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A R T I C L E I N F O

Keywords:
Crack propagation
Porous media
Fluid pressure
Pressurised fractures
Hydraulic fracturing

A B S T R A C T

The physical consequences of modelling the fluid pressure across a fracture using one, two or
three degrees of freedom are elucidated. The implications are demonstrated for each model
through numerical examples for different boundary value problems. When fracture propagation
is mainly driven by mechanical loads a single pressure degree of freedom is normally sufficient.
Modelling of the pressure as a discontinuous quantity can be done using a double degree of
freedom, similar to the modelling of displacements. Historically, this has been proposed first, but
it appears to be less well applicable, except for cases where there is no significant fluid transport
along the fracture, as in shear failures. Modelling the pressure with a triple degree of freedom for
the pressure at the fracture is the most versatile approach, and is physically the most reasonable
and efficient approach to model the propagation of internally pressurised cracks (hydraulic
fracturing).

1. Introduction

Modelling fluid flow through fracturing porous media is a challenging multi-scale problem with moving internal boundaries.
Moreover, it is an important problem with applications in several fields, ranging from geomechanics to biomedical engineering.
Hydraulic fracturing, water retention in dams, aquifers performance, contaminant transport, geological faults and fracture of human
tissues are just some examples. In many of these problems, the mechanical and hydraulic behaviour are strongly coupled, resulting in
a non-linear response. The problem is complex because of the intertwining of fluid flow inside the fracture with mechanical de-
formations, and the exchange of fluid between the fracture and the surrounding porous medium.

Analytical approaches are available to model crack propagation in idealised geometries, assuming that the material is linear
elastic, homogeneous and impermeable [1–3], typically augmented with an ad hoc leak-off model to account for fluid loss into the
surrounding medium under different propagation regimes [4], using linear elastic fracture mechanics [5–7].

Numerical models are essential to realistically capture the behaviour of fracturing porous media for more complicated geometries,
for advanced fracture models and/or non-Newtonian fluids. In one of the early models for simulating flow and deformation in
fractured or fracturing porous media, the continuum was discretised using finite elements, while the fluid flow inside the fracture was
approximated using a finite difference method [8].

Within the class of discrete models to describe fracture interface elements have gained popularity owing to their simplicity and
have been extended to fracture in a poroelastic medium [9,10]. While being simple, they suffer from some disadvantages, in par-
ticular that they have to be inserted in the mesh a priori, thus restricting their use to cases where the location of the fracture is known

https://doi.org/10.1016/j.engfracmech.2019.03.037
Received 6 February 2019; Received in revised form 16 March 2019; Accepted 22 March 2019

⁎ Corresponding author.
E-mail address: r.deborst@sheffield.ac.uk (R. de Borst).

Engineering Fracture Mechanics 213 (2019) 1–20

Available online 26 March 20190013-7944/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/00137944
https://www.elsevier.com/locate/engfracmech
https://doi.org/10.1016/j.engfracmech.2019.03.037
https://doi.org/10.1016/j.engfracmech.2019.03.037
mailto:r.deborst@sheffield.ac.uk
https://doi.org/10.1016/j.engfracmech.2019.03.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2019.03.037&domain=pdf


beforehand. The introduction of remeshing has removed this restriction and has enabled the simulation of freely propagating cracks
[11–13]. Another approach to crack propagation where the crack path is decoupled from the initial discretisation is the extended
finite element method [14–20]. Isogeometric analysis has alleviated other restrictions that adhere to standard finite element analysis,
such as the loss of local mass conservation due to the discontinuous character of the pressure gradient and the need for a higher-order
interpolation of the fluid pressure in the crack [21,22].

The continuous, or possible discontinuous character of the pressure across the fracture is an important issue in the modelling of
fluid flow through fractured, fluid-saturated porous media. It requires a careful consideration and is the main thrust of this con-
tribution. Our aim is to study the physical consequences of assuming the pressure to be either continuous or discontinuous across the
fracture. In most of the literature, the pressure is assumed to be continuous across the fracture [15,17,23,24]. Then, a single pressure
degree of freedom at the fracture suffices. When interface elements are used, 0C continuity of the pressure is then automatically
enforced, leading to a discontinuity in the pressure gradient, and therefore in the fluid flow. This feature enables fluid to be stored or
transported in the crack. When using the extended finite element method, discontinuity of the flow can be achieved by multiplying
the pressure by a signed distance function centered at the crack [15,23]. Alternatively, the use of two pressure degrees of freedom at
the crack enables the modelling of a discontinuity in the pressure across the crack [10,14]. Evidently, the pressure gradient, and
hence the fluid flow, will then exhibit a discontinuity as well. As argued in [25,26], the model of two pressure degrees of freedom is
physically less appealing as each of the pressure degrees of freedom is linked to one side of the fracture, with no independent pressure
degree available for driving the fluid flow along the fracture. This can be circumvented by defining a third pressure as the average of
the two independent pressure degrees of freedom [10], but the number of physically relevant applications of this model seem limited.
A technically relevant example where the fluid pressure in the crack is different from that at the sides, and thus, three independent
pressure degrees of freedom are necessary, is hydraulic fracturing [19,25,27].

Herein, the three models of a continuous pressure across the fracture, a discontinuous pressure across the interface, and an
independent fluid pressure inside the crack are discussed in order to understand the physical consequences of each model as well as
their applicability in different contexts. To this end, several cases are examined numerically with different boundary conditions
regarding the displacements and the pressure. The three models also present a framework to study the effect of permeability of the
interface, which could be different for various applications. For example, opening fractures and dilation bands tend to increase fluid
flow along the band whereas compaction bands inhibit flow across the band. Faults on the other hand exhibit more complex be-
haviour, with an increased permeability along the crack, and a very low permeability across it [28].

Section 2 summarises the governing equations and Section 3 gives the weak format. A concise formulation of the fluid flux along
and across the interface is discussed in Section 4. Section 5 presents the used discretisation using poromechanical interface elements
with one, two and three pressure degrees of freedom. The physical consequences of considering either format are elucidated next.
This discussion includes a comparison of the three models at the hand of several case studies, also covering the applicability of the
three options and the effect of the permeability of the interface on the flow pattern and crack propagation characteristics. In par-
ticular, it is argued that in order to model a pressurised fracture the option of three independent pressure degrees of freedom is the
method of choice, since a single pressure degree of freedom requires an extremely fine mesh near the fracture coupled with an
adapted permeability near the crack.

2. Governing equations for the porous medium

We consider a fully saturated porous medium with a solid and a Newtonian fluid (denoted by suffix s and f, respectively) as
constituents, subject to the restriction of small variations in concentrations and small displacement gradients. We assume that there is
no mass transfer or chemical interaction between the constituents and that the processes occur isothermally. The balance equations
for the mixture are obtained by adding the balance equations for each constituent.

Neglecting convective, gravity and inertia terms the balance of linear momentum for a saturated porous medium reads:

= 0· (1)

where is the total stress, composed of the solid and fluid parts:

= pIs (2)

where p is the apparent fluid pressure, I is the unit tensor and is the Biot coefficient [26]. Using the assumption of small dis-
placement gradients the kinematic relation reads: = us

s

s, with s the strain rate field of the solid and us the absolute velocity of the
solid. The superscript s denotes the symmetric part of the gradient operator. The stress-strain relation is assumed as:

= D:s s (3)

with D the fourth-order elastic stiffness tensor.
Using Darcy’s relation for flow of Newtonian fluids in an isotropic porous medium,

=n k pu u·( )f f s f (4)

with nf the porosity and kf the permeability coefficient of the porous medium, the mass balance of the mixture can be written as [26]:

+ =k p
M

p

t
u· ·( )

1
0s f (5)
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where M is the Biot modulus.
The initial value problem is completed with the following boundary conditions:

= =n t u u· ,p s p (6)

which hold on complementary parts of the boundary t and u, respectively, n being the outward normal vector on the external
boundary , Fig. 1. tp and up are the prescribed external traction and prescribed velocity, respectively. The fluid boundary conditions
read:

= =n p pu u n n q( )· · ,f f s p p (7)

which hold on the complementary parts of the boundary q and p. qp and p
p
are the prescribed outflow of the pore fluid and the

prescribed pressure respectively. Finally, the initial conditions are:

= = = =p p s fu x u u x u x( , 0) , ( , 0) , ( , 0) , ,0 0 0 (8)

3. Weak form of the balance equations

The weak form of the balance equations is derived using a standard Bubnov-Galerkin method. We multiply the momentum
balance, Eq. (1), and the mass balance, Eq. (5), by kinematically admissible test functions for the displacements of the solid skeleton,
, and for the pressure , respectively, and integrate over the domain . Using the divergence theorem and taking account of the

internal boundaries +

d and d as well as the conditions at the external boundaries, Eqs. (6) and (7), lead to the corresponding weak
forms:

=
+ +

+
+n n t: d ·( · )d ·( · )d · dp

d
d

d
d t (9)

and

=
+ +

+
+k p

M

p
u n q n q n q· d . d

1

t
d ( · )d ( · )d · ds f d d p

d
d

d
d t (10)

The presence of the discontinuity inside the domain appears through the power of the external tractions on d and the normal fluid
flux through the faces of the discontinuity. These terms enable the momentum and mass couplings between the discontinuity which is
the subgrid scale and the surrounding porous medium, which is the macroscopic scale.

Assuming equilbrium between both faces of the cavity, we have:

= =
+

+ pn n t n· · d
loc

d d d (11)

where = = +n n n
d d d

has been used for a zero-thickness interface, see Fig. 1. td
loc are the cohesive tractions in a local coordinate

system. Using Eqs. (2) and (11), the balance of linear momentum, Eq. (9), can be reworked as:

+ =p pI t n t: ( )d ·( )d · ds d p
loc

d
d

t (12)

In the local coordinate system, the cohesive tractions td
loc are derived from the relative displacements u through a non-linear

relation:

=t t u( , )d d

loc loc (13)

where is a history parameter. The traction vector td
loc can be related to the tractions in the global coordinate system using the

rotation matrix =R s n( , )
d d

, see Fig. 2:

Fig. 1. Body with external boundary and internal boundaries +

d and d .
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=t Rtd d
loc (14)

For use in a Newton-Raphson iterative procedure, the constitutive relation can be linearised as:

=t D ud dd d
loc (15)

with d denoting a small increment and

=D
t

u
d

d

loc

(16)

Since zero-thickness interface elements are normally placed prior to crack initiation, a finite stiffness is assigned prior to that:

=

d

d
D

0

0
d

n

s (17)

where dn and ds are dummy stiffness values in the normal and tangential directions, respectively. These values must be high to
minimise non-physical deformations in the pre-cracking phase [29].

Allowing for the pressure to be discontinuous, and using the definition = = +n n n
d d d

for the normals at the discontinuity, the
weak form of the mass balance becomes:

+ =
+ +

+
k p

M

p
u n q n q n q· d . d

1

t
d ( · )d ( · )d · ds f d d p

d
d

d
d

t (18)

while for the case that the pressure p is continuous, so that also is continuous, this expression simplifies to:

+ =k p
M

p
u n q n q· d . d

1

t
d · d · ds f d p

d
d

t (19)

The jump in flux =
+

q q q
d d d

is a measure of the net fluid exchange between the fracture and the surrounding porous medium.

4. Fluid flow inside the discontinuity

To obtain the mass coupling term which characterises the jump in flow at the interface, we assume a fully open crack which is
filled with Newtonian fluid [15,26]. The crack opening is assumed to be small compared to its length. In a two-dimensional con-
figuration the mass balance for flow within the cavity is given by, see Fig. 2:

+ =
v

s

w

n

0
(20)

where =v u s·f d and =w u n·f d are the tangential and normal components of the fluid velocity in the discontinuity, respectively. The
difference in the fluid velocity components normal to both crack faces is given by:

=

=

w
v

s
ndf

n h

h

/2

/2

(21)

Combining the momentum balance for the fluid, =
n

p

s
, with the shear stress with the constitutive equation for a Newtonian fluid,

= µ
v

n
with µ the viscosity of the fluid, results in:

=µ
v

n

p

s

2

2 (22)

The velocity profile is obtained by integrating from =n h/2 to =n h/2. The boundary condition, i.e. the tangential fluid velocity at
the crack face vf , is obtained by assuming a no-slip condition and using Darcy’s relation for the relative fluid velocity in the porous
medium at = ±n h/2. Subsituting into Eq. (21) and integrating again with respect to n gives:

=w
µ s

p

s
h h

v

s

1

12
f

f
3

(23)

which is the amount of fluid attracted in the tangential fluid flow and bears similarity to the Reynolds lubrication equation. The

Fig. 2. Geometry and local coordinate system in the cavity.
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difference in the velocity of solid at the faces of cavity is given by:

=w
h

t
s

(24)

The mass coupling term in Eq. (19) can now be expressed as

= +
h

µ

p

s

h

µ

h

s

p

s
h

u

s

k

n

p

s

h

t
n q·

12 4

( )
d

s s f

f

3 2

2

2 2

2d

(25)

where u( )s s is the velocity of the solid particles in the local s-direction.

5. Poromechanical interface elements

The standard interface element is augmented with one or more pressure degrees of freedom. Here, we discuss the models of one,
two and three pressure degrees of freedom (1PDOF, 2PDOF and 3PDOF). For a single pressure degree of freedom, the pressure is
continuous at the internal discontinuity. It is assumed that the pressure on both sides of the discontinuity is equal to the pressure
inside it. When two pressure degrees of freedom are added, one on each side of the interface, the pressure can be discontinuous across
the internal boundary d. With three pressure degrees of freedom, the pressure at both sides of the crack are allowed to differ and this
can be different from the fluid pressure inside the crack. In all models, the pressure gradient is discontinuous, allowing for storage and
fluid flow within the discontinuity because pressure across the interface is at most interpolated in aC0-continuous manner, yielding a
pressure gradient that is C 1- continuous.

5.1. 1PDOF: continuous pressure

We first consider the case of a continuous pressure, see Fig. 3a, so that the pressure in the interface is interpolated as:

=p h pp
T

(26)

where = …h hh ( , , )p p p
T

N1
contains the interpolation polynomials for the pressure and p contains the nodal values of the pressure p. We

discretise the test function in a Bubnov-Galerkin sense:

= h zp
T

(27)

with z the corresponding nodal array. The gradient is given by:

=

… …

… …

Bp

h

x

h

x

h

y

h

y

p pN

p pN

1

1

(28)

From the weak form of balance of momentum, Eq. (12), the equilibrium equation is obtained as:

=f f
u u

int ext (29)

where the external force vector is defined as:

=f H t du p
ext T

t (30)

with the matrixH containing the interpolation polynomials for the displacement …h h( , , )N1 as usual, e.g. [26], and the internal force is
defined as:

= +p pf B m B t n( )d ( )du u s d d
int T T

d
d (31)

Fig. 3. Zero-thickness interface elements enriched with pressure degrees of freedom (a) 1PDOF (b) 2PDOF (c) 3PDOF.
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with =m (1, 1, 0)T , Bu the standard strain-nodal displacement matrix, which contains the derivatives of the interpolants for the
displacements and Bd the matrix that sets the relation between the displacement jump at the fracture and the discrete nodal dis-
placement:

=
+

+
B

h h 0 0

0 0 h h
d

(32)

with = …h hh ( , , )N
T

1 .
Linearisation of the internal vector f

u

int, needed for application of the Newton-Raphson procedure, results in:

= = +K
f

a
B DB B R D RBd duu j

u j

u u d d j d

K K

, 1

, 1
int

T T T
, 1

uu j

d

uu j
d

, 1 , 1 (33a)

= =K
f

p
B mh B n hd dup j

u j

u p d p

K K

, 1

, 1
int

T T T T

up j

d
d

up j
d

, 1 , 1 (33b)

Next, we substitute the discretisations for the displacement field us, for the pressure field p and also for the corresponding test
functions in the weak form of mass balance, cf. Eq. (19), and require that the result holds for all admissible test functions. This leads
to the discrete format:

+ =( ) ( )k
M

h m B a B B p h h p h n q h n qd d
1

d d dp u f p p p p p d p p
T T T T T

d
d d (34)

The integration over a time step t is carried out using the Backward Euler scheme:

=

+

t

(•)
(•) (•)t t t

(35)

Substitution of time integration scheme in the above equation and multiplying with t yields:

=f fp p

int ext

(36)

with the external force vector:

= tf h n q dp p p
ext T

d

(37)

and the internal force vector:

= +

+ +

=

+ + +

=

( ) ( ) ( )M
t k

M
t

f h m B a h h p B B p h m B a

h h p h n q

d
1

d d d

1
d d

p p u
t t

p p
t t

f p p
t t

p u

p p p d

K K
M K

K K

M Q

int T T T T T

T T T

pu j up j
pp j pp j

pu j up j

pp j

d
d

d

, 1 , 1

T
, 1 , 1

, 1 , 1

T

, 1 (38)

The contributions to the tangential stiffness matrix are obtained by differentiating f p
int with respect to a and p respectively:

= + t
f

a
K

Q

a

p j

pu j

, 1
int

, 1
d

(39a)

= + + t
f

p
M K

Q

p

p j

pp j pp j

, 1
int

, 1 , 1
d

(39b)

The complete linearised set of equations needed in a Newton-Raphson framework, therefore reads:

+ +

+ + +

=

t M t

K K K K

K K

a

p

f

f

f

f

d

d

uu j uu j up j up j

pu j
j

pp j pp j
j

u

p

u j

p j

Q

a

Q

p

, 1 , 1 , 1 , 1

, 1
1

, 1 , 1
1

ext

ext

, 1
int

, 1
int

d d

d d

(40)

The terms t
Q

a

d and t
Q

p

d render the tangential stiffness matrix non-symmetric, but are pivotal for maintaining (quadratic) con-

vergence and preserving stability of the non-linear iterative procedure in some of the case studies of this paper.
To compute
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=Q h n q dp d
T

d

d

d

(41)

we substitute Eq. (25) to result in:

= + +
h

µ
h
k

n

p

s

h

µ

h

s

p

s
h

u

s

h

t
Q h

12 4

( )
p

f

f

s s
3 2

2

2

d

d (42)

where

=h n B ad
T

d (43)

The derivative of h with respect to s is computed as

=

h

s
n B ad s
T

,d (44)

with

=

+

+

B

0 0

0 0
d s

s s

s s

h h

h h
,

(45)

For the computation of higher-order derivatives we apply the divergence theorem, resulting in:

= + + +
h

µ
h
k

n

p

s s

k

n

h

s

p

s
h

u

s

h

t
Q

h
h

12
d

( )
d

f

f

p
p

f

f

s s
3

d

d d (46)

Next, the tangential gradient of the solid velocity is approximated as the average of the velocities at +

d and d :

u

s
s B a

( ) ¯s s

d s
T

,d (47)

where the operator matrix B̄d s, is built similar to Bd s, with coefficients ± 1 replaced by 1

2
. Using these identities we obtain,

= + + +

µ

k

n s

k

n
Q n B a n B a s B p

h
h n B a s B p n B a s B a n B a

1

12
( ) ( ) ( ) ( )( ) ( )( ¯ ) dd

f

f
d p

p
p

f

f
d s p d d s d

T 3 T T T
,

T T T
,

T
d

d

d d d d d d d d

(48)

The derivatives of Q
d
with respect to a and p are:

= + + + +

+

µ

k

n s

k

n t

t

Q

a
n B a s B p

h
n B h n B s B p n B s B a n B a s B

n B

1

4
( ) ( ) ( ) ( )( ) ( )( ¯ ) ( ) ¯

1

1
d

d
f

f
p

p
d p

f

f
d s p d d s d d s

d

T 2 T T T
,

T T T
,

T T
,

T

d

d

d d d d d d d d d

d
(49a)

and

= + +

µ

k

n s

Q

p
n B a n B a

h
s B h n B s B

1

12
( ) ( ) ( ) [( )( )]dd

f

f
d

p
p p d s p

T 3 T T T
,

Td

d

d d d d d

(49b)

5.2. 2PDOF: discontinuous pressure

In case of a discontinuous pressure across the interface element, with +p and p independent pressure degrees of freedom, see
Fig. 3b, the fluid transport across the discontinuity can be formulated as a discrete analogon of Darcy’s relation:

= = = =
+ +k p p k pn q n q n q· · · ( )

d d d nd ndd d d (50)

where knd is the permeability of a diaphragm that is asssumed to coincide with the discontinuity. knd =0 corresponds to an im-
pervious boundary and knd retrieves the limiting case of continuous pressure ( =

+p p ).
The discretisation of the pressure jump is now similar to that of the displacement jump:

= = =
+ +p p p h p h p H p( ) ( )p p p

T T
(51)

with

=H h h[ ]p p p

T T
(52)

The array p contains discrete nodal pressures at both sides of the interface. Substituting Eq. (51) into Eq. (50) gives:
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= kn q H pd nd p
T

d (53)

An anomaly is now that there is no independent fluid pressure within the crack. As a consequence, the pressure vanishes from the
stress continuity condition across the interface, and instead of Eq. (31), the internal force vector becomes:

= +pf B m B t( )d du u s d d
int T T

d (54)

Hence, the term Kup
d cancels and only the interface term Kuu

d given in Eq. (33a) is retained.
The interface term in the weak form of the mass balance, Eq. (18), can be elaborated as:

=
+ +

+
kn q n q z H H p( · )d ( · )d d

d d nd p p
T T

d
d

d
d

d (55)

where Eq. (53) has been used. Since this expression must hold for all admissible test functions for the pressure, the contribution Q
d

which stems from the internal discontinuity to the internal force vector becomes, after multiplication by t for symmetry reasons:

t k H H pdnd p p
T

d (56)

The complete set of linearised equations needed in a Newton-Raphson iteration therefore is:

+

+ +

=

M t

K K K

K K

a

p

f

f

f

f

d

d

uu j uu j up j

pu j pp j pp j
j

u

p

u j

p j

Q

p

, 1 , 1 , 1

, 1 , 1 , 1
1

ext

ext

, 1
int

, 1
int

d

d

(57)

with

= k
Q

p
H H dnd p p
Td

d (58)

and all the remaining terms same as in the 1PDOF model.
This model has a deficiency, since the absence of a fluid pressure within the crack precludes fluid transport along the crack. In

reality, some assumption for the fluid pressure in the crack must be made. For instance, a linear interpolation can be assumed
between p and +p [10]. However, taking the fluid pressure in the crack as the average of those at the two sides of the cavity makes it
impossible, for instance, to model hydraulic fracturing, since then the fluid pressure in the crack must be an independent variable,
and is typically larger than that in the surrounding porous medium.

5.3. 3PDOF: independent pressure in the discontinuity

The deficiency of the 2PDOF model can be remedied by explicitly assigning p to +p,d to +

d , and pd to the fluid inside the
fracture, using three pressure degrees of freedom, see Fig. 3c. Clearly, the existence of an independent pressure within the dis-
continuity allows to model the pressurising of a crack, and therefore permits an extension of the modelling capabilities to hydraulic
fracturing.

An explicit distinction is now made between the inflow of fluid through the d and +

d interfaces. In principle, the resistance at
both boundaries can be different. For simplicity, we assume that the resistance is the same at both boundaries of the cavity, knd. Then,
the following relation ensues between the flux into the discontinuity and the different fluid pressures:

= =
+ +k p p k p p k p p pn q ( ) ( ) (2 )d nd d nd d nd d

T
d (59)

The sum of pressures p and +p is interpolated as

+ =
+p p H pp (60)

with Hp redefined as

=H h h[ ]p p p

T T
(61)

Further, there is a separate interpolation for pd:

=p h pd d d
T (62)

where = …h hh ( , , )d d d
T

N1 contains the interpolation polynomials for the pressure in the discontinuity and = …p pp ( , , )d d d
T

N1
contains

the nodal values of the pressure pd. We discretise the test function
d
for the pressure in the discontinuity in a Bubnov-Galerkin sense:

= h z
d d d

T (63)

with zd the corresponding nodal array, and define

=p B pd pd d (64)
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with Bpd being the gradient matrix which is assembled in a manner similar to Eq. (28). Using Eqs. (60) and (62), (59) can be written
as:

= k kn q h p H p2d nd d d nd p
T T

d (65)

Since there is now an independent pressure pd within the discontinuity, the internal force vector that stems from the momentum
balance remains as in the 1PDOF model:

= +p pf B m B t n( )d ( )du u s d d d
int T T

d
d (66)

Three separate contributions to the tangential stiffness matrix can now be identified:

= = +K
f

a
B DB B R D RBd duu j

u j

u u d d j d

K K

, 1

, 1
int

T T T
, 1

uu j

d

uu j
d

, 1 , 1 (67a)

= =K
f

p
B mh dup j

u j

u p

K

, 1

, 1
int

T T

up j, 1 (67b)

= =K
f

p
B n h dud j

u j

d

d d

K

, 1

, 1
int

T T

d
d

ud j
d
, 1 (67c)

After multiplication by t , the contributions from global mass balance to the tangential stiffness are obtained as:

= =K
f

a
h m B dpu j

p j
p u

K

, 1

, 1
int

T

pu j, 1 (68a)

= =

M
t k t kK

f

p
h h B B h H

1
d d dpp j

p j
p p f p p nd p pp

M K K

, 1

, 1
int

T T

pp j pp j pp j, 1 , 1 , 1 (68b)

= = t kK
f

p
h h2 dpd j

p j

d

nd p d

K

, 1

, 1
int

T

pd j, 1 (68c)

where the weak form of Eq. (65) has been exploited and Hpp is defined as:

=H
h 0

0 h
pp

p

p

T

T

(69)

To complete the set of governing equations, the jump in fluid flux in the normal direction given by Eqs. (25) and (59) are combined:

+ =
+k p k p p

h

µ

p

s

h

µ

h

s

p

s
h

u

s

k

n

p

s

h

t
2 ( )

12 4

( )
0nd d nd

d d s s f

f

d
3 2

2

2 2

2
(70)

with h and h

s
as given in Eqs. (43) and (44). After multiplying by the test function

d
, integration over d and application of Gauss’

theorem, the following weak form results:

+ + + + + =
+k p k p p

h

µ

k

n
h

s

p

s
h

u

s

h

t
Q2 ( )

12

( )
dnd d d nd d

f

f

d d
d

s s
d tip

3

d (71)

where Qtip is the inflow of fluid at the crack tip. Multiplication by t and discretisation leads to:

= +hK h s B n B( ¯ )d
du d d s d

T
,

Td

d

d d

(72a)

= t kK h H ddp nd d p
d

d (72b)

= + +t k
h

µ

k

n
hK h h B s s B2

12
ddd nd d d

f

f
pd pd

T
3

T Td

d

d d

(72c)
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The linearised set of equations then becomes:

+

+ + =

K K K K

K M K K K

K K K

a

p

p

f

f

f

f

f

0

d

d

d

uu j uu j up j ud j

pu j pp j pp j pp j pd j

du j dp j dd j
d

u

p

p

u j

p j

, 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1

ext

ext

ext

, 1
int

, 1
int

d d

d d

d d d
d (73)

Similar to the 1PDOF model, the terms at the internal discontinuity render the tangential stiffness matrix unsymmetric.

6. Case studies

We will now study four cases with different loading and boundary conditions. The first case deals with a pre-fractured specimen
and the others feature crack propagation under mode I and mode II loading conditions. The three models are compared and the
applicability of each model is discussed in different contexts. In all cases, quadratic interpolation functions have been used for the
displacements and for the pressure, thus enabling a direct evaluation of the second derivative of the fluid pressure. The interpolation
of pressures and displacements with the same polynomial violates the Ladyzhenskaya-Babuška-Brezzi condition, thus opening up the
possibility of checkerboard patterns of the pressure to appear. These patterns, however, were not observed in the calculations.

6.1. Square plate with a centre crack

We consider a square plate with a discontinuity inclined at an angle of °30 [22]. A constant flux =q 10
4 m/s is imposed on the

bottom edge, see Fig. 4a. The material has a Young’s modulus = ×E 9.0 10
3 MPa, a Poisson’s ratio = 0.2, an intrinsic permeability

k=10−12m2, and the fluid has a viscosity =µ 10
−9MPa s. The Biot coefficient = 1, the Biot modulus M=1018MPa and the

porosity nf =0.3. All boundaries are impermeable except for the top, where fluid is allowed to flow freely. The analysis is carried out
using discretisations of ×40 40 quadrilateral elements, Fig. 4b, with a time step t =1.0 s.

Fig. 5 shows the comparison of the pressure distribution between the three models after a steady state has been reached (t=40 s).
Fig. 5a shows the pressure distribution for the 1PDOF and 3PDOF models. The crack has opened and the fluid pressure is continuous
across the discontinuity in the 1PDOF model and in the 3PDOF model when the interface permeability is greater than or equal to the
medium permeability. Fig. 5b shows the pressure distribution for the 2PDOF model when the interface permeability is equal to the
permeability of the medium. The pressure is still continuous across the interface. Fig. 5c shows the pressure distribution for the
2PDOF and 3PDOF models when the interface permeability knd =0. In 2PDOF model, since fluid inside the pressure is not modelled
and a zero interface permeability is used, there is no fluid flow across the interface. Fluid is allowed to flow from the sides of the
interface and the crack now acts as a barrier for flow. In the 3PDOF model, the fluid pressure inside the interface reduces and
approaches zero and therefore the pressure distribution is similar to the 2PDOF model.

Fig. 6 shows the effect of knd on the pressure inside the discontinuity for the 3PDOF model. When =k knd f , the pressure inside the
discontinuity is the same as that on the bottom and top sides of the interface: the 3PDOF model approaches the 1PDOF model, see also
the pressure contours in Fig. 5a. When the interface permeability is reduced, the pressure inside the discontinuity increases, as
expected and differences emerge between both models. It is interesting that in the limiting case that the interface is impermeable
(knd =0) the pressure inside the discontinuity approaches zero and behaves like in the 2PDOF model.

Fig. 4. (a) Geometry and boundary conditions of the square plate (b) Discretisation.
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Fig. 7 shows the comparison of the displacement field between all three models after the steady state solution has been reached (at
time t= 40 s). Fig. 7a gives the norm of the displacements for the 1PDOF and 3PDOF models with an interface permeability equal to
the permeability of the porous medium. Fig. 7b gives the norm of the displacement for the 2PDOF model with an permeability of the
interface equal to the permeability of the porous medium. For the 2PDOF model, a high dummy stiffness is used to prevent inter-
penetration because fluid inside the crack has not been modelled. Fig. 7c gives the norm of the displacement field for the 2PDOF and
the 3PDOF models when the interfaces are assumed to be impermeable, i.e. knd =0. Fig. 8 shows the effect of knd on the displacement
on either side of the interface for the 3PDOF model. The displacement on either side of the interface increases upon a reduction of knd.

Fig. 5. Pressure distribution in the plate at t=40 s (units of pressure contours in MPa).
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Fig. 6. Pressure inside the discontinuity for different knd values for the 3PDOF model.

Fig. 7. Displacement norm (in mm) at t= 40 s (magnification factor= 500).
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6.2. Fracture propagation in a single-edge notched plate

We now consider fracture propagation in a pre-notched square plate under plane-strain conditions [30]. The material has a
Young’s modulus = ×E 25.85 10

3 MPa, Poisson’s ratio = 0.18, porosity =n 0.2f , and an intrinsic permeability = ×k 2.78 10
16 m2.

The fluid has a viscosity = ×µ 1 10
9 MPa s. The bulk modulus of the solid material = ×K 13.46 10s

3 MPa and for the fluid
Kf =200MPa. The Biot coefficient = 1. The plate is 0.25m long with a 0.05m notch, see Fig. 9. The plate is subjected to mode-I
loading by applying a vertical velocity = ×v 23.5 10

6 m/s at the top and bottom edges. All boundaries of the plate are assumed to be
impermeable. The analysis has been carried out using a discretisation of ×20 20 quadrilateral elements with a time step of 0.01 s.

Crack propagation is governed by a cohesive zone model. Crack initiation takes place when the traction in the normal direction
exceeds the tensile strength of the material. The opening of the crack is governed by an exponential traction-separation relation:

=t f
f

G
uexpn t

t

Ic n (74)

where tn and u n are the normal traction and jump in displacement, respectively. The tensile strength =f 1.7 MPat and the mode-I
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Fig. 8. Effect of knd for the 3PDOF model.

Fig. 9. Fracture propagation in a single-edge notched square plate.
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fracture toughness =G 100 J/mIc
2. The permeability of the cohesive zone is assumed to be equal to that of a fully open crack. For the

2PDOF and 3PDOF models the permeability of the interface is taken equal to half the permeability of the bulk.
Fig. 10 shows the pressure distribution at t=0.2 s. The 1PDOF and 3PDOF models with a high interface permeability yield the

same results. Physically this does not constitute a very meaningful case, but it confirms that the 3PDOF model then coincides with the
1PDOF model. However, when interface permeability is taken equal to half the permeability of the bulk, the pressures along the
fracture are lower than the pressure inside, see Fig. 11, where the pressure along the crack is shown on both sides of the interface for
all models at t=0.2 s.

Fig. 12 shows the displacement in the y-direction at 0.2 s for all three models. The displacement on either side of the fracture is the
highest in the 2PDOF model. The 1PDOF model and the 3PDOF model with a high interface permeability yield identical results. When
knd is equal to half of the permeability of the medium, the displacement is smaller than for the continuous pressure.

6.3. Shear-band formation

Next we consider a two-dimensional specimen with a width w=0.04m and a height H = 0.1m, which is loaded under plane-
strain conditions [14]. The sides are traction-free and the external loading is applied via an imposed constant velocity =v 10

4 m/s
at the top edge, see Fig. 13. The pore pressure at the top of the specimen is zero, and undrained boundary conditions are imposed at
the other boundaries. The material has a Young’s modulus =E 20

3 MPa and a Poisson’s ratio = 0.35. The Biot coefficient = 1 and
the Biot modulus = ×M 5 10

3 MPa. The bulk material has a permeability =k 10f
11m3/N s. Shear-band formation is triggered by a

small imperfection, see Fig. 13. Interface elements have been inserted along a °45 angle starting from the imperfection. The per-
meability of the interface is half of that in the bulk material. Simulations have been carried out using ×24 60 quadrilateral elements.
A time step =t 0.4 s has been used.

The failure mode involves only sliding and no opening. A cohesive zone model governs the crack propagation in mode II. The
following linear traction-sliding relation has been used:

Fig. 10. Pressure distribution at t= 0.2 s (units of pressure contours in MPa).

0 50 100 150 200 250

Abscissa along the crack path (mm)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

F
lu

id
 p

re
s
s
u

re
 a

t 
th

e
 i
n

te
rf

a
c
e

 (
M

P
a

)

1PDOF minus
1PDOF plus
3PDOF minus (high k

nd
)

3PDOF plus (high k
nd

)

3PDOF inside (high k
nd

)

2PDOF minus
2PDOF plus

3PDOF minus
3PDOF plus

3PDOF inside

Fig. 11. Pressure along the interface at t=0.2 s.

K.M. Pervaiz Fathima and R. de Borst Engineering Fracture Mechanics 213 (2019) 1–20

13



=t
u

u1
| |

sgn( )s c

s

cr

s

(75)

where ts and u s are the traction and the jump of the displacement in the tangential direction, respectively. The critical shear stress
that governs crack initiation, c has been taken equal to 100MPa and after inception, the shear-band evolution is controlled by the
mode II fracture energy,GIIc =500 J/m2. cr is the critical displacement when the shear stress is zero given by G2 /IIc c. If the direction
of shearing is reversed at <u s cr1 , the shear traction is assumed to follow a secant unloading/reloading relation.

Fig. 14 shows the pressure distribution for the 1PDOF model at 4 s, 6.4 s, 7.6 s and 8 s. The pressure across the interface is now
continuous. Similarly, Figs. 15 and 16 show the pressure contours for the 2PDOF and 3PDOF models, respectively. Evidently, the
pressure across the crack is now discontinuous. Fig. 17 shows the comparison between the three models at t=6.4 s. The displacement
profile is the same for all three models, Fig. 17a. Fig. 17b shows that the pressure in the 1PDOF model is equal to the pressure inside
the discontinuity of the 3PDOF model. The pressure on either side of the interface is higher than pressure inside the discontinuity. The
pressure inside the fracture is not captured explicitly in the 2PDOF model, but a discontinuity in the pressure across the crack clearly
shows up. The permeability of the interface for the 2PDOF and 3PDOF models is taken equal to half the permeability of the bulk.
Since the crack opening is zero, the 2PDOF and 3PDOF models are essentially the same. In the 2PDOF model there is a jump in
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Fig. 12. Displacement in the y-direction along the interface at time t= 0.2 s.

Fig. 13. Geometry and boundary conditions.
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pressure from the minus to the plus side of the interface and the flux is dependent on the coefficient knd. In the 3PDOF model there is a
jump in the pressure from the minus side to the interior of the discontinuity and again a jump from the plus side to the interior of the
discontinuity. The flux is dependent on the interface permeability knd, and in the 3PDOF model an increase in knd results in the same
pressure distribution as in the 2PDOF model. Fig. 18 shows the effect of increasing knd, yielding identical results for the 2PDOF and
3PDOF models.

6.4. Pressurised fracture

We reconsider the specimen of Section 6.2 with the same material properties, but with different loading and boundary conditions.
Fluid is injected at the inlet of the pre-existing notch at a constant rate = ×Q 5 10in

5 m2/s. The pressure is zero at the top, bottom
and right boundaries. The displacement in the x-direction is constrained at the right boundary and the rightmost tip of crack path is
constrained in the y-direction, see Fig. 19. The mesh size and the time step are the same as that given in Section 6.2. Again, a cohesive
zone model with an exponential traction-separation relation has been used.

Fig. 20 shows the pressure variation for the 1PDOF and 3PDOF models. The pressures are higher in the 1PDOF model compared to
the 3PDOF model when the permeability of the interface is equal to that of the porous medium. This is seen in Fig. 21a, which shows
the pressure along the plus and minus sides of the interface for the 1PDOF and 3PDOF models together with the pressure inside the

Fig. 14. Pressure distribution (in MPa) at 4 s, 6.4 s, 7.6 s and 8 s for the 1PDOF model (magnification factor= 5).

Fig. 15. Pressure distribution (in MPa) at 4 s, 6.4 s, 7.6 s and 8 s for the 2PDOF model (magnification factor= 5).
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discontinuity. For the 3PDOF model the pressure inside the crack is higher than the pressure on either side of the interface. When the
permeability of the interface knd is increased, the pressures become continuous across the interface and approaches those of the
1PDOF model.

Fig. 21b shows the displacement along the plus and minus sides of the interface for the 1PDOF and 3PDOF models. The dis-
placements in the 3PDOF model are higher than those in the 1PDOF model. This is because of higher pressure inside the discontinuity
for the 3PDOF model. For higher values of the permeability of the interface, the 3PDOF model yields the same results as the 1PDOF
model.

Fig. 22a shows the increase in crack length with time for the 1PDOF and 3PDOF models. The crack length is slightly higher in the
3PDOF model compared to the model with a continuous pressure. For lower values of the permeability of the interface, the crack
propagation becomes faster. Fig. 22b gives the variation of the crack opening at the left edge with time for the 1PDOF and the 3PDOF
models. The crack opening is higher in the 3PDOF model compared to the model with the continuous pressure. This is attributed to
the higher pressure inside the discontinuity compared to the pressure at the faces in the case of the 3PDOF model. When the
permeability of the interface is reduced, the crack opening increases because of the larger fluid pressure inside the fracture.

Fig. 22a also shows an increase in crack length which seems to be stepwise [31]. While it is physically quite well possible that such
a phenomenon exists, and there is evidence from simulations using discrete models [32], it may be less likely that a continuum model
can predict such a discrete phenomenon. Indeed, Fig. 23 suggests that the stepwise propagation disappears upon refinement of the
discretisation and the time step.

Fig. 16. Pressure distribution (in MPa) at 4 s, 6.4 s, 7.6 s and 8 s for the 3PDOF model (magnification factor= 5).
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Fig. 17. (a) Displacement in the y-direction and (b) pressure variation along the crack path at time 6.4 s.
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7. Concluding remarks

Three different interpolations of the fluid pressure across a fracture have been examined in order to understand the physical
consequences and the applicability in different contexts through numerical case studies. In all models, the pressure gradient is
discontinuous, thus enabling the exchange of fluid between the discontinuity and the surrounding porous bulk material.

The one pressure degree of freedom model assumes the pressure to be continuous across the fracture. This model is applicable
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Fig. 18. Effect of knd on pressure.

Fig. 19. Pressurised fracture.

Fig. 20. Pressure distribution (in MPa) at t= 0.2 s (magnification factor= 500).
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when the pressure inside the crack is equal to the pressure at the faces of crack. When the crack is not internally pressurised this
model can be used. A two pressure degrees of freedom model can capture a discontinuity in the pressure across the fracture. However,
the pressure inside the discontinuity is not modelled and no fluid transport along the fracture is now possible. For that, an in-
dependent pressure inside the fracture must be assumed, different from the pressure at the faces of the discontinuity. This three
pressure degrees of freedom model is the most versatile and can handle both continuous and discontinuous pressures through suitable
values for the permeability of the interface.

The permeability of the interface influences the crack propagation speed, with a lower value resulting in faster crack propagation.
It is observed that the pressure inside the discontinuity is different from the pressure on the faces of the discontinuity. In the cases
where a displacement boundary condition is applied, fluid flows from the bulk to the cavity and hence the fluid pressure inside the
fracture is lower than the pressure at the sides of the discontinuity. On the contrary, for a pressurised fracture, the pressure inside the
discontinuity is higher than that on either side of the discontinuity.

While the three pressure degree of freedom model is the most versatile approach, the single degree of freedom pressure model
can, in principle, also be used for applications like hydraulic fracturing. But this comes at a price, since extremely fine discretisations
near the fracture must be applied, in conjunction with a different permeability close to the fracture in order to properly take into
account the leak-off effect. Therefore, a three pressure degree of freedom model with a judiciously chosen leak-off coefficient is much
more efficient since it leads to a considerably smaller number of degrees of freedom.

The contributions from the fluid flux term across the discontinuity lead to an unsymmetric tangential stiffness matrix. Yet, their
inclusion is essential for the stability of the solution and a quadratic convergence of the Newton-Raphson iterative procedure.
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Fig. 21. Pressures and displacement along the interface at t= 0.2 s.
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Fig. 22. Crack length and crack opening at the left edge.
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