S′. The second
condition of Definition 3.5 tells us that in order to show that
we started in s it is sufficient to show that s′ was the state
reached by x. The following is clear.

Proposition 3.1. If s is an S′ unique predecessor through
input x, and for all s′ ∈ S′ we have that x̄ is a UIO for
s′, then xx̄ is a UIO for s.

Let us suppose that s is a unique predecessor of S′

through x and this property of x is to be used in generating
K-UIOS. Further, let us suppose that x̄ is a K-UIO for
all states in S′. We need to place an upper bound on the
number of output sequences that can result from applying

xx̄ in a state of M . Such an output sequence is formed from
an output in response to x and then an output sequence
in response to x̄. We are thus interested in the following
value, which we call the output branching degree of x:
obdM (x) = maxs∈S |{y ∈ Y |∃s1 ∈ S.(s, x, y, s1) ∈ h}|.

We can now show how unique predecessors can be used
to generate additional K′-UIOS.

Proposition 3.2. If s is an S′ unique predecessor through
input x, and for all s′ ∈ S′ we have that x̄ is a K-
branching UIO for s′, then xx̄ is a K′-branching UIO
for s where K′ = obdM (x) · K.

4 COMPLEXITY OF THE K-UIO PROBLEM

In this section, we consider the computational complexity of
the K-UIO problem. First we derive an upper bound on the
length of a shortest K-UIO for a state s of an FSM M . This
upper bound will be used in reasoning about the complexity
of deriving K-UIOS and we do not claim that it is a tight
upper bound.

In the following, given a state s of M we let Walks(s)
denote the set of walks of M that have starting state s and
given a walk ρ we let label(ρ) denote the label of ρ and
end(ρ) denote the end state of ρ.

Lemma 4.1. A state s of an FSM M has a K-UIO if and only
if it has a K-UIO of length no greater than nnK2nK.

Proof: Let us suppose that x̄ = x1 . . . xm is a shortest
K-UIO for s. Let R = M(s, x̄) = {σ1, . . . , σk} so k ≤ K.

For σi ∈ R and 1 ≤ j ≤ m let pre(σi, j) denote the
prefix of σi of length j. Further, we will let s(i, j) denote
the unique state of M reached from s by a walk with label
pre(σi, j) and let C(i, j) denote the set of states reached
from states in S \ {s} by walks with label pre(σi, j). We
therefore have that s(i, j) is the unique state of M such that
there exists ρ ∈ Walks(s) with label(ρ) = pre(σi, j) and
end(ρ) = s(i, j). In addition,

C(i, j) =

{

s′ ∈ S|∃s1 ∈ S \ {s}, ρ ∈ Walks(s1).
label(ρ) = pre(σi, j) ∧ s′ = end(ρ)

}

Given s′ ∈ S \{s} let D(s′, j) denote the tuple of ending
states of walks from s′ whose label is in M(s′, x1 . . . xj) \
M(s, x1 . . . xj). D(s′, j) is a tuple, rather than a set, since we
wish to distinguish between two different walks that reach
the same state (we use the D(s′, j) to check that the bound
K is respected).

Now consider some 1 ≤ j < ℓ < m and prefixes
x1 . . . xj and x1 . . . xℓ of x̄. Since x̄ is a K-UIO, xℓ+1 . . . xm

distinguishes s(i, ℓ) from all states in C(i, ℓ). Thus, if
for all 1 ≤ i ≤ k we have that s(i, j) = s(i, ℓ) and
C(i, j) = C(i, ℓ) then x1 . . . xjxℓ+1 . . . xm is a UIO for s.
In addition, if D(s′, j) = D(s′, ℓ) for all s′ ∈ S \ {s}
then |M(s′′, x1 . . . xjxℓ+1 . . . xm)| ≤ |M(s′′, x1 . . . xm)| for
all s′′ ∈ S and so x1 . . . xjxℓ+1 . . . xm is a K-UIO for s.
This contradicts the minimality of x̄. Thus, for all 1 ≤ j <
ℓ < m there is some i such that either s(i, ℓ) 6= s(i, j),
C(i, ℓ) 6= C(i, j), or there exists s′ ∈ S \ {s} such that
D(s′, j) 6= D(s′, ℓ). The length of x̄ is thus bounded above
by the number of possible values for the D(s′, j) and
(s(1, j), C(1, j), s(2, j), C(2, j), . . . , s(k, j), C(j, k)).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 4

Given 1 ≤ i ≤ k, there are n possible values for
s(i, j) and no more than 2n (the number of subsets of S)
values for C(i, j). Each D(s′, j) contains at most K states
and so there are at most nK values for a D(s′, j) and at
most n(n−1)K values for the set of D(s′, j). Thus, there
are at most (n2n)kn(n−1)K = nk+(n−1)K2nk possible val-
ues of (s(1, j), C(1, j), s(2, j), . . . , s(k, j), C(j, k)) and the
D(s′, j). The result follows from k ≤ K.

We can now reason about the space a non-deterministic
Turning Machine might use.

Proposition 4.1. It is possible for a non-deterministic Turing
Machine to decide whether a state s of M has a K-UIO
in O(nK log n) space.

Proof: We will describe such a non-deterministic Tur-
ing Machine and this will guess one input at a time. It will
maintain a list of tuples of the form (s′, C) (C ⊆ S) such that
if the current guessed input sequence is x̄ = x1 . . . xj then
there is a possible trace σ ∈ M(s, x̄) such that if M started
in s and σ has been observed then M must now be in s′

and C is the set of states that M might be in if σ has been
observed and M did not start in s. More formally, there is a
walk ρ ∈ Walks(s) with s′ = end(ρ) and σ = label(ρ) and
C = {s2 ∈ S|∃s1 ∈ (S \ {s}), ρ′ ∈ Walks(s1).label(ρ

′) =
σ ∧ s2 = end(ρ′)}. A tuple (s′, C) can be stored in O(n)
space. In each iteration, a next input is guessed and the
tuples are updated in the natural way. If the number of
tuples exceeds K then the process terminates with failure;
if all of the C are empty then a K-UIO has been found. The
space required to store the tuples is of O(nK).

In addition, for each state s′ ∈ S \ {s}, the Turing
machine records the tuple P (s′) of states of M reached from
s′ by walks whose label has input portion x̄. As before, P (s′)
is a tuple and not a set (we wish to know the number of
walks that reach each state). The computation terminates
with failure if the size of a P (s′) exceeds K and so the set of
P (s′) take at most nK space.

We add counter c to count the number of iterations;
the Turing Machine terminates with failure if the counter
exceeds bound nnK2nK (Lemma 4.1). This counter takes
O(log(nnK2nK)) = O(nK log n) space. Thus, the overall
space is of O(nK log n).

The space requirements are bounded above by a poly-
nomial in n and K. However, the complexity is exponential
in terms of the size of the representation of K, which takes
O(logK) space. We obtain the following.

Theorem 4.1. The problem of deciding whether a state has a
K-UIO is in EXPSPACE and is PSPACE-hard.

Proof: First, by Proposition 4.1 we know that a non-
deterministic Turing Machine can solve the problem in ex-
ponential space. Since non-deterministic EXPSPACE is equal
to deterministic EXPSPACE [42], we have that the problem
is in EXPSPACE.

We now show that the problem is PSPACE-hard. Con-
sider the case where M is deterministic and we have that
K = 1. Then there is a K-UIO for state s of M if and
only if there is a UIO for s. Thus, any algorithm that can
decide whether a state s of M has a K-UIO can also be
used to decide whether a state of a DFSM has a UIO. Since
the problem of deciding whether a state of a DFSM has a

UIO is PSPACE-hard, we have that the problem of deciding
whether a state s of M has a K-UIO is also PSPACE-hard.
The result thus follows.

In practice, we are likely to restrict K to being relatively
small, with this motivating the following result.

Theorem 4.2. If K is bounded above by a polynomial in
terms of n then the problem of deciding whether a state
s of M has a K-UIO is PSPACE-complete.

Proof: First, by Proposition 4.1 we know that a non-
deterministic Turing Machine can solve the problem in
O(nK log n) space. Since K is bounded above by a poly-
nomial in terms of n, there is a polynomial upper bound on
the space and so the problem is in PSPACE.

The problem being PSPACE-hard follows in the same
manner as the proof of Theorem 4.1

5 OVERVIEW OF THE HI-DFS ALGORITHM

In this section, we describe how ideas from GPU Comput-
ing were used to devise a novel algorithm (Hi-DFS) for
generating K-UIOS from an FSM. We start by describing
the intuition behind the proposed algorithm and then we
explain the algorithm in detail.

To compute K-UIOS, it is important to reduce the space
requirements to support scalability; to provide an efficient,
GPU friendly representation for the data; and to use effec-
tive, parallelisable methods. These observations led us to in-
troduce a novel hash-based iterative depth-first-search approach
to find K-UIOS.

The naı̈ve approach to derive UIOS from an FSM, is
to use breadth first search to construct a tree structure
(successor tree) [33]. For every node of such a tree,
there are at most |X||Y | outgoing edges and so there may
be exponentially many nodes in the tree, which can lead to
the usage of very large memory space and hence can reduce
the scalability of the underlying algorithm.

In order not to construct such a tree, recently Hierons
and Türker [34] proposed a parallel UIO generation al-
gorithm for DFSMs. In their algorithm, a UIO for a state
is computed by sorting outputs produced by the states of
the FSM as a response to an input sequence. Note that
for DFSMs, if an input sequence is applied to a state, we
may observe only one output sequence that takes the FSM
to exactly one state. Thus, after sorting, by checking the
neighbouring output sequences, one can state whether an
output sequence is unique. If it is unique then we can
declare that the associated state is distinguished from others
[35]. However, the above approach cannot be used with
ONFSMs since we may observe more than one output
sequence from a state. To handle this problem, we use a
hash based approach to reveal distinguished states.

The proposed algorithm receives an ONFSM M and
three integers B,D and K as its inputs. Then the algorithm
executes the following steps.
Step 1) Extracting unique predecessor information: The
algorithm investigates the transition structure of the under-
lying FSM to reveal unique predecessors.
Step 2) Generating input sequences: The Hi-DFS algorithm
searches for K-UIOS using Depth First Search (DFS). To do
this, the algorithm generates B different input sequences of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 5

length D. The input sequences to be applied during DFS are
generated in such a way that throughout the execution the
same input sequence cannot be applied to set S more than
once and if the algorithm uses an input sequence x̄ then x̄
is applied to all states of the FSM (to check whether x̄ is a
K-UIO).
Step 3) Applying DFS: The Hi-DFS algorithm performs a
number of (maximum is B) DFSs to the states of M in
parallel. To do so, we use S to denote the multi-set of copies
of the states of the underlying FSM i.e., S contains multiple
copies of S; these will be processed in parallel and we have
that |S| ≤ B. The essential idea is that we apply different
input sequences to the sets of states of M in parallel. To
do so, the algorithm applies generated inputs to the sets of
states in multi-set S. While doing this, it stores the outputs
and reached states (i.e., current states). The algorithm stops
applying a DFS, if the number of traces from a state s
exceeds K or there exists no defined transition to which to
apply DFS.
Step 4) Gather the result of DFS: The algorithm may collect
multiple (at most K) traces from a state. When determining
whether a state has been distinguished, we need to compare
its traces with the traces from other states. Following a naı̈ve
approach that relies on a successor tree, we need to compare
K traces of length D for s to K traces of length D for all
states (n). This requires O(nK2D) steps for a single state.

In this paper, we introduce a novel massively parallel
hash based method to check whether a state is distin-
guished. If there are enough computing cores then the
time required to reveal distinguishing information for all
states in S is O(nKDlog(nKD)). We describe the method
in the next section. If a K-UIO has been computed, by
using the predecessor information, the algorithm searches
for additional UIOS.
Step 5) Deciding next step: When the algorithm finishes
analysing the outcome of DFSs, the algorithm will follow
one of the following steps:

• Continue from step 2: if not all K-UIOS are found
and not all input sequences have been derived yet.

• Terminate otherwise.

Please see Algorithm 1 for details.

6 LOW LEVEL DESCRIPTION OF HI-DFS

The proposed algorithm first generates unique predecessor
information. Afterwards it starts to generate K-UIOS. We
will use the FSM and the input parameters in Figure 2 to
show how the Hi-DFS algorithm works.

6.1 Constructing unique predecessors information

Unique predecessor information is constructed in two steps.
First, for each state s and input-output pair x/y, we count
the number of transitions that end in s and have label x/y,
recording this information in a Counter Vector CV. The basic
idea is that for state s, the counter vector has a vector (an
input/output vector (IOV)) CV (s) = re of integers. This IOV
re has size |X||Y | and the element of re with index x/y
holds the number of transitions that end at s and have label
x/y.

Algorithm 1: K-UIO generation algorithm, high-
lighted instructions are executed by GPU.

Input: FSM M with S,X and Y , positive integers B,K and D

Output: A set (U) of K-UIOS for M
begin

1 Initialize counter (CV), input output (IOV) vectors, unique
predecessor table (UPT) and set of K-UIOS U

2 Create a forest vector element e and initialize it as eS = S and
Γ = ∅

3 Initialize a forest vector FV ← e

4 UniquePredecessorGenKernel(M,CV, IOV, UPT)
5 while true do
6 Ω←GetInputs(B,D, FV) such that b← |Ω|, and b ≤ B

7 if All states have K-UIOS or b = 0 then
8 Return U

9 Create a block vector B ← {∆1,∆2, . . . ,∆b}
10 i← 0
11 DFSKernel(B, D,K)
12 foreach ∆ of B do
13 Ψ∆ ← {χ̄r1, χ̄r2, . . . , χ̄rn}
14 Sort(Ψ∆)
15 Ū ←Hash(Ψ∆)
16 UniquePredecessorKernel(Ū, UPT)
17 U ← U ∪ Ū

s1 s2

s3s4

x1/y1
x1/y0

x
2 /y

1

x2/y0

x
1 /y

1

x1/y1, x2/y1

x 2
/y
1

x
1
/y

0

Figure 2: Example FSM M2. Inputs to the algorithm are:
B = 3, D = 2, and K = 2.

The CV is created by the unique predecessor kernel (Line
1 of Algorithm 1). This kernel has one thread for each tran-
sition and the thread associated with transition (s, x, y, s′)
increases (by one) the value that records the number of
transitions that have label x/y and ending state s′. This is
achieved as follows. In the unique predecessor kernel, for
each transition τi, we introduce a single thread ti. Let x/y
be the label and s and s′ the starting and ending states of
τi, respectively. If we use CV to denote the counter vector
then thread ti increments the element of CV (s′), that has
index x/y, by one (note that to prevent race conditions,
this addition must be serial). Thus, for each transition τi
that ends at state s′ and has label x/y, exactly one thread
increases the element of CV (s′) that has index x/y. As a
result, at the end, the element of CV (s′) that has index x/y
records the number of transitions with label x/y that end at
state s′.

In the second step, we use the counter vector CV to fill a
table called the unique predecessor table.

Definition 6.1. A unique predecessor table (UPT) is a table
that records the combinations of starting state s ∈ S,
input/output pair x/y, and ending state s′ ∈ S such
(s, x, y, s′) is a transition of M and there is no other
transition of M with ending state s′ and label x/y.

After all threads have updated the IOV, threads check

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 6

Reached state s1 s2 s3 s4
I x1 x2 x1 x2 x1 x2 x1 x2

O y0 y1 y0 y1 y0 y1 y0 y1 y0 y1 y0 y1 y0 y1 y0 y1
Unique predecessor s4 s1 − − s1 − − s4 − s2 − − − s3 − −

Table 1: The UPT constructed by the Hi-DFS algorithm for M2.

the values in re (using a loop that iterates |X||Y | times). If
for transition τ that starts at s and ends in s′ the re value
is 1 then s is a unique predecessor for s′ and τ is recorded
in the UPT. Note that for a state s there can be at most
(n− 1)|X||Y | different unique predecessors and so the size
of the UPT is bounded above by n2|X||Y |. Table 1 has the
UPT computed for M2.

6.2 Generating K-UIOS

6.2.1 Generating input sequences

Input sequences are generated on the CPU (Line 6 of Algo-
rithm 1). To perform this step, we keep a vector structure
(forest vector) that keeps a forest of input trees.

Definition 6.2. An input tree Φ is a tree where each node ρ
of Φ labels an element ρ(i) from X such that children of
the root of a subtree Φ′ must have different labels (and
so there may be at most |X| such children). A subtree is
full, if it has exactly |X| children; otherwise it is partial.
(Please see Figure 3 for examples.)

We now define the forest vector (FV).

Definition 6.3. A forest vector (FV) for an FSM is a vector
of elements where each element is associated with an or-
dered set of input trees Γ = {Φ1,Φ2, . . .} with different
root labels, where ordering is done according to the root
labels i.e., Φi precedes Φj if ρ(i) < ρ(j). For M2, the
Hi-DFS algorithm generates the FV in Figure 3.

Let S = {S′0, S
′
1 . . . S

′
B} be a set of sets of states, then

for each set S′ in set S, the Hi-DFS algorithm picks an
input sequence by evaluating the resultant forest Γ: while
the input sequence is of length less than D, the algorithm
randomly picks a partial input tree Φ and finds the root (ρ)
of a shallowest partial sub-tree whose depth is smaller than
D. Afterwards it introduces a child node ρ′ and labels it
with an input x such that ρ does not have a child labeled
by x. If the depth does not reach D (note that the algorithm
should return an input sequence of length D), the algorithm
repeats this step i.e., it introduces a child node ρ′′ to the
node ρ′. This is followed by concatenating the labels of the
nodes on the path from the root of the input tree to the lastly
added fresh node to generate an input sequence w.

As this structure holds the input sequences to be applied,
the memory requirement for a set of states is O(|X|D),
where D is the depth of the DFS.

By the definition and construction of input trees it should
be clear that the Hi-DFS algorithm exhaustively generates
input sequences of length D.

Lemma 6.1. Given an FSM M , integers B,D, and K, and a
set of states S′, the Hi-DFS algorithm generates all input
sequences of length D for S′.

{s1, s2, s3, s4}
x1

x1 x2

x2

x1

Figure 3: An FV constructed during the execution of Hi-DFS
for M2. Generated input sequences are w1 = x2x1, w2 =
x1x1 and w3 = x1x2.

6.2.2 Conducting depth first search

After input sequences are retrieved, the algorithm conducts,
in parallel, B DFSs using these input sequences. To perform
DFS, the algorithm uses what we called a block vector, which
contains a number of trace sequence vectors (TSVs), where
each TSV is a vector of trace sequences. We now define these
terms.

Let us suppose that we have an input sequence x̄ and
we wish to consider what happens when this is applied in
state s of M . There may be multiple possible traces that
can occur and a trace sequence will store certain pieces of
information about one such trace. Specifically, if the input of
x̄ in state s can lead to output sequence ȳ and state s′ then
the associated trace sequence will store s, ȳ, s′ and a counter
whose values is the length of x̄.

Definition 6.4. A trace sequence ν stores a state s, a counter
νc, a string ω formed by concatenating a state s with
an output sequence ō, and a state s′. Thus, ω : S.Y ⋆.S.
We use νu to denote the first state, νr to denote the
output sequence and νk to denote the state that is the
last element of the string.

As noted, the input of x̄ in s might define more than one
trace. Further, we might be considering a set S∆ of states.
Let us suppose that the ‘current’ input sequence (being
considered) is x̄∆. For each s ∈ S∆, a trace sequence vector
will contain the trace sequences defined by M(s, x̄∆). These
trace sequences are stored together as a component of a trace
sequence vector, along with flag F that is set to True if the
algorithm has determined that x̄∆ cannot be extended to a
K-UIOS for S∆.

Definition 6.5. Given input sequence x̄∆ and set of states
S∆, the corresponding trace sequence vector (TSV) ∆ is
a vector such that each element (χ) of the TSV ∆ has a
unique state s ∈ S∆, a boolean variable F, and K trace
sequences such that for each trace sequence ν of χ, we
have that νu = s, x̄/νr ∈ LM (νu), and there is a walk
from νu to νk with label x̄/νr . Initially F is set to false.

Definition 6.6. A block vector (BV) is a vector of TSVs.

During DFS, the algorithm first receives a multi-set of
sets of states S = {S1, S2, . . . , SB} and B input sequences.
Then for each element Si of S the algorithm initiates a TSV

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 7

s1 s2 s3 s4

w1 = x2x1 y1y0 y0y1 y1y0 y1y1

w2 = x1x1

y1y0 y1y1 y1y0
y0y0

y1y1 y1y0
y0y1

w3 = x1x2

y1y1 y1y1 y1y1 y0y1y0y0

Table 2: The traces generated using B = 3 for M2. w2 is not
accepted as it produces more than K = 2 traces.

∆i such that ∆i = {χ1, χ2, . . . , χn} and hence forms a block
vector B i.e., B = {∆1,∆2, . . . ,∆B}. Note that initially each
TSV ∆ has n elements and therefore each BV has BnK trace
sequences.

Following the formation of the BV, the algorithm calls
DFS kernel with κ threads where κ is the maximum number
of trace sequences in B (|κ| = BnK). DFS kernel enters a
loop that iterates D times. In the jth iteration, ti attains
trace sequence (ν) of the corresponding TSV element (χ) of
the corresponding TSV (∆) from B.

In the DFS kernel, thread ti receives the current state
νk, the jth input symbol (x) from the input sequence x̄∆

and the FSM transition structure. Then, the thread enters
a for loop that iterates |Y | times. At iteration y, the thread
checks if there exists a transition leaving νk with input x and
output y. Let us suppose that such a transition is found. If
there exists exactly one transition that leaves νk with input
x, then the thread updates νk with the new current state
and appends y to νr . Otherwise, ti selects an empty trace
sequence ν′ of χ, copies νu to ν′u, νk to ν′k, νr to ν′r , νc to
ν′c and replaces the last element of ν′r with observed output
y′. Finally, ti increments νc and ν′c by one. If νc > K or x is
not defined then the thread sets F to true and the algorithm
blocks all threads that process this sequence. Table 1 gives
the UPTs computed for M2.

6.2.3 Distinguishing states

We introduce a new parallel method to check whether a
state is distinguished. This method uses sort based hashing
to determine whether two states have a common output
sequence in response to an input sequence.

First the algorithm extracts the trace sequences from a
block vector and sorts output sequences to find whether a
state is distinguished using hashing. Let us assume that we
are given a block vector B = {∆1,∆2,∆3 . . .∆B}. Also let
us assume that we have extracted the trace sequences from a
TSV ∆i and form the set Ψ∆i

= {χ̄r1, χ̄r2, . . . , χ̄rn} where
χ̄rj is the set of output portions of traces observed from
a state sj , i.e., χ̄rj = {νr|ν ∈ ∆i ∧ νu = sj} (Line 13 of
Algorithm 1). Note that χ̄ri has at most K trace sequences.

The algorithm checks whether state sj ∈ S′ is distin-
guished as follows. The method first sorts the output por-
tions i.e., Sort(Ψ∆i

) (Line 14 of Algorithm 1). Since there
are at most nK traces a sort requires O(DnKlog(DnK))
steps. Then for each unique output sequence the algorithm
applies a hash function to the output traces and stores them
into a hash table according to the hash values (Line 15 of
Algorithm 1).

Hash Table

...
x
x
x
x

...

Output sequences

...
s2 = y0y1
s1 = y1y0
s3 = y1y0
s4 = y1y1

(a) The result using w1 = x2x1. The hash based
approach indicates that w2 distinguishes states
s2 and s4 from any other state.

Hash Table

...
x
x
x
x

...

Output sequences

...

s1 = {y0y0, y1y1}

aa..s4 = y0y1aa..

aa..s2 = y1y1aa..

aa..s3 = y1y1aa..

(b) The result using w3 = x1x2. The hash based
approach indicates that w3 distinguishes state
s4 only as one trace from state s1 and the trace
from state s2 collides in the hash.

Figure 4: Hashing for w1 and w3 and FSM M2.

We use the term collision if for a hash table element (or
hash element) there is more than one mapping. Thus, sj is
distinguished from all other states of S′ if elements in χ̄j

lead to no collisions. The following is immediate.

Lemma 6.2. Let us suppose that sj ∈ S and we have
retrieved the output portions of the traces from a block
vector ∆i such that χ̄j ∈ Ψ∆i

and there exists no
collisions for all traces from state sj . Then the input
sequence x∆ defines a K-UIOS for sj .

Lemma Lemma 6.2 leads to the following result.

Theorem 6.1. If there exists a K-UIO of length at most D for
s, then the Hi-DFS algorithm finds such a sequence.

For a trace vector ∆, the parallel hash based state distin-
guishing algorithm executes the above procedure. However,
the current implementation does not process all trace vector
in B in parallel1. In Figure 4 we demonstrate how hashing
allows us to distinguish states of M2.

state K-UIOS

s1 Not Exists
s2 x2x1/y0y1
s3 x1x2x1/y1y1y1
s4 x2x1/y1y1

Table 3: The K-UIOS constructed for M2.

When the algorithm computes a K-UIO, it checks unique
predecessors to derive new K-UIOS in parallel. To achieve
this, the algorithm checks the UPT constructed in the first
step. For M2, w1 = x2x1 defines K-UIOS for s2, s4 as there
are no collisions (Figure 4). By using the UPT in Table 1,

1. This might be possible if one has multiple GPUs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 8

we obtain the K-UIO for state s3 (through x1 we reach
state s4). However, the algorithm cannot construct a UIO for
state s1. Note that the unique predecessor for s1 is {s1, s2}.
Although w1 = x2x1 is a UIO for s2 it is not a UIO for s1.
Therefore, because of Definition 3.5, w1 cannot be used to
derive a K-UIO for s1. Moreover, as D is set to 2 and no
input sequence of length 2 can distinguish s1 from others,
the algorithm returns empty set (depicted as Not Exists)
for s1. The results are given in Table 3.

6.2.4 Deciding the next step

The algorithm checks if K-UIOS of some states have been
found in the current level, if so the algorithm stores the
corresponding input sequences in CPU memory. Afterwards
the algorithm decides what to do next. If not all input
sequences of length D have been applied and there remain
states with no K-UIOS, new input sequences are brought to
GPU memory and set S is formed again and the algorithm
continues to search for new K-UIOS. Otherwise, if K-UIOS

have been found for all states or the algorithm cannot gen-
erate new input sequence(s) then the algorithm terminates.

7 EMPIRICAL STUDY

7.1 Experimental Design

The main motivation of the work described was to explore
the notion of K-UIOS for deriving UIOS from ONFSMs.
However, due to the absence of a UIO generation algorithm
for ONFSMs, we modified the UIO generation algorithm
in [33]. We use EA to denote this algorithm2. The EA
algorithm uses a breadth-first search.

While our primary concern is the ability to construct
UIOS, we also recorded the time taken to generate these
UIOS and their lengths. The motivation here is that shorter
sequences tend to lead to cheaper testing.

We use N% and P% to represent the percentage of non-
deterministic and partial transitions, respectively. To see the
effect of K branching, we used a set of test suites each
containing FSMs generated by the tool used in [43].

Recall that r denotes input alphabet size, v denotes
output alphabet size, and n denotes the number of states.
In the first test suite (T1), for each n ∈ {10, 20, . . . , 150}
and K ∈ {4, 8, 16} we constructed 1000 FSMs with r/v ∈
{2/2, 2/4, 2/6, 4/2, 4/6, 6/2, 6/6, 6/6} where N% = 10 and
P% = 10. Thus, T1 contained 120,000 FSMs.

We explored the scalability of the Hi-DFS algorithm by
running it with larger FSMs. In the second test suite (T2),
we fixed the number of inputs/outputs to 6/6 and non-
deterministic and partial transitions to (20, 20). For each n ∈
{300, 600, . . . , 38400} we generated 1,000 FSMs.

There is a threat that the randomly generated FSMs are
unlike real FSM specifications. Therefore, we complemented
the experiments with case studies: FSM specifications from
the ACM/SIGDA benchmarks, a set of FSMs used in work-
shops in 1989–91–93 [44].

The specifications were in the kiss2 format where an
input/output is represented by a sequence in {0, 1,−}∗.

2. The modified algorithm is given in
http://www.gtu.edu.tr/Files/UIO OFSM TR.pdf

Outputs containing − define several transitions. For ex-
ample, a transition (st1, 01, 0−, st2) defines transitions
(st1, 01, 00, st2) and (st1, 01, 01, st2). We found that 32% of
the FSMs were observable and non-deterministic. In order
to use these FSMs we applied a process that produces the
transitions that result from ‘completing’ a transition with a
− symbol. We present properties of these FSMs in Table 4
in which |h| is the number of transitions before the process
was applied and |post(h)| is the number of transitions once
this process has completed.

7.2 Experiment settings and results

We used an Intel Core I7 CPU (Q6850) with 8GB RAM and
NVIDIA TESLA K40 GPU under 64 bit Windows Server
2008 R2. To perform the experiments in an acceptable
amount of time, we set 200s as the limiting time.

7.2.1 The rate of generating UIOS

We investigated the rate of generating UIOS by comparing
the number of times that the algorithms could generate
UIOS for FSMs with varying properties and varying K. Let
α, β denote the numbers of FSMs for which the Hi-DFS and
the EA could construct UIOS, respectively. In Figure 5, we
see the averages of the value β/α for T1. For this we used
K = 4.

When n ≤ 60, the EA could generate UIOS re-
gardless of alphabet size. However, when n ≥ 70 and
r/v = {4/4, 6/4, 6/6} the EA generated UIOS for at
most 85% of the FSMs. When n = 100 and r/v =
{2/2, 4/2, 4/4, 6/2, 6/4} the EA could not generate UIOS

for any FSMs. The EA constructed UIOS for 77% of the
FSMs when 100 < n ≤ 140 where r/v = {2/4, 2/6, 4/6}. In
contrast, with K = 4, the Hi-DFS algorithm could construct
UIOS for all of the FSMs.

7.2.2 Execution time

Figure 6 shows the average execution times under varying
numbers of transition where K ∈ {4, 8, 16}. While both
algorithms require more time as we increase the number
of transitions, the rate of increase appears to be higher for
the EA algorithm. In addition, the EA algorithm could not
generate UIOS when there were more than 800 transitions.
The EA algorithm takes much more time than the Hi-DFS
algorithm. Figure 7 shows the results for just the Hi-DFS
algorithm in order to allow a comparison with different
values of K, showing slightly better performance with lower
values of K. The overall results have important implications.
Although the Hi-DFS algorithm is an exponential algorithm,
the time required to compute UIOS grew slowly with the
number of transitions. While this may largely stem from the
parallel nature of the Hi-DFS algorithm, the computation
time is also affected by K.

7.2.3 Length

In Figure 8, we see mean (generated) UIO lengths under
varying transition sizes and K ∈ {4, 8, 16}. Despite being
fast and capable of generating UIOS, the Hi-DFS algorithm
generated longer UIOS than the EA algorithm. When K = 4,
the Hi-DFS algorithm returns UIOS that are approximately
twice the length on average, though the results are better

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 9

Table 4: Properties of specifications used in the experiments.

Property bbse cse ex2 ex3 ex5 ex7 keyb kirkman lion mark1 planet sand sse styr train4 train11
|S| 16 16 19 10 9 10 19 17 4 16 48 32 16 30 4 11
|X| 128 128 4 4 4 4 128 4096 4 42 128 2048 128 512 4 4
|Y | 22 17 4 4 4 4 4 64 2 5132 9292 129 22 211 2 2
|h| 512 416 13 6 14 13 0 1536 14 0 1664 51072 512 7024 11 19

|post(h)| 5264 6528 249 126 86 105 10266 228864 16 254656 321648 323712 5264 398256 17 31

Figure 5: Average rate of generating K-UIOS for the FSMs in T1.

Figure 6: Mean execution time for FSMs in test suite T1.

when K > 4. The results are as expected since the Hi-
DFS algorithm uses a depth-first search; the breadth-first
EA algorithm algorithm can find shorter UIOS.

7.3 Scalability

Figure 9: K-UIO generation time for FSMs in test suite T2.

Recall that T2 was used to explore scalability as the
number of states increases. Figure 9 provides K-UIO gen-
eration time for T2. For K = 16, the Hi-DFS algorithm could

construct UIOS for n < 9600. The maximum n becomes
19,200 (K = 8) and 38,400 (k = 4). The result are promising;
the Hi-DFS algorithm is 250 times more scalable than the
EA algorithm.

7.4 Benchmark FSMs

We applied the Hi-DFS algorithm and EA to each FSM in
the benchmark. Figure 10 presents the percentages of states
for which the algorithms constructed UIOS. EA was able to
generate UIOS for at most 2 states (12.5%) of FSMs bbse, cse,
sand, sse and styr but constructed UIOS for the remaining
FSMs. So, the EA was capable of constructing UIOS for
56.25% of the FSMs.

On the other hand, when K = 8, the K-UIO algorithm
could construct UIOS for every FSM in the benchmark test
suite. However when K = 4, the K-UIO algorithm could
not generate UIOS for 1 and 2 states of FSMs Mark1 and
Planet respectively as both specifications have K-UIO with
at least 5 traces, i.e., K > 4.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 10

Figure 7: Mean execution time for Hi-DFS under varying transition sizes.

Figure 8: Mean K-UIO length under varying transition sizes.

Figure 10: Percentage of states with generated K-UIOS

(benchmarks).

Figure 11 gives UIO generation time using a log scale
(base 10). The EA algorithm could not finish computation in
200s for bbse, cse, sand, sse and styr. As expected, when K
increased to 8, UIO construction time increased.

Figure 11: K-UIO generation time (benchmarks).

Average UIO lengths are given in Figure 12, with these
not exceeding 6 inputs. We observed that the EA algorithm
generated shorter UIOS than the Hi-DFS algorithm. The
result is similar to that found with randomly generated
FSMs and we believe that this stems from the EA algorithm
using breadth-first search.

Figure 12: Mean K-UIO length (benchmarks).

It has been reported that only one of the benchmark
FSMs (sand) has a distinguishing sequence [43]; distinguish-
ing sequence based test generation techniques cannot be
used for the other benchmark FSMs. In contrast, we were
able to generate K-UIOS and so K-UIOS could form the
basis for test generation for these real FSMs.

7.5 Discussion

Despite the importance of non-determinism, there are not
many algorithms that can generate state identification se-
quences for ONFSMs. A crucial difficulty lies in the fact

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 11

that the number of traces generated from the FSM grows
exponentially, with this clearly affecting scalability. In this
paper, we considered UIOS as state identification sequences,
the concept of K-UIOS allowing us to directly address
scalability. Importantly, in the experiments we found that
we could construct UIOS for randomly generated and real
FSMs, including FSMs for which the EA fails. In particu-
lar, the proposed massively parallel algorithm was able to
construct UIOS for (real or randomly generated) FSMs with
38K states and 400K transitions.

7.6 Threats to validity

Naturally, there are several potential threats to validity. We
start by discussion threats to generalisability, which relate to
the ability to generalise results.

First, consider the randomly generated FSMs. Different
FSMs might lead to different results but we reduced this
threat by generating many FSMs. The FSM (random) gener-
ator has a number of parameters (e.g. number of states) and
it is possible that different values might have led to different
results. In order to (partially) address this we used a number
of different values for the parameters.

A danger with using randomly generated FSMs is that
‘real’ FSMs might be rather different. To reduce this threat
we used benchmark FSMs and found that the results were
similar to those produced using randomly generated FSMs.
However, there would be value in using additional FSMs
from a range of application domains.

Another potential threat is that we might have incor-
rectly implemented the algorithms. To address this we care-
fully tested the code. We also used an existing tool [43] to
check all UIOS generated.

8 CONCLUSIONS

In model based testing, test cases are derived from a
model and then applied to the SUT. Much of the focus
has been on testing from DFSMs but there is an increasing
need to test from observable non-deterministic finite state
machines (ONFSMs). Many algorithms that generate tests
from DFMSs use UIOS and in this paper we extended the
notion of UIOS to ONFSMs and explored the UIO gener-
ation problem for ONFSMs. Non-determinism introduces
a scalability challenge: there may be exponentially many
specified responses to an input sequence. We addressed
this engineering problem by introducing K branching UIOS:
UIOS that can lead to at most K different observations. We
proved that checking K-UIOS existence is PSPACE Com-
plete even if the UIO length is bounded by a polynomial
in the number of states of the ONFSM. We introduced a
massively parallel algorithm for generating K-UIOS, with
experiments showing that this scaled much better than a
classical UIO generation algorithm.

The experiments indicated that the notion of K-
branching helps us make UIO generation more scalable.
One particular line of future work is to extend this to
other important sequences used in test generation such as
adaptive distinguishing sequences, preset distinguishing se-
quences [43] characterizing sets and harmonized state iden-
tifiers [45]. There may also be scope to use SAT solvers or

constraint solvers to generate K-UIOS, potentially adapting
work that generates UIOs [46]. Finally, there would also be
value in additional experiments with FSMs from industry,
ideally using more recent examples. One possible source of
such FSMs was recently identified by researchers who used
FSMs based on intrusion detection [47].

ACKNOWLEDGEMENTS

This work is partially supported by AUS under grant
eFRG18-SET-CEN-49.

REFERENCES

[1] A. Friedman and P. Menon, Fault detection in digital circuits, ser.
Computer Applications in Electrical Engineering Series. Prentice-
Hall, 1971.

[2] A. Aho, R. Sethi, and J. Ullman, Compilers, principles, techniques, and
tools, ser. Addison-Wesley series in computer science. Addison-
Wesley Pub. Co., 1986.

[3] T. S. Chow, “Testing software design modelled by finite state
machines,” IEEE Transactions on Software Engineering, vol. 4, pp.
178–187, 1978.

[4] D. Lee, K. Sabnani, D. Kristol, and S. Paul, “Conformance testing
of protocols specified as communicating finite state machines-
a guided random walk based approach,” IEEE Transactions on
Communications, vol. 44, no. 5, pp. 631–640, May.

[5] D. Lee and M. Yannakakis, “Principles and methods of testing
finite-state machines - a survey,” Proceedings of the IEEE, vol. 84,
no. 8, pp. 1089–1123, 1996.

[6] K. Sabnani and A. Dahbura, “A protocol test generation proce-
dure,” Computer Networks, vol. 15, no. 4, pp. 285–297, 1988.

[7] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley, 1999.

[8] M. Haydar, A. Petrenko, and H. Sahraoui, “Formal verification
of web applications modeled by communicating automata,” in
Formal Techniques for Networked and Distributed Systems FORTE, ser.
LNCS, vol. 3235. Springer-Verlag, 2004, pp. 115–132.

[9] A. Betin-Can and T. Bultan, “Verifiable concurrent programming
using concurrency controllers,” in Proceedings of the 19th IEEE
international conference on Automated software engineering. IEEE
Computer Society, 2004, pp. 248–257.

[10] I. Pomeranz and S. M. Reddy, “Test generation for multiple state-
table faults in finite-state machines,” IEEE Transactions on Comput-
ers, vol. 46, no. 7, pp. 783–794, 1997.

[11] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Relia-
bility, vol. 22, no. 5, pp. 297–312, 2012.

[12] W. Grieskamp, N. Kicillof, K. Stobie, and V. A. Braberman,
“Model-based quality assurance of protocol documentation: tools
and methodology,” Software Testing, Verification and Reliability,
vol. 21, no. 1, pp. 55–71, 2011.

[13] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, “An optimiza-
tion technique for protocol conformance test generation based
on UIO sequences and rural chinese postman tours,” in Protocol
Specification, Testing, and Verification VIII. Atlantic City: Elsevier
(North-Holland), 1988, pp. 75–86.

[14] F. C. Hennie, “Fault-detecting experiments for sequential circuits,”
in Proceedings of Fifth Annual Symposium on Switching Circuit Theory
and Logical Design, November 1964, pp. 95–110.

[15] G. Gonenc, “A method for the design of fault detection experi-
ments,” IEEE Transactions on Computers, vol. 19, pp. 551–558, 1970.

[16] S. T. Vuong, W. Y. L. Chan, and M. R. Ito, “The UIOv-method
for protocol test sequence generation,” in The 2nd International
Workshop on Protocol Test Systems, Berlin, 1989.

[17] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test selection based on finite state models,” IEEE
Transactions on Software Engineering, vol. 17, no. 6, pp. 591–603,
1991.

[18] K. El-Fakih, N. Yevtushenko, and G. v. Bochmann, “FSM-based
incremental conformance testing methods,” IEEE Transactions on
Software Engineering, vol. 30, no. 7, pp. 425–436, 2004.

[19] A. Petrenko and N. Yevtushenko, “Testing from partial determin-
istic FSM specifications,” IEEE Transactions on Computers, vol. 54,
no. 9, pp. 1154–1165, 2005.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING VOL. ??, NO. ??, 2019 12

[20] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yev-
tushenko, “FSM-based conformance testing methods: a survey
annotated with experimental evaluation,” Information and Software
Technology, vol. 52, no. 12, pp. 1286–1297, 2010.

[21] A. T. Endo and A. da Silva Simão, “Evaluating test suite charac-
teristics, cost, and effectiveness of FSM-based testing methods,”
Information & Software Technology, vol. 55, no. 6, pp. 1045–1062,
2013.

[22] A. Aho, A. Dahbura, D. Lee, and M. Uyar, “An optimization
technique for protocol conformance test generation based on UIO
sequences and rural chinese postman tours,” IEEE Transactions on
Communications, vol. 39, no. 11, pp. 1604 –1615, nov 1991.

[23] W. Y. L. Chan, C. T. Vuong, and M. R. Otp, “An improved protocol
test generation procedure based on UIOs,” SIGCOMM Computer
Communication Review, vol. 19, no. 4, pp. 283–294, Aug. 1989.

[24] W.-H. Chen and H. Ural, “Synchronizable test sequences based on
multiple UIO sequence,” IEEE/ACM Transactions on Networking,
vol. 3, no. 2, pp. 152–157, 1995.

[25] S. Guyot and H. Ural, “Synchronizable checking sequences based
on UIO sequences,” in Protocol Test Systems, VIII. Evry, France:
Chapman and Hall, September 1995, pp. 385–397.

[26] H. Motteler, A. Chung, and D. Sidhu, “Fault coverage of UIO-
based methods for protocol testing,” in Proceedings of Protocol Test
Systems VI, 1994, pp. 21–33.

[27] T. Ramalingam, K. Thulasiraman, and A. Das, “A generalization of
the multiple UIO method of test sequence selection for protocols
represented in FSM,” in The 7th International workshop on Protocol
Test Systems, 1994, pp. 209–224.

[28] H. Ural and Z. Wang, “Synchronizable test sequence generation
using UIO sequences,” Computer Communications, vol. 16, no. 10,
pp. 653–661, 1993.

[29] D. Lee and M. Yannakakis, “Testing finite-state machines: State
identification and verification,” IEEE Transactions on Computers,
vol. 43, no. 3, pp. 306–320, 1994.

[30] I. Ahmad, F. Ali, and A. Das, “LANG-algorithm for constructing
unique input/output sequences in finite-state machines,” in Com-
puters and Digital Techniques, IEE Proceedings-, vol. 151, no. 2. IET,
2004, pp. 131–140.

[31] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian, “Comput-
ing unique input/output sequences using genetic algorithms,” in
Formal Approaches to Software Testing. Springer, 2004, pp. 164–177.

[32] ——, “Constructing multiple unique input/output sequences
using metaheuristic optimisation techniques,” IEE Proceedings-
Software, vol. 152, no. 3, pp. 127–140, 2005.

[33] K. Naik, “Efficient computation of unique input/output sequences
in finite-state machines,” IEEE/ACM Transactions on Networking,
vol. 5, no. 4, pp. 585–599, Aug. 1997.

[34] R. M. Hierons and U. C. Türker, “Parallel algorithms for testing fi-
nite state machines: Generating UIO sequences.” IEEE Transactions
on Software Engineering, vol. 42, no. 11, pp. 1077–1091, 2016.

[35] Z. Kohavi, Switching and Finite State Automata Theory. McGraw-
Hill, New York, 1978.

[36] P. H. Starke, Abstract Automata. Elsevier, North-Holland, Amster-
dam, 1972.

[37] K. El-Fakih, R. Dorofeeva, N. Yevtushenko, and G. von Bochmann,
“FSM-based testing from user defined faults adapted to incre-
mental and mutation testing,” Programming and Computer Software,
vol. 38, no. 4, pp. 201–209, 2012.

[38] R. Alur, C. Courcoubetis, and M. Yannakakis, “Distinguishing tests
for nondeterministic and probabilistic machines,” in 27th ACM
Symposium on Theory of Computing, 1995, pp. 363–372.

[39] N. Spitsyna, K. El-Fakih, and N.Yevtushenko, “Studying the sep-
arability relation between finite state machines,” Software Testing,
Verification and Reliability, vol. 17, no. 4, pp. 227–241, 2007.

[40] N. Kushik, K. El-Fakih, and N. Yevtushenko, “Adaptive homing
and distinguishing experiments for nondeterministic finite state
machines,” in Testing Software and Systems, ser. Lecture Notes in
Computer Science, H. Yenigün, C. Yilmaz, and A. Ulrich, Eds.,
vol. 8254. Springer Berlin Heidelberg, 2013, pp. 33–48.

[41] N. Kushik, K. El-Fakih, N. Yevtushenko, and A. R. Cavalli, “On
adaptive experiments for nondeterministic finite state machines,”
International Journal of Software Tools for Technology Transfer, vol. 18,
no. 3, pp. 251–264, 2016.

[42] W. J. Savitch, “Relationships between nondeterministic and de-
terministic tape complexities,” Journal of Computer and System
Sciences, vol. 4, no. 2, pp. 177 – 192, 1970.

[43] R. M. Hierons and U. C. Türker, “Parallel algorithms for gener-
ating distinguishing sequences for observable non-deterministic
fsms,” ACM Trans. Softw. Eng. Methodol., vol. 26, no. 1, pp. 5:1–
5:34, 2017.

[44] F. Brglez, “ACM/SIGMOD benchmark dataset,” Available on-
line at http://www.cbl.ncsu.edu/benchmarks/Benchmarks-upto-
1996.html, 1996, accessed: 2014-02-13.

[45] R. M. Hierons and U. C. Türker, “Parallel algorithms for testing
finite state machines: Harmonised state identifiers and characteris-
ing sets,” IEEE Transactions on Computers, vol. 65, no. 11, pp. 3370–
3383, 2016.

[46] C. Güniçen, U. C. Türker, H. Ural, and H. Yenigün, “Generating
preset distinguishing sequences using SAT,” in Computer and
Information Sciences II, E. Gelenbe, R. Lent, and G. Sakellari, Eds.
Springer London, 2012, pp. 487–493, 10.1007/978-1-4471-2155-
8 62. [Online]. Available: http://dx.doi.org/10.1007/978-1-4471-
2155-8 62

[47] V. Yaneva, A. Kapoor, A. Rajan, and C. Dubach, “Accelerated
finite state machine test execution using GPUs,” in 25th Asia-Pacific
Software Engineering Conference (APSEC 2018), 2018.

Khaled El-Fakih received BS and MS degrees
in Computer Science from the Lebanese Ameri-
can University and a Ph.D. in Computer Science
from the University of Ottawa. He is full professor
at the Department of Computer Science and
Engineering at the American University of Shar-
jah. His research work includes formal testing,
automatic synthesis of distributed systems, opti-
misation and application of genetic algorithms.

Robert M Hierons received a BA in Mathemat-
ics (Trinity College, Cambridge), and a Ph.D.
in Computer Science (Brunel University). He
then joined the Department of Mathematical
and Computing Sciences at Goldsmiths College,
University of London, before returning to Brunel
University in 2000. He was promoted to full
Professor in 2003 and joined The University of
Sheffield In 2018.

Uraz Cengiz Türker is an assistant professor of
Computer Engineering at Gebze Technical Uni-
versity. He received the BA, MSc and PhD de-
grees in Computer Science (Sabanci University,
Turkey), in 2006, 2008, and 2014, respectively.
He worked with Prof. Robert M. Hierons as a
post doctorate researcher at Brunel University
London.

