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Abstract

In life histories with generation overlap, selection that acts differently on different life-stages can

produce reservoirs of genetic variation, for example in long-lived iteroparous adults or long-lived

dormant propagules. Such reservoirs provide “migration from the past” to the current popula-

tion, and depending on the trend of environmental change, they have the potential either to slow

adaptive evolution or accelerate it by re-introducing genotypes not affected by recent selection

(e.g., through storage effect in a fluctuating environment). That is, the effect of generation overlap

is a “double-edged sword,” with each edge cutting in a different direction. Here we use sexual

(quantitative trait) and asexual (clonal) models to explore the effects of generation overlap on

adaptive evolution in a fluctuating environment, either with or without a trend in the mean en-

vironment state. Our analyses show that when environmental stochasticity scaled by strength of

selection is intermediate and when the trend in mean environment is slow, intermediate values

of generation overlap can maximize the rate of response to selection and minimize the adapta-

tion lag between the trait mean and the environmental trend. Otherwise, increased generation

overlap results in smaller selection response and larger adaptation lag. In the former case, low

generation overlap results in low heritable trait variance, while high generation overlap increases

the “migration load” from the past. Therefore, to understand the importance of rapid evolution

and eco-evolutionary dynamics in the wild for organisms with overlapping generations, we need

to understand the interaction of generation overlap, environmental stochasticity, and strength of

selection.

1 Introduction

Life histories that result in generation overlap – that is, iteroparous adults that reproduce at

the same time as some of their offspring, or semelparous adults that produce propagules with

prolonged dormancy that emerge asynchronously – can result in intriguing ecological and evo-

lutionary dynamics. When natural selection acts differently on adult and immature stages, or

differently on dormant and active individuals, subpopulations may possess distinct genotypic

distributions. If the strength or direction of selection varies over time, the result is a reservoir of

genetic variation in either the long-lived iteroparous adults or the long-lived dormant propag-

ules. That reservoir is a “double-edged sword” with respect to adaptive evolution: it can slow

down adaptive evolution, or speed it up by preserving or re-introducing genotypes adapted to

current conditions that were not exposed to recent selection.

Here we explore the conditions under which each effect dominates the rate of evolution of a

population with generation overlap in a varying environment with a possibly moving adaptive

peak. Because our biological questions center on a population’s ability to adapt to fluctuating or

trending environmental conditions, we measure the speed of trait change in “clock time” rather
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than on a per-generation basis. Our exploration was stimulated by and focuses on long-lived

dormant propagules with selection acting on active stages, though our analyses and general con-

clusions should also apply to populations with iteroparous adults when selection acts mostly

on juvenile stages. The production of long-lived dormant eggs, cysts, spores, or seeds is a

widespread life-history trait in many types of organisms (?) including bacteria (?), fungi (?),

algae (?), rotifers and inland-water crustaceans (???), and a wide range of plant species (??). With

prolonged dormancy, only a fraction of the propagules produced in the previous growing season

hatch (or germinate) in the next season, while the remaining propagules are added to a persistent

dormant subpopulation in sediments or soil (i.e., a propagule, egg, seed, or spore bank), where

they may remain viable for long periods of time (??). This observation, together with the fact

that natural selection on these organisms often fluctuates in direction and magnitude (?), leads

to counter-acting effects on the rate of evolution.

First, dormancy may slow down the speed of evolution for two reasons. Somewhat trivially,

increased generation overlap increases generation time, and response to selection is slower when

generation time is longer. More substantively, evolution under simple directional selection is

slowed because the dormant fraction of the population is not exposed to contemporary selection

pressures (???). Thus, evolutionary dynamics of the population as a whole can be slow despite

strong selection due to introduction of maladapted individuals, depending on the proportion of

individuals in dormant versus active stages, the mean time an egg or seed spends in dormancy,

and the stages upon which selection is acting (i.e., on the dormant stages or on the active stages).

This is one edge of the double-edged sword, and is in essence the effect of migration load slowing

down evolution (??) where migration is in time rather than across space.

Second, dormancy can enable genotypes to survive disadvantageous times and then to “mi-

grate from the past” and influence the current evolutionary response. When the “migrants from

the past” are adapted to the current conditions, for example, in stationary but fluctuating en-

vironments, they facilitate contemporary evolution. This can be very important for population

persistence under environmental change, including through evolutionary rescue, in which ex-

tinction is prevented by rapid adaptive evolution (????). This is the other edge of the sword. This

“second edge” can be especially effective when temporally fluctuating selection promotes the

maintenance of genetic variation (e.g., a temporal storage effect: ???).

Several previous studies have analyzed the “moving optimum” model for directional evolu-

tion when the optimum trait value is continuously moving in one direction, and the population

trait mean tracks the trend with an “adaptation lag” (reviewed in ?). If the optimum trait moves

at a constant rate (i.e., a linear increase or decrease), the lag stays constant after a period of tran-

sient dynamics. Various factors determine the size of the lag between the optimal and mean trait

values, which in turn can determine whether the population goes extinct or is rescued by evo-

lution (??). The moving optimum model can incorporate environmental stochasticity in addition

to the directional change, but most of the above studies did not consider generation overlap. As
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a notable exception, ? considered evolution of quantitative traits in stage-structured populations,

and more recently, ? examined adaptation lag and evolutionary rescue in structured populations.

They found that temporal genetic migration via reproduction by iteroparous long-lived adults

slowed the rate of evolution, increasing the adaptation lag. However, they did not allow fluctuat-

ing selection and so did not consider the potentially beneficial effects of migration from the past

of genotypes adapted to the current environment

To understand how these factors interact and affect the speed of evolution, we use a simple

asexual (clonal) population model developed to describe annual plants with dormant seeds (?)

or zooplankton with dormant eggs (?) as well as a sexual (quantitative genetics) version of the

model and explore the conditions under which generation overlap caused by prolonged dor-

mancy promotes or inhibits rapid evolution. An important difference between the two models

is the potential for evolutionary branching, which creates bimodal trait distributions: it is likely

in the asexual model when environmental variance and generation overlap are high (???), but

unlikely in the sexual model due to continual production of intermediate phenotypes by ran-

dom mating (?). We consider both stationary environments, where conditions in each year vary

randomly around an unchanging mean, and an environment with a steady directional trend su-

perimposed on year-to-year random variation, where populations must evolve to track a moving

optimum phenotype. We find that when environmentally-driven fluctuations scaled by strength

of selection are intermediate, and when the trend in mean environment is slow enough, inter-

mediate values of generation overlap can maximize the selection response and minimize the

adaptation lag between the trait mean and the environmental trend. Otherwise, increased gen-

eration overlap results in a smaller selection response and larger adaptation lag. This suggests

that understanding the interactions between generation overlap, environmental stochasticity, and

strength of selection will be important to predict rapid evolution for organisms in the wild.

2 Models

We constructed and studied two evolutionary models: a clonal model which explicitly tracks the

frequency of different asexual genotypes for a trait subject to fluctuating selection, and a quanti-

tative trait (or “quantitative genetics”) model in which diploid individuals are characterized by

their breeding value for the trait, and trait inheritance follows the standard infinitesimal model

(???). Model simulations were done in R (?) (see Supplementary Information for R scripts to

replicate all figures in this paper).

2.1 Clonal model

We employed one of the simplest models for evolutionary dynamics with generation overlap

(?). The population is assumed to consist of a set of haploid lineages (clones), which breed true

4



for the trait under selection, apart from effect of mutation (described below). Following ?, the

population dynamics (without mutation) are described by

Xi (t + 1) = Xi (t) [HYi (t) + γ] , (1)

where Xi(t) is the abundance of type i individuals in year t, Yi(t) is their per-capita fecundity, and

H (for “hatching”) is the fraction of the population that engages in reproduction (0 < H ≤ 1).

The average survivorship across dormant and active individuals is

γ = Hsa + (1 − H) sd, (2)

where 1− H is the fraction that stays dormant, sa is survival fraction in the active stage, and sd is

survival fraction in the dormant stage (0 ≤ sa, sd ≤ 1). γ is also the amount of generation overlap

at steady state, where the mean population size is constant over time. We assume sa < sd, i.e.,

there is a survival benefit to being dormant, because if there were no benefit, there would be no

reason for dormancy to evolve. Our simulations assume sa ≪ 1 so that most generation overlap is

through dormancy. However, evolutionary dynamics in our models is determined by the overall

value of γ, because we assume that selection affects recruitment and so the trait distribution is

identical (apart from sampling variability) in active individuals and those entering dormancy.

Model simulations tracked the frequency of G genotypes with evenly spaced trait values

(zi+1 − zi ≡ ∆z). Reproduction included mutation to each neighboring genotype with probability

m ≪ 1. With mutation, the dynamics become

~X(t + 1) = U[H~X(t) ◦ ~Y(t)] + γ~X(t), (3)

where ~X = (X1, X2, · · · , XG),~Y = (Y1, Y2, · · · , YG), “◦” denotes the element-by-element product,

and

U =



















1 − m m 0 ... ... 0

m 1 − 2m m 0 ... 0
...

...
...

...
...

...

0 ... 0 m 1 − 2m m

0 ... ... 0 m 1 − m



















. (4)

For per capita fecundity we assume the “saturating yield” model (?),

Yi(t) =
KR(zi − Mt)

∑j HXj(t)R(zj − Mt)
, (5)

where zi is the trait value of type i individuals, Mt is the optimal phenotype in year t, and R is
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the relative fecundity under stabilizing selection,

R(zi − Mt) = exp

[

− (zi − Mt)
2

2σ2
w

]

. (6)

The selection variance σ2
w determines the intensity of selection. The mean and variance of the

temporally varying optimal phenotype, Mt, are µt and σ2
M, respectively. We consider the “sta-

tionary environment” case where µt is constant as well as the “moving trait optimum” case

where µt is changing through time: µt = η(t − t0) where η and t0 are the speed and onset of

the environmental change, respectively (see ? for review of moving optimum models). We as-

sume that fluctuations in Mt is symmetric around µt, without temporal autocorrelation. Note

that the total offspring production ∑i HXi(t)Yi(t) equals K each year, regardless of the popula-

tion state or the value of Mt. Because of this, the total population size X(t) = ∑i Xi(t) satisfies

X(t) = K + γX(t − 1) and therefore converges to the stable equilibrium X̄ = K/(1 − γ). Once

that equilibrium is reached the population each year consists of new recruits and survivors in

constant proportions (1 − γ) : γ.

2.2 Quantitative trait model

As an opposite extreme to the clonal model, we also consider a diploid, hermaphroditic (i.e., co-

sexual) population (e.g., a hermaphroditic plant with a persistent dormant seed bank), in which

the focal trait z is a quantitative trait with transmission dynamics described by the infinitesi-

mal model from quantitative genetics (?). Various versions of the infinitesimal model are based

on a set of nested approximations (?). The central one is that the trait is determined by very

many loci, with allele effects that are small and additive within and across loci. The “Gaus-

sian descendants” approximation adds that the pre-selection breeding values of offspring from

a mating are drawn from a (potentially multivariate) Gaussian distribution with mean equal to

the mean parental breeding value and a variance-covariance structure that only depends on the

relatedness of the parents, regardless of whether selection, mutation, or migration are or have

been occurring. Recent theory has validated the Gaussian descendents approximation, showing

that its error decreases to 0 as the number of loci increases when the loci are unlinked (?). The

“Gaussian population” approximation further states that individuals on a pedigree have breed-

ing values and phenotypes with a multivariate Gaussian distribution whose variance-covariance

matrix depends only on the pedigree; this is the most questionable approximation because se-

lection typically produces non-Gaussian trait distributions, but it is often fairly accurate even

with strong selection for populations with non-overlapping generations (?). Our individual-

based simulations, described below, use the Gaussian descendents approximation (which makes

it sufficient to track the breeding value of each individual, rather than their genotype), but not

the Gaussian population approximation. Some of our model analyses also use the Gaussian

population approximation.
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We assume that individuals differ in heritable trait z but otherwise the population is unstruc-

tured. For simplicity we assume that the trait value equals the breeding value for the trait, i.e.,

that the “environmental” component of the phenotype is zero. This is not much of a restriction,

as a breeding value-dependent fitness function can be defined by integrating the trait-dependent

fitness function over the conditional trait distribution given breeding value. When selection and

the conditional trait distribution are both Gaussian, the result is Gaussian selection on breeding

value (with a wider kernel, implying weaker selection).

We implemented the model as an individual-based simulation with a finite number of indi-

viduals. At the start of each discrete time step, each individual is assigned to be reproductively

active in that time step with probability H, and otherwise stays dormant. K new recruits are

produced at each time step. The father (i.e., male zygote contributor) and mother (female zygote

contributor) of each recruit are chosen at random, with replacement, from the reproductively ac-

tive individuals, with each individual’s probability of being chosen (for either role) proportional

to its trait-dependent fitness R(zi − Mt). As parents are unrelated, the Gaussian descendents

approximation specifies that each offspring’s breeding value is drawn from a Gaussian distribu-

tion with mean equal to the average parent breeding value, and variance V0 (the “segregation

variance”) that is constant across offspring and across time, despite the action of selection.

Dormant and active individuals survive to the next time-step with probabilities sd and sa,

respectively. Survivors and new recruits are then combined to form the starting population for

the next time step. In analyses below where we compare outcomes across different H values, K

varies with H so that the expected total population X̄ = K/(1 − γ) is constant and the degree of

demographic stochasticity does not vary across different values of H.

2.3 Scaling

Without loss of generality, the origin for the trait z is chosen so that E[Mt] = 0 either for all

time (a stationary environment) or prior to the onset of a directional trend. We could also make

σ2
M = 1, or σ2

w = 1, or (in the quantitative trait model) V0 = 1, by scaling z relative to σM, σw,

or
√

V0. We choose not to do this, because it is simpler (for example) to ask what happens as

σ2
w → ∞ (weak selection) instead of asking what happens as σ2

M and V0 converge to 0 such that

σ2
M/V0 remains constant, and easier to interpret the results.

3 Analysis and Results: Quantitative Trait Model

3.1 Stationary Environment

We consider first the situation where the mean environment E(Mt) ≡ 0, and ask what effect

dormancy has on the population’s heritable trait variation and short-term responses to fluctuat-
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ing selection. Let z(t) and σ2
z (t) denote the trait mean and variance in year t, for the combined

population of survivors and new recruits. As in the clonal model, apart from small fluctuations

due to finite population size, the total population size converges to X̄ = K/(1 − γ) consisting

(before selection) of survivors and new recruits in proportions γ : (1 − γ), and we assume that

this has already occurred.

Assuming a Gaussian trait distribution before selection, under Gaussian selection the trait

mean in selected parents (and therefore in their offspring), z̄r, is (?, ch. 9)

z̄r(t + 1) = z̄(t) +
σ2

z (t)

σ2
w + σ2

z (t)
[Mt − z̄(t)]. (7)

Then, combining new recruits with survivors (whose trait mean is still z̄(t)) and defining

a(t) =
σ2

z (t)

σ2
w + σ2

z (t)
, (8)

the trait mean in the next year is

z̄(t + 1) = γz̄(t) + (1 − γ)z̄r(t + 1) = z̄(t) + (1 − γ) a(t) [Mt − z̄(t)] . (9)

This shows one edge of the sword: all else being equal, with higher γ the response to selection

R = z̄(t + 1)− z̄(t) = (1 − γ) a(t) [Mt − z̄(t)] (10)

becomes smaller in magnitude.

The other edge is how generation overlap affects the trait variance. Assuming the set of

potential parents has a Gaussian trait distribution with variance σ2
z (t), under Gaussian selection

the trait variance in selected parents (i.e., the variance of the parental trait distribution weighted

by relative fitness) is (?)
σ2

wσ2
z (t)

σ2
w + σ2

z (t)
= σ2

z (t)[1 − a(t)]. (11)

Note that this does not depend on Mt, because the curvature of log-fitness is constant under

Gaussian selection. Offspring traits in the infinitesimal model are the average of their parents’

traits, plus an independent effect of segregation variance, so the trait variance in new recruits is

σ2
r (t + 1) =

1 − a(t)

2
σ2

z (t) + V0. (12)

To compute σ2
z (t+1) we use the “law of total variance” (if X and Y are random variables, then

Var(X) = E [Var(X|Y)] + Var [E(X|Y)]), with X = z and Y= 0 or 1 to indicate if the individual is
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a recruit or survivor. Then we have

σ2
z (t + 1) = γσ2

z (t) + (1 − γ)σ2
r (t + 1) + γ(1 − γ)[z̄r (t + 1)− z̄ (t)]2

= γσ2
z (t) + (1 − γ)

[

1 − a(t)

2
σ2

z (t) + V0

]

+ γ(1 − γ)a(t)2 [Mt − z̄(t)]2
(13)

Eqn. (??) is nonlinear and depends on the random variable Mt so we cannot analyze it exactly,

but some simple approximations are informative. First, we can take expectations of both sides

conditional on the current value of σz(t). Assume (for the rest of this section) that fluctuations

in Mt are independent over time and symmetric. The model is then symmetric around 0 hence

E[z̄(t)] = 0 and E
[

(Mt − z̄)2
]

= σ2
M + Var(z̄). Making the approximation that a(t) remains

constant at its mean value ā in eqn. (??) and taking the variance of both sides (using the fact

that Mt is independent of the trait distribution), the stationary value of Var(z̄) is found to be

σ2
M(1 − γ)ā/[2 − (1 − γ)ā] and therefore

E
[

(Mt − z̄)2
]

= σ2
M + Var(z̄) ≈ 2σ2

M

2 − (1 − γ)ā
. (14)

Substituting this into (??) we have (approximately)

σ2
z (t + 1) = γσ2

z (t) + (1 − γ)

[

1 − ā

2
σ2

z (t) + V0

]

+
2γ(1 − γ)ā2σ2

M

2 − (1 − γ)ā
(15)

To approximate the long-term behavior we drop the time-dependence in (??) and solve for σ2
z ,

getting

(1 + ā)σ̄2
z = 2V0 +

4γā2σ2
M

2 − (1 − γ)ā
. (16)

With the further (rough) approximation ā = σ̄2
z /(σ̄2

z + σ2
w), (??) is an approximate implicit equa-

tion for σ̄2
z .

Because ā depends nonlinearly on σ̄2
z , in general eqn. (??) can only be evaluated numerically.

However, two limiting cases are tractable. In the limit of very weak selection (σw → ∞), a(t) → 0

and the solution to (??) converges to the correct value for a neutral trait, σ2
z = 2V0. In simulations

(below) we observe that (??) loses accuracy as selection becomes stronger, but surprisingly it

regains accuracy under very strong selection (σ2
w → 0). In that limit a(t) → 1, so the solution of

(??) is

σ̄2
z = V0 +

(

2γ

1 + γ

)

σ2
M. (17)

In the strong selection limit, all selected parents in year t have trait values very near Mt. This

simplification allows an exact analysis (see Appendix ??) which confirms that (??) is the long-term

average trait variance. So under very strong selection, the steady-state average trait variance is

a monotonically increasing function of generation overlap γ. Genetic variation in this case is

composed of variation generated in the current year among offspring as a result of segregation,
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V0, and “migration from the past.” This second term depends on the amount of generation

overlap, γ and the variability in the environment, σ2
M. Without variation in the environment,

migration from the past does not introduce new genotypes and so cannot increase σ2
z .

Numerical solutions of (??) with randomly generated values of σw and V0 (scaling z so

that σM = 1) confirm that the solution is an increasing function of γ: more generation

overlap is predicted to result in higher steady-state genetic variance, as we expect (R script

IterateApproximateVz.R).

Compared with simulations, (??) is most accurate when selection is weak (σw is large) and

loses accuracy as selection becomes stronger (Fig. ??A); as noted above, accuracy is regained for

extremely strong selection. It is also accurate for moderately strong selection when generation

overlap is very low (see Fig. ??). This pattern is related to the fact that several steps in deriv-

ing (??) assume a Gaussian trait distribution at the start of each time-step. Without generation

overlap, trait distributions generally remain close to Gaussian even under strong selection (?),

so (??) is still accurate. But with substantial generation overlap, severely non-Gaussian distribu-

tions can result from large differences between survivor and recruit trait means. The population

distribution can even be bimodal after years when Mt − z̄(t) is large relative to σw.

Eqn. (??) typically over-estimates the average steady-state trait variance in simulations with

high generation overlap (e.g., Fig. ??A). This occurs because (??) over-estimates the selection

response conditional on the trait variance (e.g., Fig. ??B), which results in an over-estimate of

the trait variance generated by recruit-survivor differences (the final term in (??)). To see why

this happens, suppose that the trait distribution at the start of the time step can be approximated

as a mixture of two Gaussians (new recruits and survivors), both on the same side of Mt. Each

component of the mixture will respond to selection with its own trait variance, which is smaller

than the population’s overall trait variance. Hence the selection responses of both components

(and so the overall response) are smaller than in the Gaussian approximations leading to (??).

We can now ask how generation overlap affects the magnitude of response to selection. In a

stationary environment the selection response R has mean 0, so its standard deviation σR is the

RMS (root mean square) response magnitude. From eqns. (??) and (??) we have

σR = (1 − γ)ā
√

E {[Mt − z̄(t)]2} = (1 − γ)āσM

√

2

2 − (1 − γ)ā
. (18)

The RMS response σR falls to 0 as γ → 1 (with little recruitment there is little response). In

the strong selection limit (σ2
w → 0, a(t) → 1), eqn. (??) implies that σR is proportional to (1 −

γ)/
√

1 + γ so the selection response is a steadily decreasing function of generation overlap. In

this limit, the response to selection has become independent of σ2
z because all selected parents

and therefore all recruits have trait values near Mt.

In the weak-selection limit (σ2
w → ∞, a(t) → 0), the stationary trait variance is 2V0 indepen-
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dent of γ (e.g., Fig. ??A, blue and magenta curves). Again the response to selection is always

slowed by greater generation overlap, though for a different reason – “migration from the past”

in this case does not introduce genotypes different from those already present.

These two limiting results suggest that generation overlap will always slow the response to

selection, despite its potentially positive effect on trait variance. Surprisingly, that is not true:

under moderately strong selection, the selection response can be maximized at intermediate

generation overlap (e.g., Fig. ??B).

To understand when this occurs, because (??) is accurate when γ is small we can use it to ask

when σR is an increasing function of γ for γ ≈ 0; this will imply that the RMS response to selec-

tion is largest at intermediate generation overlap. σR is proportional to (1 − γ)ā
√

σ2
M + Var(z̄)

(eqn. ??) where ā and Var(z̄) depend on γ. Using the approximations above for σ̄2
z and Var(z̄),

some straightforward calculus (done using Maxima in QG-IBM-noTrend.max, see Appendix ??)

shows that the condition for this product to be increasing at γ = 0 can be expressed in the form

σM/σw >
√

F(σ2
w/V0), where F is given by eqn. (??). Over a wide range in selection strength

(0.6
√

V0 < σw < 7
√

V0, which goes from weak to moderately strong selection across the trait

scale of segregation variance 2
√

V0),
√

F does not vary greatly (2 <
√

F < 4), so the response to

selection is maximized at intermediate γ if σM > (2 to 4)× σw. Such parameters imply that in a

typical year, any individuals with traits near Mt will have much higher fitness than those with

traits near the long-term trait mean z̄ = 0.

The overall qualitative pattern, then, is that average selection response is largest at interme-

diate levels of generation overlap when there is sufficiently high environmental variability and

sufficiently strong (but not too strong) selection. When selection is very weak or very strong,

or environmental variability is low, generation overlap always slows the response to selection.

A second general pattern is that moment equations that assume a Gaussian trait distribution

become inaccurate when there is nontrivial generation overlap, and generally over-estimate the

response to selection.

3.2 Moving trait optimum

We now consider a population experiencing a directional trend in the optimal phenotype, and

ask how generation overlap affects the population’s ability to track the trend. Specifically, we

assume that µt = E(Mt) equals 0 up to time t0, and thereafter it increases at a constant rate,

µt = η(t − t0), as in ?. Following a transient period, trait evolution “reaches a steady state where

the mean phenotype lags a constant distance behind the changing optimum phenotype” (?, p.

3; we observe the same in our simulations). ? analyzed a model with discrete, nonoverlapping

generations (and phenotypic plasticity). Here we ask how the lag L between the environmental

trend and the trait mean (L = µt − z̄(t)) depends on the generation overlap γ.

At steady state the change in trait mean is exactly keeping pace with the environment trend:
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E [z̄(t + 1)− z̄(t)] = η. Hence from eqn. (??), assuming a Gaussian trait distribution the average

lag L̄ satisfies

η = (1 − γ)E {a(t)[Mt − z̄(t)]} ≈ (1 − γ)E [a(t)]E [Mt − z̄(t)]

= (1 − γ)E [a(t)] [µt − z̄(t)] = (1 − γ)āL
(19)

the “≈” being that correlation between a(t) and (Mt − z̄(t)) is ignored. Thus

L ≈ η

(1 − γ)ā
. (20)

?, eqn. 8a previously derived this result for the case γ = 0 (no generation overlap). So as was true

for selection response R in a stationary environment, the relationship between L and γ depends

on how strongly γ affects ā through its effect on σ̄2
z .

The strong and weak selection limits are again both tractable. In the strong selection limit

(σ2
w → 0), ā → 1 so eqn. (??) predicts that L → η/(1 − γ). An exact analysis of the strong

selection limit (see Appendix ??) confirms that L = η/(1 − γ) and therefore higher generation

overlap always increases the adaptation lag. In the weak-selection limit, ā → 0 as σ2
w → ∞, and

the extension of (??) to the case of a moving trait optimum (see eqn. (??) in Appendix ??) reduces

to

σ̄2
z = 2V0 +

2η2γ

(1 − γ)2
. (21)

Using (??) to approximate ā in (??) gives an approximate adaptation lag. For V0 > η2 (which is

required for the population to persist by adapting to the trend), this approximation predicts that

the adaptation lag is an initially increasing function of γ, but drops as γ → 1 because σ̄2
z diverges

to +∞ (which cannot really be true).

Figures ??A-D show that simulations align well with these asymptotic results, except for weak

selection with very high generation overlap. Because the increase of σ̄2
z as γ → 1 is over-predicted

(by eqn. (??)), the adaptation lag is under-predicted. The inaccuracy of eqn. (??) is again a result

of non-Gaussian trait distributions. The final term in (??) includes the contribution to σ2
z (t) from

the trait difference between recruits and survivors, which (as discussed above) is smaller than

predicted when the trait distribution is non-Gaussian. As a result, simulations consistently do

not exhibit the predicted decrease in adaptation lag when γ is very near 1. As was the case for

selection response R, with very weak or very strong selection the restraining effect of generation

overlap is always dominant.

And again, at intermediate selection the situation can be different. Consider first a situation

where η is very small. The population then tracks the trend closely at all times, and the standing

variation σ2
z (t) and trait distribution (re-centered at µt) are close to what they would be in a

stationary environment. The denominator on the right-hand side of (??) is the inverse of the

coefficient determining the selection response R in a stationary environment (eqn. ??). The
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circumstances where R is maximized at intermediate γ will then be circumstances where L is

mimimized at intermediate γ for small η, discussed above. Fig. ??E,F shows an example, a slow

trend (η = 0.01) starting at t = 1000 with the same parameters as the dotted (red) curve ??B: the

minimal lag (at γ ≈ 0.4) aligns with the largest short-term responses in a stationary environment.

However, the approximation (??) is poor, except at small γ, because selection is strong enough

that the trait distribution is often bimodal. Each year’s selection response is then smaller than

predicted (as discussed above) so the lag is larger than predicted.

The transient period following the start of a trend will initially reflect the population state

in the previously stationary environment. Fig. ??A is an expanded view of the initial response

to a fairly rapid trend (η = 0.05/yr) starting in year 500 for the same parameters as the dotted

(red) curve in Fig. ??B. Each curve in panel A) is the average adaptation lag across 500 replicate

simulations (γ values shown in the figure legend). Initially the greatest lags are at low overlap,

with smaller lags at intermediate and high generation overlap where the trait variation was

highest before the trend. But after 100 years a different long-term pattern has emerged, in which

higher generation overlap implies greater lag.

Fig. ??B illustrates another challenge to a general analysis of adaptation lag under intermedi-

ate selection: approximating how γ affects σ̄2
z . The extension of (??) for η > 0 (Appendix ??) and

the resulting approximate σ̄2
z (eqns. ?? and ??) predict that trait variance is larger when η > 0,

and our simulations (such as the ones plotted in Fig. ??A, B) confirm this for weak selection. But

with stronger selection, σ2
z (t) often actually decreases substantially after the onset of a directional

trend (Fig. ??B).

The erosion of trait variance at high γ is again related to non-Gaussian trait distributions.

When η > 0 the population trait mean gradually moves upward, leaving behind a tail of indi-

viduals who have been dormant for a while and are maladapted when they become active. The

trait distribution therefore develops negative skew when there is high generation overlap (Fig.

??C). The distribution also develops a very fat tail (Fig. ??D; a Gaussian has zero kurtosis). These

departures from Gaussian are enormously larger than what can occur under constant directional

selection on a quantitative trait (standardized skew< 0.05 and kurtosis< 0.01, ?). Large negative

skew combined with positive directional selection can produce a negative value of the quadratic

selection differential C, leading to a decrease in trait variance (see ?, eqn. 23 and Appendix ??).

In terms of our approximations, the effect of negative skew is that the trait variance in selected

parents is lower than the value (??) that would occur with a Gaussian trait distribution (see Fig.

??) because the wide left tail is chopped off by selection.

The reduced trait variance flattens the positive relationship between γ and σ̄2
z , so that the

relationship between γ and adaptation lag is dominated by the (1 − γ) factor in (??). Individual-

based simulations with many randomly-generated parameter sets (described in Appendix ??)

confirm the generality of the pattern in Fig. ??: except when the trend is slow enough to track

closely, the adaptation lag is an increasing function of γ, all else being equal.

13



3.3 A triple-edged sword? Evolutionary modification of segregation variance

Heritable variation among offspring from a mating, measured by the segregation variance V0,

injects new heritable variation into the population each year. In the infinitesimal model the value

of V0 results from mutation-drift balance (?, Chapter 16). New mutations generate heritable

variation; drift (in this context) is new allelic identity by descent resulting from random mating

in a finite population, which reduces heritable variation. Thus V0 is an “exogenous” parameter

in the infinitesimal model, affecting evolution but not affected by it. However, the value of V0

is actually a potential target of selection through evolution of the mutation rate, providing yet

another mechanism whereby generation overlap and fluctuating selection can promote heritable

variation (?).

To explore this possibility in a simple model, we assume that segregation variance itself is

a quantitative trait (specifically, offspring inherit the average of their two parents’ V0 values,

plus lognormal “segregation variance” with standard deviation 0.05 on log scale). This model is

mechanistically indefensible. However, as an add-on to a model for flowering strategy evolution

it exhibited the same long-term behavior as a mechanistic model where the mutation rate at loci

affecting z is evolvable (?, Appendix H), probably because the averaging of parental V0 values

approximates the statistical outcome of matings between individuals with different mutation rate

genotypes.

Given enough time, evolution of V0 can substantially flatten the relationship between gener-

ation overlap and adaptation lag (Fig. ??A,B). With higher generation overlap and higher initial

lag, there is increasing selection for larger V0 (Fig. ??C) which allows the population to better

track the environmental trend (Fig. ??D).

As in ? the time scale of V0 evolution is very long, much longer than a steady environment

trend could really continue. In this simulation the slow evolution is in part due to weak selection

(σw = 2), but even with strong selection V0 adapts very slowly except when generation overlap

is low and adaptation lag is small (Fig. ??). At higher generation overlap the adaptation lag

is larger, but nontrivial changes in V0 require thousands of generations (or even more when

the environment is stationary, Fig. ??). Moreover, these simulations assume that changes in

V0 are cost-free, whereas an increased mutation rate would probably result in more uniformly

deleterious mutations. Because of all these caveats, we view this section mainly as a cautionary

reminder that V0 (and mutation rate in our clonal model) are not really “exogenous” parameters.

They are likely to be products of natural selection, with the benefits of elevated mutation rate

depending on the amounts of environmental variability and generation overlap.
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4 Clonal Model

In a stationary environment, the clonal model’s trait distribution is strongly affected by the

evolutionary branching that occurs when γσ2
M exceeds σ2

w (???). When generation overlap γ

and/or environmental variance σ2
M are low, there is a monomorphic ESS (evolutionarily stable

strategy) trait value, equal to the mean trait optimum. In our simulations, mutations blur the ESS

into a trait distribution with positive (but small) variance which can respond to selection. As γ

and σ2
M increase the ESS branches into an ESC (evolutionarily stable combination; ??) consisting

of two widely separated phenotypes (and possibly more as γ and σ2
M become larger), symmetric

about the mean trait optimum (because selection and the distribution of Mt are both symmetric,

by assumption). These two situations need to be analyzed separately. Because the evolutionary

branching is driven by σ2
M and γ, we study the clonal model using these (rather than σw and γ)

as our “control parameters”.

4.1 Analysis: one-phenotype trait distribution

When the trait distribution has small variance, the response to selection in model (??) can be

approximated as in the Appendix of ?,

R = z̄(t + 1)− z̄(t) = σ2
z (t)

1

Wt

∂W (zi, z̄(t), t)

∂zi

∣

∣

∣

∣

zi=z̄(t)

(22)

where W (zi, z̄, t) is the fitness of a trait-value zi individual in a population with trait mean z̄ in

year t, and Wt is population mean fitness in year t. This is eqn. (A6) in ? except that we use Wt

instead of approximating it by W(z̄(t), z̄(t), t).

With the saturating yield function for recruitment, Wt ≡ 1 once the total population size has

converged to X̄. In model (??) we have

W (zi, z̄(t), t) =
Xi(t + 1)

Xi(t)
= HY (zi, z̄(t), t) + γ. (23)

The per capita fecundity Y (eqn. ??) depends on the entire trait distribution, but as a first

approximation, we can compute the denominator if all individuals have the mean trait value.

This gives (for total population at X̄)

Y (zi, z̄(t), t) ≈ KR (zi − Mt)

HX̄R (z̄(t)− Mt)
=

(

1 − γ

H

)

R (zi − Mt)

R (z̄(t)− Mt)
. (24)

Substituting (??) and (??) into (??), we have

R ≈ σ2
z (t) (1 − γ)

R′ (zi − Mt)

R (z̄(t)− Mt)

∣

∣

∣

∣

zi=z̄(t)

=
σ2

z (t) (1 − γ)

σ2
w

[Mt − z̄(t)] . (25)
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This is in effect a small variance (equivalently, weak selection) approximation to eqn. (??), drop-

ping σ2
z (t) from the denominator of a(t). As in the quantitative trait model, we see the “double-

edge”: higher generation overlap decreases (1− γ) but often increases σ2
z (t), so it can be the case

that intermediate values of H and γ maximize the response rate.

The variance dynamics in a stationary environment (E(Mt) ≡ 0) can be approximated as in

the quantitative trait model, giving

σ2
z (t + 1) ≈ γσ2

z (t) + (1 − γ)

[

σ2
z (t)

(

1 − σ2
z (t)

σ2
w

)

+ V0

]

+ γ(1 − γ)
σ4

z (t)

σ4
w

[Mt − z̄(t)]2 (26)

where V0 is the offspring trait variance due to mutation (mutation rate 2m times the squared

difference between adjacent genotypes: V0 = 2m(∆z)2). The differences from (??) are due to the

small-trait-variance approximation of a(t), and uniparental rather than biparental inheritance.

The resulting approximate condition for the steady-state trait variance, analogous to (??), is

(1 + b̄)σ̄2
z = V0 +

2γb̄2σ2
M

2 − (1 − γ)b̄
(27)

where b(t) = σ2
z (t)/σ2

w. With a trending optimum, as in the quantitative trait model the steady-

state adaptation lag is characterized by E(R) = η, giving in this case

L ≈ η

(1 − γ)b̄
. (28)

analogous to (??).

In the ESS case we can alternatively use Gaussian approximations for the clonal model, as we

did for the sexual quantitative trait model. Doing so produces exactly the same results as above,

except that b(t) is everywhere replaced by a(t) = σ2
z (t)/(σ

2
w + σ2

z (t)).

4.2 Analysis: two-phenotype trait distribution

Now we consider the situation where the trait distribution is approximately bimodal at the two-

phenotype ESC z = ±zs that arises when γ and σ2
M are high enough to maintain trait variation

through the storage effect.

We first need to approximate the steady-state value of σ2
z (t). From ? we know that the zs is

largely independent of γ, unless γ is close to the threshold for evolutionary branching – it only

depends on σ2
M and σ2

w. In the following, we assume that zs is independent of γ. σ2
z (t) is then

determined by the fraction of type zs year t, and σ̄2
z is determined by the distribution of that

fraction.

At the two-type ESC, a good approximation is that all reproduction in any one year is done

by whichever type is closest to Mt (?) – which is a kind of strong selection limit. So if n1 is the
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number of type zs in the population, we have

n1(t + 1) = KB(t) + γn1(t), (29)

where B(t) is 0 or 1 with equal probability. Taking the variance of both sides (recall that B(t) and

n1(t) are independent) and solving, the stationary variance of n1 is 0.25K2/(1 − γ2). The total

population is K/(1 − γ), so defining p to be the fraction of type zs in the population we have

Var(p) =
0.25K2

1 − γ2

(1 − γ)2

K2
= 0.25

(

1 − γ

1 + γ

)

. (30)

Hence increasing generation overlap gives lower variance in the population composition, as ex-

pected.

Conditional on p the trait variance is 4z2
s p(1 − p) so the expected trait variance is 4z2

s E[p(1 −
p)]. Using (??) and E(p) = 0.5 by symmetry, we find E[p(1 − p)] = 0.5γ/(1 + γ), so

σ̄2
z ≈ 2z2

s γ

1 + γ
. (31)

The selection response implied by (??) is

R = z̄(t + 1)− z̄(t) = 2zs(1 − γ)[B(t)− p(t)]. (32)

We again use σR, the standard deviation of R, as a measure of the average magnitude of

response. As B and p are independent, combining (??) with (??) we get

σR =

√
2(1 − γ)zs√

1 + γ
(33)

which is monotonically decreasing in γ. As in the quantitative trait model, a strong selection limit

removes one “edge of the sword”, because all selected parents have a single value determined

by Mt regardless of the overall trait distribution. The slowing effect of generation overlap is then

dominant.

In a nonstationary environment, if the mean trait optimum moves slowly enough for the pop-

ulation to track it closely, the trait distribution (in simulations) remains bimodal. If the standing

genetic variation allows the two trait modes to move in parallel with the mean trait optimum,

the trait difference between the two modes, and the fluctuations in their relative frequencies, are

(approximately) the same as they are in a stationary environment. The trait variance is then still

approximated by (??), and substituting this into (??) the adaptation lag is approximated as

L̄ ≈
(

σ2
wη

2zs

)

1 + γ

γ(1 − γ)
. (34)
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Because the two-type ESC does not have small trait variance as assumed in (??), eqn. (??) can

only be justified as a weak-selection approximation. If we assume that zs is independent of γ,

(??) predicts that the adaptation lag is minimized at γ =
√

2 − 1 ≈ 0.41.

4.3 Simulation Results

Model simulations confirm that generation overlap promotes the maintenance of genetic vari-

ation in stationary environments (?). However, unlike the quantitative trait model, the clonal

model results in a multimodal trait distribution when generation overlap, γ, and environmen-

tal stochasticity, σ2
M, are high (??). Hence, the approximation based on a two-phenotype trait

distribution (eqn. (??)) works when environmental stochasticity is intermediate (σM = 10) and

generation overlap is high (Fig. ??A). When environmental stochasticity is small (σM = 5), trait

distributions are unimodal, and thus the approximation based on small-variance (eqn. (??)) fits as

long as generation overlap is not very high. When environmental stochasticity is high (σM = 15),

the trait distribution can become trimodal, but the approximation based on the bimodal trait

distribution (eqn. (??)) only slightly underestimates the trait variance (Fig. ??A).

Because of the positive relationship between generation overlap and genetic variation (Fig.

??A), the response to selection can be maximized at intermediate values of generation overlap

when σM = 10 (Fig. ??B). The approximation based on the two-phenotype trait distribution (eqn.

??) works well due to the bimodal trait distribution (Fig. ??B). Please note that zs is positively

correlated with γ here because evolutionary branching occurs when γ is small with σM = 10.

When environmental stochasticity is small (σM = 5), on the other hand, generation overlap

decreases the response to selection due to small genetic variance, and the approximation based

on small-variance (eqn. (??)) works very well (results not shown).

As with the quantitative trait model, when the speed of environmental change (η) is slow

and when environmental stochasticity is intermediate (σM = 7), intermediate generation overlap

can minimize adaptation lag (Fig. ??E, F). On the other hand, generation overlap increases adap-

tation lag when stochasticity is small (σM = 5, Fig. ??A, B) or large (σM = 13, Fig. ??C, D). When

environmental stochasticity is not large (σM = 5, 7 in Fig. ??B, F), the small-variance approxima-

tion (eqn. (??)) works well because the trait distribution is unimodal. However, adaptation lag

is minimized at intermediate generation overlap near γ = 0.41 (Fig. ??E, F), as predicted by the

two-trait ESC approximation (??) when zs is constant. The small variance approximation does

not work well when environmental stochasticity is higher (σM = 10) and generation overlap is

high, because the trait distribution remains bimodal (Fig. ??C, D).
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5 Discussion

Previous studies that did not consider environmental stochasticity in fitness components have

predicted that greater generation overlap invariably slows down the speed of evolution (e.g.,

?) and reduces the chances for population persistence or evolutionary rescue in the face of

rapid environmental change (?). The picture that emerges from our models and analyses is less

simple, because of the potentially opposing effects of generation overlap on two components of

response to selection: the standing level of trait variation, and the fraction of the population

exposed to selection on traits affecting reproductive success. As a result we find complicated

effects of generation overlap (e.g., long-term dormancy) on evolutionary responses. In some

circumstances, intermediate generation overlap is best for rapid initial response to directional

environmental change (Figs. ??, ??) as well as for long-term responses (Figs. ??, ??): this is because

smaller generation overlap reduces the amount of genetic variation, whereas larger generation

overlap results in a population with few active individuals. Although the short-term response is

transient, it may nonetheless be important (?), especially for adaptation that prevents extinction

(i.e., evolutionary rescue; ????).

Our overall conclusions can be summarized conveniently in terms of σM/σw, which is the

environmental stochasticity parameter when the trait is scaled by σw. For both the quantitative

trait and clonal models, there is only one “edge of the sword” when σM/σw is very small (low

variance, weak selection) or very large (large variance, strong selection) because γ has little or no

effect on the trait variance and the slowing effect of generation overlap dominates (σM/σw = 0.25

and 1 in Fig. ??A, B and Fig. ??A, B, respectively, and σM/σw = 10 and 2.6 in Fig. ??C, D

and Fig. ??C, D, respectively). At intermediate values (intermediate environmental stochasticity,

intermediate selection), trait variance becomes sensitive to γ. This is clearest in the clonal model

which goes from ESS to ESC, but is true in both models. Both edges are then present, and

intermediate γ can maximize the selection response (2 ≤ σM/σw < 3.34 in Fig. ??, σM/σw = 2 in

Fig. ??B) and minimize the adaptation lag (σM/σw ≈ 3.33 in Fig. ??E, F, σM/σw = 1.4 in Fig. ??E,

F).

Theoretical models for rapid evolution have typically assumed constant additive genetic vari-

ance in evolving traits (e.g., ??). However, genetic variance itself can change through time in

response to environmental change (?). Furthermore, studies of rapid evolution have shown the

potential role of temporally fluctuating selection in maintaining genetic variance (???), whereas

classic population genetic models, without generation overlap, predict that temporally fluctuat-

ing selection is not very efficient at maintaining genetic variation (??); the only robust mechanism

is heterozygote advantage, in models where the optimal or ESS phenotype can only be realized

by a heterozygote. When fitness has a stochastic component and generations overlap, the tempo-

ral storage effect may play an important role in the maintenance of standing genetic variation (?)

and thus promote rapid evolution. Our results here illustrate this fundamental relationship.
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In both of our models, trait distributions can be far from Gaussian, and this has a signifi-

cant impact on evolutionary dynamics. In the clonal model, evolutionary branching produces

strongly bimodal distributions when environmental variance and generation overlap are high

(???), and long-term adaptation lag depends on whether or not the bimodality persists. The

quantitative trait model can exhibit transient bimodality, high kurtosis, and large negative skew

(Fig. ??), even though each mating produces a Gaussian distribution of offspring trait values;

none of these occur under constant directional selection with nonoverlapping generations (?).

Gaussian-based approximations are convenient and powerful, for example their use allowed ? to

give exact conditions under which adaptation and plasticity allowed population persistence in

a deterministically trending environment. But other approaches will be needed for populations

with generation overlap and fluctuating selection (perhaps adding age as a second individual-

level state variable and allowing a different trait mean and variance for each age; ?) and they will

probably be far less analytically tractable.

When our models include rapid directional environmental change (superimposed on random

year-to-year variation), migration from the past always acts as a kind of migration load. How-

ever, temporal migration may promote evolution when directional environmental change is slow

enough. Thus, dormancy can be regarded as a bet-hedging strategy in a stationary but fluctuat-

ing environment, as genetic variants that have been selected in the past may be adaptive again in

the future. On the other hand, individuals emerging from dormancy are most likely maladapted

when the environmental trend is strong relative to the fluctuation intensity (σ2
M). For example,

long-lived dormant eggs of freshwater zooplankton can introduce generation overlap and have

been shown to affect their rate of evolution in a changing environment. In small water-bodies,

the copepod Onychodiaptomus sanguineus has life histories adapted to avoid the springtime onset

of fish predation, which varies among years in timing and intensity, causing the optimal life

history to fluctuate. The dormant eggs produced each year reflect that fluctuating selection, and

store trait variation in a sediment egg bank (?). Each year, copepod trait change reflects both the

contribution of variance from eggs hatching from the sediments and the direction and intensity

of selection from fish predation (?), illustrating the “good edge” of generation overlap. However,

in one instance, when a severe drought removed fish entirely from a pond, natural selection on

optimal life history was intense, and the trait distribution emerging from the egg bank strongly

retarded selection response (?) revealing the “bad edge” of generation overlap.

Recent theoretical papers have studied evolution of the storage effect, but mainly focused on

the long-term outcome of adaptive evolution (???). Our study is instead about how the storage

effect can affect contemporary microevolutionary dynamics. Thus it will be interesting in future

studies to examine eco-evolutionary dynamics when the storage effect is present. That is, how

natural selection affects species coexistence, and then species coexistence affects evolutionary

dynamics. Future studies may be able to address more complicated dynamics by using more

thorough numerical simulations and analytical methods for structured populations (?). While

most microcosm experiments do not have dormant stages, it will be interesting to construct an
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experimental system with dormant stages to examine the roles of dormancy on eco-evolutionary

dynamics to mimic processes in the wild (??).
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Figure 1: Effect of generation overlap γ on trait variance σ̄2
z and selection response R in the quantitative

trait model. A) Steady-state average trait variance. B) σR, the standard deviation of R. Solid curves (with
closed symbols) are simulation results for 10000 years of a population of expected size 10000; plotted
points are the within-year trait variance (in A) or standard deviation of the selection response (in B)
averaged over the last 8000 years. In panel A, dashed curves (with open circles) are numerical solutions
of the moment approximation equation (??). Dotted black curves (almost completely overlapping) are the
strong selection limits for the two values of V0 used in the simulations. In panel B the dashed curves are
(??) computed using mean σ2

z from the simulations rather than the approximate σ2
z in calculating ā. Note

that there are dashed lines nearly hidden by the blue and magenta solid lines. Parameter values were
sd = 0.8, sa = 0.1, σM = 1 for all simulations. The numerical values in the panel B legend are σw and√

V0; these apply to panel A as well. In panel A, the curves for
√

V0 = 0.05 converge at low generation
overlap because the solution to (??) at γ = 0 is σ2

z = 2V0(1 + O(V0/σ2
w)). Figure produced by script

QG-IBM-noTrend.R.
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Figure 2: Effect of generation overlap on adaptation lag in the quantitative trait model with a moving
expected trait optimum. A), B): η = 0.05 with weak selection, σw = 4. C), D): η = 0.05 with strong
selection, σw = 0.1. E), F): η = 0.01 with intermediate selection, σw = 0.3. The trend begins in year 1000.
Panel A) legend shows the generation overlap γ (same order, top to bottom, as the curves in panel A).
“Adaptation lag” is the difference between expected trait optimum µt and trait mean z̄(t). A), C), and E)
show adaptation lag over portions of 12000 year individual-based simulations with different generation
overlap; note the difference in scale resulting from the differing strength of selection. B), D), and F)
show the average adaptation lag over the last 6000 years of the simulations (solid curve and symbols)
and the theoretical predictions (dotted and dashed curves). The theoretical predictions are eqn. (??) with
either the true ā over the second half of the simulations (dotted curves) or the approximate predictions
ā = 2V0/(2V0 + σ2

w) (very weak selection) in B), ā = 1 (very strong selection) in D), and ā resulting from the
solution to (??) in F) (dashed curves). Other parameters were σM = 1, and sd = 0.9, sa = 0.05,

√
V0 = 0.2

for A)-D), sd = 0.8, sa = 0.1,
√

V0 = 0.05 for E) and F). Figure produced by QG-IBM-Trend.R.
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Figure 3: Effect of generation overlap on the transient dynamics of the quantitative trait model at the
start of an environmental trend. A) Mean adaptation lag. B), C), D) Mean among-individual standard

deviation, normalized skew, and kurtosis of the trait. Normalized skew = m3/m3/2
2 , normalized kurtosis

= m4/m2
2 − 3 where mn is the nth central moment. The trend begins in year 500. Each curve is the average

across 500 independent simulations with the same H value. Legend in panel B) gives the generation
overlap γ. Parameter values for all simulations are: σw = 0.3, σM = 1, sd = 0.8, sa = 0.1, η = 0.05, and√

V0 = 0.05. Figure produced by script QG-IBM-Trend-Initial.R.
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Figure 4: Effect of generation overlap on the adaptation lag in the quantitative trait model with a moving
trait optimum, when segregation variance V0 can evolve. Parameter values σw = 2, σM = 1, sd = 0.9, sa =
0.05, η = 0.02, and

√
V0 = 0.2 for all individuals at t = 0. Mean trait optimum is 0 until t = 1000, then

increases by η per year. A) Adaptation lag over time. B) Mean adaptation lag in the simulations (averaged
over the last 6000 years; solid curve and symbols) and the theoretical prediction, eqn. (??) with ā computed
from the simulations over the same time period. C)

√
V0 over time. D) Population standard deviation of

z over time. Colors indicate different values of generation overlap γ as in panel B). Figure produced by
script QG-IBM-TrendV0.R.
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Figure 5: Effect of generation overlap γ on trait variance σ̄2
z and selection response R in the clonal model

in a stationary environment. A) Steady-state average trait variation. B) σR, the standard deviation of
the response to selection (change in mean trait between one time and the next) when σM = 10. Solid
curves (with closed symbols) are simulation results for 5000 years of a population; plotted points are
the within-year trait variance averaged over the last 3000 years. Dashed curves with open triangles are
the small-variance approximation (??) for a one-trait ESS, dashed curves with open circles are the two-
phenotype ESC approximation (??). Here values of z̄s and σ̄2

z were calculated from the simulations, and
this may be why the fit is better than that of the quantitative trait model (Fig. ??). Parameter values were
sd = 0.8, sa = 0.1, σw = 5, K = 1, m = 10−3, and ∆z = 0.2 for all simulations. The numerical values
in the panel A legend are σM. In panel B), the dashed curve with open circles is the two-phenotype
approximation (??). Figure produced by script HG-DE-noTrend.R .

30



1000 2000 3000 4000 5000

0
1

2
3

4
5

6
7

Small Fluctuation

A
d

a
p

ta
ti
o

n
 L

a
g

γ

0.76

0.66

0.56

0.45

0.34

0.24

0.14

A)

0.2 0.3 0.4 0.5 0.6 0.7

4
.5

5
.0

5
.5

6
.0

M
e

a
n

 A
d

a
p

ta
ti
o

n
 L

a
g Simulation

ESS Approx.

B)

1000 2000 3000 4000 5000

-5
0

5
1
0

1
5

Large Fluctuation

A
d

a
p

ta
ti
o

n
 L

a
g

C)

0.2 0.3 0.4 0.5 0.6 0.7

1
.4

1
.6

1
.8

2
.0

2
.2

M
e

a
n

 A
d

a
p

ta
ti
o

n
 L

a
g

D)

1000 2000 3000 4000 5000

0
1

2
3

4
5

6

Intermediate Fluctuation

Time (yr)

A
d

a
p

ta
ti
o

n
 L

a
g

E)

0.2 0.3 0.4 0.5 0.6 0.7

3
.9

4
.1

4
.3

4
.5

Generation overlap

M
e

a
n

 A
d

a
p

ta
ti
o

n
 L

a
g

F)

Figure 6: Effect of generation overlap on the adaptation lag in the clonal model with a moving expected
trait optimum. A), B): small fluctuation, σM = 5. C), D): large fluctuation, σM = 13. E), F): intermediate
fluctuation, σM = 7. The trend begins in year 1000. Panel A) legend shows the generation overlap γ.
“Adaptation lag” is the difference between expected trait optimum µt and trait mean z̄(t). A), C), and E)
show adaptation lag over portions of 22000 year simulations with different generation overlap; note the
difference in scale resulting from the differing intensity of fluctuation. B), D), and F) show the adaptation
lag in the simulations (averaged over the last 16000 years; solid curve and symbols) and the small-variance
approximation, eqn. (??), where the average σ2

z (t) value was calculated over the last 16000 years of the
simulations. Here η = 0.02, and other parameter values are the same as Fig. ??. Figure produced by script
HG-DE-Trend.R.
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Figure A-1: Effect of generation overlap on steady-state average trait variation in the quantitative trait
model, when generation overlap γ is low in a stationary environment. Each panel compares simulation
results (as in Fig. ??) with the moment approximation (??) with H = 0.91, 0.93, · · · , 0.99. The values
of σw,

√
V0, sd, sa are listed in each panel (in that order, from top to bottom). Figure produced by script

QG-IBM-noTrend.R.
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Figure A-2: Relationship between observed trait variance in selected parents, and the predicted trait
variance assuming a Gaussian trait distribution, in the quantitative trait model with an environmental
trend starting in year 500. Each panel shows the observed and predicted trait standard deviations in years
550 to 750; dashed blue line is the 1:1 line and “Mean ratio” is the average ratio between predicted and
observed standard deviations in years 550 to 750. When H ≈ 1 and γ ≈ 0 the Gaussian approximation
is unbiased, but with smaller H/higher γ the variance in selected parents is lower on average than the
Gaussian approximation. Parameter values σM = 1, σw = 0.3, η = 0.03, sd = 0.8, sa = 0.1,

√
V0 = 0.05.

Figure produced by script QG-IBM-Test-C-Approx.R.
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Figure A-3: As in Figure ?? with stronger selection and a faster environmental trend: σw = 0.3, η = 0.05.
In panels A) and D) the yearly values have been smoothed to show the trends clearly using loess.smooth

with degree = 1, span = 0.2. Figure produced by script QG-IBM-TrendV0.R.
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Figure A-4: Evolution of V0 in a stationary environment starting from
√

V0 = 0.05. Two independent
simulations are plotted for each value of H (indicated by the color of the curve). Other parameters for all
simulations are: σW = 0.3, σM = 1, sd = 0.8, sa = 0.1. Figure produced by script QG-IBM-noTrend.R.
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A.2 Trait variance in the strong selection limit of the quantitative trait

model, stationary environment

In this Appendix we derive the assertion in the main text that eqn. (??) is the stationary trait vari-

ance in the strong selection limit of the quantitative trait model with a stationary environment.

The population at any time consists of current new recruits plus the survivors from all past

cohorts of new recruits, in proportions pj = (1− γ)γj, j = 0, 1, · · · where j is the number of years

in the past. In the strong selection limit, all selected parents in year t have trait value (very close

to) Mt. The cohort with index j (relative to the present) therefore has random trait mean mj with

the same distribution as Mt and variance V0. Letting Z denote the trait in the entire population,

and Xj the trait in component cohort j, we use the law of total variance (conditioning on j) to

write

Var(Z) = E [Var(Xj)] + Var [E(Xj)] = V0 + Var [E(Xj)]. (A.1)

Var [E(Xj)]is random, depending on the sequence of past M values, and our goal is to compute

its expectation. Writing Var [E(Xj)] = ∑j pjm
2
j −

(

∑j pjmj

)2
, we have

E

(

∑
j

pjm
2
j

)

= ∑
j

pjE(m2
j ) = ∑

j

pjVar(Mt) = σ2
M (A.2)

and, assuming that trait optima in different years are independent,

E

(

∑
j

pjmj

)2

= E

(

∑
i,j

pi pjmimj

)

= ∑
i,j

pi pjE(mimj) = ∑
j

p2
j E(m2

j ) = ∑
j

p2
j σ2

M. (A.3)

As 1 − ∑j p2
j = 2γ/(1 + γ), combining the three equations above we get that E [Var(Z)] is given

by equation (??).

A.3 Equation (??) and its derivation

This Appendix provides the derivation of eqn. (??) referred to in the main text, which gives the

conditions under which the approximate rate of response to selection, eqn. (??), is an increasing

function of γ at γ = 0.

Eqn. (??) is proportional to f = (1 − γ)ā/
√

2 − (1 − γ)ā. Our goal is to find when the

derivative of f with respect to γ is positive at γ = 0, which implies that the mean selection

response magnitude is maximized at some γ strictly between 0 and 1. The calculations described

below were done using Maxima (online SI script QG-IBM-noTrend.max).
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We substitute into f the definition of a in terms of σ2
z , write

σ2
z (γ) = d0 + d1γ +

d2γ2

2
+ · · ·

where dk is the kth derivative of σ2
z at γ = 0, and take the derivative of f with respect to γ. The

result is a product of always-positive terms with the factor

d1σ2
w − d0σ2

w − d2
0. (A.4)

To see when (??) is positive we need to find d0 and d1.

d0 is σ2
z (0) which (in our approximations) is the solution to (1 + a)σ2

z = 2V0. Using the

definition of a, this is found to be

d0 =

√

σ4
w + 12 V0 σ2

w + 4 V0
2 − σ2

w + 2 V0

4
. (A.5)

To find d1 we define G to be the difference between the left- and right-hand sides of (??), and

apply the Implicit Function Theorem to G(γ, σ2
z (γ)) ≡ 0:

d1 =
dσ2

z

dγ
= − ∂G/∂γ

∂G/∂σ2
z

. (A.6)

We then substitute into the expression for (??) γ = 0 and σ2
z = d0 from (??). The resulting

expression for d1 is proportional to σ2
M, d1 = σ2

MQ. The condition for (??) to be positive is then

that

σ2
M >

d0(1 + d0/σ2
w)

Q
. (A.7)

Define u = σ2
w/V0. Substituting this into the right-hand side of (??) (by setting V0 = σ2

w/u) reveals

that the right-hand side has the form σ2
wF(u), where

F(u) =

√
u2 + 12 u + 4

(

3 u4 − 72 u3 − 168 u2 − 96 u − 16
)

− 3 u5 − 74 u4 − 504 u3 − 592 u2 − 240 u − 32

8u2[
√

u2 + 12 u + 4 (u2 − 4 u − 4)− u3 − 2 u2 − 20 u − 8]
(A.8)

So finally, the condition we have been seeking is that (σM/σw) >
√

F(σ2
w/V0). Numerically,

√

F(u) remains between 2 and 4 for 0.36 ≤ u ≤ 49. The critical ratio of σM/σw, above which the

condition is satisfied, is therefore between 2 and 4 so long as 0.6 ≤ (σw/
√

V0) ≤ 7, as stated in

the main text.
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A.4 Adaptation lag in the strong selection limit of the quantitative

trait model, trending environment

Here we derive the adaptation lag for the quantitative trait model with a trending trait optimum,

in the steady-state situation where a steady environmental trend has been running for a long

time (µt = E(Mt) = ηt, t ≫ 1).

As in a stationary environment, the population at any time consists of a cohort of new

recruits plus the survivors from all past cohorts, in proportions pj = (1 − γ)γj, j = 0, 1, · · ·
where j is the number of years in the past. In the strong selection limit, all selected parents in

year t have trait value Mt. The cohort with index j (relative to the present) therefore has random

trait mean mj and variance V0. The mean of mj is E(mj) = (t − j)η, and its variance is σ2
M. The

population (random) trait mean in year t + 1 is therefore

z̄t =
∞

∑
j=0

(1 − γ)γjmj (A.9)

which has expectation

E(z̄t+1) =
∞

∑
j=0

(1 − γ)γj(t − j)η = ηt − ηγ

1 − γ
. (A.10)

The average adaptation lag is therefore

L = η(t + 1)− E(z̄t+1) =
η

1 − γ
. (A.11)

A.5 Approximation of stationary σ2
z with trending trait optimum:

quantitative trait model

In this Appendix we extend the derivation of eqn. (??), the implicit equation for σ̄2
z in the

quantitative trait model, to the case of a steadily trending trait optimum.

As with a stationary environment η = 0 we first need Var(z̄). Pretending that a(t) is constant

at its mean ā, we can write eqn. (??) as

z̄(t + 1) = [1 − (1 − γ)ā]z̄(t) + (1 − γ)āMt

= [1 − (1 − γ)ā]z̄(t) + (1 − γ)āµt + (1 − γ)ā(Mt − µt)
(A.12)

Because Mt − µt and z̄t are independent, taking the variance of both sides

Var[z̄(t + 1)] = [1 − (1 − γ)ā]2Var[z̄(t)] + (1 − γ)2 ā2σ2
M. (A.13)
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The steady-state Var(z̄) satisfies the last equation with time-dependence dropped, giving

Var(z̄) =
(1 − γ)āσ2

M

2 − (1 − γ)ā
, (A.14)

the same as with a stationary environment.

To use (??) in this case we approximate

E

{

[Mt − z̄(t)]2
}

= E

{

[(Mt − µt) + (µt − z̄(t))]2
}

= E
[

(Mt − µt)
2
]

+ E
[

(µt − z̄(t))2
]

(as Mt − µt is indep. of z̄t with mean 0)

= σ2
M + (E [µt − z̄(t)])2 + Var[µt − z̄(t)]

≈ σ2
M + L̄2 + Var[z̄(t)]

≈ σ2
M +

η2

(1 − γ)2 ā2
+

(1 − γ)āσ2
M

2 − (1 − γ)ā

=
2σ2

M

2 − (1 − γ)ā
+

η2

(1 − γ)2 ā2
.

(A.15)

Using (??) in (??), the stationary environment approximation (??) becomes

(1 + a) σ2
z = 2V0 +

4γā2σ2
M

2 − (1 − γ)ā
+

2η2γ

(1 − γ)2
(A.16)

A.6 Generation overlap and adaptation lag in the quantitative trait

model

Here we report a small simulation experiment that was conducted to test our observation that

adaptation lag in the quantitative trait model increases with generation overlap, all else being

equal, unless the trend is very slow (script file QG-IBM-Trend-Random.R). We generated random

parameter sets from the following distributions:

η ∼ Uniform(0.02, 0.1)

σw ∼ Uniform(0.2, 2)
√

V0 ∼ Uniform(0.05, 0.5)

sd ∼ Uniform(0.7, 0.95)

sa ∼ Uniform(0.05, 0.3)

(A.17)

with σM = 1 (recall that the trait z can always be rescaled so as to make σM = 1). For each such

parameter set, 6000-year simulations with a trend starting in year 1000 were done for two H val-

ues chosen from a Uniform(0.05, 0.95) distribution subject to the constraint that their difference
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was at least 0.2. We computed the mean adaptation lag over the last 4000 years of each simu-

lation, and checked whether the higher-γ simulation also had the higher adaptation lag. In 500

replicates there was one exception, which had η = 0.023 so that lags were very short relative to

their variability. To check this exception we ran longer simulations at the exceptional parameter

set, 15000 years with average lag computed over the last 13000 years. In two such replicates, the

higher-γ simulation then had the higher adaptation lag.

A.7 Selection on trait variance in the quantitative trait model with

trending optimum

In this Appendix we consider how trait skew affects selection on trait variance in the quantitative

trait model.

? showed (their eqn. 23) that the quadratic selection differential C = Cov[w, (z − z̄)2] can be

approximated, through Taylor expansion of fitness w, as

C = w1m3 +
w2

2
(m4 − m2

2) +
w3

6
(m5 − m2m3) +

w4

24
(m6 − m2m4) + . . . (A.18)

where wk = ∂kw/∂zk evaluated at z̄ and mk is the kth central moment of z.

The first term on the right-hand side is the product of the fitness gradient (at the trait mean)

and the skew. When the population mean lags behind a moving trait optimum, skew is negative

and the fitness gradient will be positive on average (not necessarily at all times, because of

the random fluctuations in Mt), resulting in a negative contribution to the quadratic selection

differential. Countering that, in the tail of the fitness function the second derivative is positive,

so the second term will be positive, especially when the kurtosis is large.

The fitness derivatives and terms in (??) are plotted in Figs. ?? and ??. These come from the

simulations plotted in Fig. ??. Prior to the trend onset a positive first term is offset by a negative

second term (the third and fourth are relatively unimportant most of the time). After the trend

onset the second term becomes much smaller (presumably due to the variance shrinking, and

the fourth moment shrinking even more), while the first term becomes strongly negative due to

combination of negative skew in the trait distribution, and a positive first derivative of fitness

because the population lags the moving optimum phenotype.

9



400 500 600 700

-0
.0
5

0
.0
5

0
.1
5

 

F
ir
s
t 

d
e

ri
v
a

ti
v
e

 o
f 

W

γ

0.73

0.66

0.59

0.52

0.45

0.38

0.31

0.24

0.17

A)

400 500 600 700

-0
.4

-0
.2

0
.0

0
.2

S
e

c
o

n
d

 d
e

ri
v
a

ti
v
e

 o
f 

W

B)

400 500 600 700

-1
.0

-0
.5

0
.0

0
.5

1
.0

Time (yr)

T
h

ir
d

 d
e

ri
v
a

ti
v
e

 o
f 

W

C)

400 500 600 700

-4
-2

0
2

4
6

8

Time (yr)

F
o

u
rt

h
 d

e
ri
v
a

ti
v
e

 o
f 

W

D)

Figure A-5: Derivatives of relative fitness R(z − Mt) evaluated at the trait mean z̄(t). These come from
the same simulations plotted in Fig. ??. As in that figure each curve is the average across 500 simulations
with the same value of H, here smoothed (with a spline) to emphasize the trends. Figure produced by
script QG-IBM-Trend-Initial.R.
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Figure A-6: The 4 terms in (??). These come from the same simulations plotted in Fig. ??. As in that
figure each curve is the average across 500 simulations with the same value of H, here smoothed (with a
spline) to emphasize the trends. Figure produced by script QG-IBM-Trend-Initial.R.
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