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Power Analysis, Sample Size, and Assessment of Statistical Assumptions—Improving
the Evidential Value of Lighting Research

J. Uttley

School of Architecture, University of Sheffield, Sheffield, UK

ABSTRACT

The reporting of accurate and appropriate conclusions is an essential aspect of scientific research,
and failure in this endeavor can threaten the progress of cumulative knowledge. This is high-
lighted by the current reproducibility crisis, and this crisis disproportionately affects fields that use
behavioral research methods, as in much lighting research. A sample of general and topic-specific
lighting research papers was reviewed for information about sample sizes and statistical reporting.
This highlighted that lighting research is generally underpowered and, given median sample sizes,
is unlikely to be able to reveal small effects. Lighting research most commonly uses parametric
statistical tests, but assessment of test assumptions is rarely carried out. This risks the inappropri-
ate use of statistical tests, potentially leading to type I and type II errors. Lighting research papers
also rarely report measures of effect size, and this can hamper cumulative science and power
analyses required to determine appropriate sample sizes for future research studies. Addressing
the issues raised in this article related to sample sizes, statistical test assumptions, and reporting of
effect sizes can improve the evidential value of lighting research.
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1. Introduction

“In the fields of observation chance favours only the
prepared mind.”—Louis Pasteur, December 7, 1854

“Eureka!” moments are not frequent in science
and the scientific endeavor is characterized by the
gradual accumulation of knowledge through
empirical methods. This relies on evidence that is
reliable. As a minimum, evidence should be
reported in a manner that allows external verifica-
tion of its veracity. This allows the reader to judge
how appropriate the research conclusions are. One
of the cornerstones of science that aims to support
this external verification is the peer review process.
This review of research work by experts is designed
to filter out poor-quality and unreliable research
findings. Peer review has its limitations (Jefferson
et al. 2002; Ware 2008) and may not have been
successful in many scientific fields in ensuring the
quality of published research, because a large num-
ber of published research findings may be false
(Ioannidis 2005). Publication bias means that the
vast majority of published findings are positive and

support the research hypothesis and do not provide
a representative sample of all scientific studies car-
ried out (Sterling et al. 1995). This is a problem that
is particularly prevalent for human factors research
in lighting, because psychological and behavioral
science has the highest proportion of studies report-
ing positive results compared with other scientific
disciplines (Fanelli 2010). Publication bias may help
explain the current reproducibility crisis affecting
many sciences but particularly psychological and
behavioral science. The Open Collaboration
Project (Open Science Collaboration 2015) recently
attempted replications of 100 studies published in
three major psychology journals in 2008. Ninety-
seven percent of the original studies reported sig-
nificant findings, compared with only 36% of the
replication studies. Mean effect sizes in the replica-
tions were also half the magnitude of those found in
the original studies.

At the heart of publication bias and the reproduci-
bility crisis is the occurrence of type I errors (false-
positive findings) and type II errors (false-negative
findings). We use statistical methods in science in an
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attempt to avoid making claims that in reality may be
a type I or type II error. Null hypothesis statistical
testing (Hubbard and Ryan 2000) produces a P-value
that represents the probability of obtaining the result
(or somethingmore extreme) assuming that there was
no real effect or difference between the groups or
measures being tested (the “null” hypothesis). The
P-value does not explicitly refer to the probability of
the null hypothesis being true, but it does provide
a “measure of the strength of evidence against H0

(the null hypothesis)” (Dorey 2010, p. 2297).
Abelson (1995) referred to “discrediting the null
hypothesis” (p. 10) based on the P-value from
a statistical test. A smaller P-value provides stronger
evidence against the null hypothesis. By convention,
in the field of lighting research and most other scien-
tific disciplines, we use a threshold of P < 0.05 to
indicate a significant or “real” effect, based on propo-
sals by Fisher (1925). However, Fisher himself recog-
nizedthat this threshold was arbitrary and debate is
ongoing about its use. The reproducibility crisis has
led some researchers to suggest that a stricter thresh-
old of 0.005 should be used (Benjamin et al. 2017), to
reduce the number of type I errors reported in the
scientific literature. Other researchers suggest that this
is unwise and that instead we should justify all experi-
mental design and analytical choices made, including
the P-value threshold used to identify a real effect
(Lakens et al. 2018).

The debate over P-value thresholds and their
use, the existence of publication bias, and the
reproducibility crisis all raise questions regard-
ing the evidential value within scientific research
in general and within lighting research specifi-
cally. A significant consequence of incorrect
conclusions made within the research literature
is the promulgation of theoretical concepts or
methods without appropriate evidence. There
are a number of examples of this within lighting
research. Veitch (2001) highlighted the example
of guidelines for the lighting of internal spaces
(Rea and IESNA 1993; see DiLaura et al. [2011]
for newest edition) being based on evidence
from one unreplicated study with methodologi-
cal limitations (Flynn et al. 1979). Work by
Kruithof published in 1941 identified combina-
tions of illuminance and correlated color tem-
perature that supposedly produced pleasing
visual conditions for interior lighting. These

results have been widely used to support lighting
design rules and practice, despite evidence
against Kruithof’s results (e.g., Boyce and
Cuttle 1990; Davis and Ginthner 1990; see
Fotios [2017] for a review). Fotios and
Goodman (2012) also highlighted how current
guidelines for pedestrian road lighting are
based on flawed interpretation of a single unre-
plicated study by Simons et al. (1987).

The evidential value of a study and its contribu-
tion to cumulative scientific progress rely on
appropriate experimental design and statistical
reporting. A critical consideration for any experi-
ment is the sample size used and the experiment’s
ability to avoid making a type I or type II error.
The average power of experiments in a range of
fields, including cognitive neuroscience, biomedi-
cal sciences, and ecology (Button et al. 2013;
Dumas-Mallet et al. 2017; Lemoine et al. 2016), is
low. It is currently not known whether this is the
case also in the lighting field of research. Another
factor that may negatively impact the evidential
value of a study is the inappropriate use and
reporting of statistical tests. Previous research has
identified frequent inconsistencies in the reporting
of statistics (Bakker and Wicherts 2011; Garcia-
Berthou and Alcaraz 2004; Nuijten et al. 2016).
However it is not just incorrect statistical reporting
that jeopardizes the evidential value of a study—
the appropriate use of statistical tests in the first
place is an important consideration (Thiese et al.
2015). Even when statistical tests may be used and
reported correctly and are based on an appropri-
ately powered experimental design, evidential
value can still be limited when information about
the size of an effect found in a study is not
reported. The reporting of only P-values is not
sufficient to convey valuable information about
the effect being investigated (Rothman 2014).
Reporting of effect sizes increases the information
content within a paper and facilitates the inclusion
of its results into a wider synthesis of evidence; for
example, through meta-analysis.

To assess the inappropriate use of statistical
tests, effect sizes and their reporting, and sam-
ple sizes and power within lighting research,
a sample of lighting research papers was
reviewed. Implications of the findings from
this review are outlined alongside discussions
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about how to improve the evidential value of
lighting research.

2. Review of statistical reporting within
lighting publications

The review examined a sample of general research
papers related to lighting and a sample of research
papers related to a specific topic within lighting.
This method of using two different types of samples
provides both a “broad but shallow” and a “deep
but narrow” selection of papers. In addition, varia-
tions in statistical practices may exist between
research areas within lighting, and this dual-
sampling approach allows us to confirm whether
statistical practices across a generalized sample of
lighting papers represent those used within
a specific field. For the sample of general, cross-
topic lighting papers, those published in LEUKOS

and Lighting Research & Technology during 2017
were included in the review. These two journals are
the most prominent outlets for lighting-specific
research. For papers about a specific lighting topic,
those related to the subject of spatial brightness
were selected. There have been a significant number
of papers published on this topic, as highlighted by
the review carried out by Fotios et al. (2015), which
identified 70 studies of spatial brightness. Only
papers included in Fotios et al.’s (2015) review

and published since 2000 were assessed, to better
reflect more recent research practice.

For both the general lighting papers published
in 2017 and the spatial brightness papers published
since 2000, only those that involved research with
human participants were included in this review.
Basic information was recorded about the sample
size, research design (between subjects, within sub-
jects, or both), statistical tests used, checks of
assumptions used in statistical tests, and reporting
of effect sizes. A summary of this information is
given in Table 1. This table highlights that analyes
of variance (ANOVAs) and related tests (e.g.,
F-test, multivariate ANOVA [MANOVA]) are
the most frequent types of statistical test used in
the papers included in the review, supporting find-
ings that ANOVA is the most common test used
in other areas of research such as social psychology
(e.g., Kashy et al. 2009). Other parametric statisti-
cal tests such as correlation, regression, and t-tests
were also found to be in common use in lighting
research papers. Parametric tests rely on certain
assumptions about the way in which data were
collected and the way in which they are distributed
(discussed later in this article), yet the review
found that test assumptions were rarely assessed.

Table 1 also highlights the median sample sizes
used in studies included in the review, for within-
subjects and between-subjects designs. The sample
size has a major influence on the sensitivity of

Table 1. Summary of basic findings from review of recent lighting papers and papers relating to spatial brightness research since
2000.

Variable Lighting Research & Technology and LEUKOS, 2017 Spatial brightness papers since 2000

Total number of journal papers in 2017 83 N/A

Number of papers included in final review 37 13

Research design 84% (31) within subjects 54% (7) within subjects

11% (4) between subjects 15% (2) between subjects

5% (2) mixed (within and between subjects) 31% (4) mixed (within and between subjects)

Median sample size 23 for within subjects 35 for within subjects

30 for individual groups in between subjectsa 21 for individual groups in between subjectsa

Statistical tests used ANOVA (including MANOVA) = 62% ANOVA (including MANOVA) = 46%

t-Test = 22% t-Test = 23%

Regression = 27% Regression = 8%

Correlation = 32% Wilcoxon signed rank/Friedman test/Kruskal-

Wallis = 8%

Wilcoxon signed rank = 11% Otherb = 23%

Kruskal-Wallis/Friedman test = 11% No inferential statistics reported = 23%

Otherb = 19%

No inferential statistics reported = 8%

Assessment of assumptions of statistical

test(s) used

24% of papers (9) 15% of papers (2)

Report measure of effect size 30% of papers (11) 8% of papers (1)
aIn studies with unequal group sizes, the mean group sample size was used in the calculation of the median group size across all studies.
bIncludesMcNemar’s test, Cochran’s Q, post hoc Tukey’s tests, standardized residual sumof squares, variance stable rank sums, binomial test, Dunn-Rankin test.
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a study and its ability to reveal something real about
the population that has been sampled. A sample that is
too small will be unable to reveal a real effect (resulting
in a type II error). Using a larger sample may be
a waste of resources, however, if a smaller sample
would be adequate to reveal the effect under investiga-
tion. Selection of sample size is therefore a critical
experiment design choice, yet almost all of the studies
that were assessed in the review failed to justify the
sample size used. This included a lack of reporting of
any preliminary power analysis carried out to justify
sampling decisions and a lack of discussion about the
size of effect that could be revealed or the size of effect
that was anticipated. In addition, a low proportion of
studies reported any type of effect size measure, and
this was particularly the case for reporting of group
differences (the majority of effect size measures that
were reported were R2 values from a regression).

One further conclusion that emerged from the
review of statistical reporting in the selected papers
was the variation in exactly what statistics are
reported when inferential tests are used. These
differences included whether measures of variation
such as standard deviation were reported, whether
the actual test statistic and associated degrees of
freedom were reported, and the precision with
which P-values were reported, particularly when
a test was not significant. In such cases, P-values
were frequently not reported at all.

This review of a sample of general and topic-
specific lighting research papers highlights three
issues that may compromise the evidential value
of research literature within the lighting field. The
first is the widespread but potentially inappropri-
ate use of parametric statistical testing, given that
only a minority of studies confirm that test
assumptions have been assessed and met.
The second is the failure of lighting papers to
report measures of effect sizes. The third issue is
the relatively small sample sizes used in
experiments.

3. Assessment of assumptions required by
parametric tests

3.1. Statistical test assumptions

The review of lighting papers described in Section 2
highlighted that parametric tests are the most

common type of statistical test used. As the name
implies, parametric statistical tests are based on the
assumption of certain parameters about the data being
tested and the conditions inwhich theywere obtained.
However, the review indicated that only 22% of the 50
papers examined actually reported assessing assump-
tions related to the use of statistical tests. This is con-
cerning because violations of these assumptions can
lead to invalid or inappropriate conclusions based on
the results of the test and we “stop being able to draw
accurate conclusions about reality” (Field et al. 2012,
p. 167), although the magnitude of the violation will
influence the extent to which the conclusions of the
test can be accepted. Most parametric methods,
including those most commonly used in lighting
research, such as ANOVAs, t-tests, and regression,
require four assumptions to be made about the data
they are applied to. These relate to the type of data, the
independence of the data, the normality of the data,
and the variance within the data. These four assump-
tions are described in Table 2. Additional assumptions
may also be required for some types of tests. For
example, linear regression has other assumptions
such as no perfect linear relationship between two or
more of the predictors (multicollinearity) and that the
relationship between predictors and the predicted is
linear. See Berry (1993) for further information about
regression assumptions.

Assumptions about whether interval data are
used and the independence of data should be
assessed and confirmed during the experimental
design phase of any research; for example,
through appropriate selection of measurement
methods and randomization of conditions.
Assumptions about the normality and variance
of data can only be assessed once data have
been collected, and it is good practice to
demonstrate that data meet these two assump-
tions before parametric statistical tests are used.

3.2. Assessment of normality

Confirming whether the data collected within
a study sufficiently meets the assumption of
a normal distribution should be seen as an
informed judgment based on a series of diagnostic
checks, rather than a definitive black and white
decision. Note also that in regression analyses, it
is the residuals (errors between the predicted and
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actual values) that are required to be normally
distributed, not the actual variable values them-
selves. Normality of residuals may also be ade-
quate for between-subjects ANOVAs and
independent t-tests (Williams et al. 2013).

Three types of checks should be carried out to
perform a comprehensive assessment of normality:
(1) visual inspection of graphical representations
of the data; (2) assessment of descriptive statistics;
and (3) statistical tests of deviation from a normal
distribution. These methods are illustrated using
two sets of simulated data, representing normal
and nonnormal distributions. The normally dis-
tributed data have been generated using the
“rnorm” function within the R software package
(Version 3.4.0, R Core Team 2017), with the para-
meters of sample size = 100, mean = 5, standard
deviation = 1.5. The nonnormal data are based on
a positively skewed exGaussian distribution. This
type of distribution is frequently found in reaction
time data (Palmer et al. 2011), and reaction times
are commonly used as a response measure in light-
ing research (e.g., Cengiz et al. 2015; Fotios et al.
2017; He et al. 1997). The simulated nonnormal
data have been produced using the “retimes” pack-
age (Massidda 2013), with the same parameters as
for the normal data (sample size = 100, mean = 5,
standard deviation = 1.5) and with the additional
tau parameter, representing the exponential decay
of the distribution tail, set at 4.

The distribution of a data set can be visually
inspected using three types of plots: a histogram,
a quantile–quantile (Q-Q) plot, and a box plot.
The simulated normal and nonnormal data have
been plotted using these three types of visualiza-
tions in Figs. 1, 2, and 3.

The histogram represents a data set by showing
the counts of values within equally sized ranges or
bins. The size of these ranges, the bin width, that is
chosen for the histogram can have a large impact
on the appearance of the data and its distribution.
The bin widths chosen for the normal and nonnor-
mal data in Fig. 1 were 0.81 and 1.47, respectively.
These were selected using the Freedman-Diaconis
rule of determining optimal bin size (see (1)). Other
methods are also available for selecting the optimal
bin width, such as Sturges’ rule and Bayesian opti-
mal binning.

2� IQRð Þ = n1=3; (1)

where IQR is the interquartile range of data, n is
the sample size.

Quantile–quantile plots compare actual data
against data that would be expected if they were
from a particular distribution (in this case, the
normal distribution). Normally distributed data
would represent a straight line on the Q-Q plot
and deviations away from this straight line indi-
cate deviations away from a normal distribution.

Table 2. Assumptions of parametric statistical tests.

Assumption Description

Data are measured at least at

interval level

The response or property being measured should be recorded using a dependent variable on an interval scale,

minimum, or on a continuous scale. The intervals on the scale should represent differences of equal magnitude.

For example, if a 1–5 rating scale is used to measure a participant’s perceived brightness of a space, the

difference in perceived brightness between ratings of 1 and 2 should be the same as it is between ratings of 4

and 5

Data are independent Data from one participant should not influence data from another participant, which can be addressed through

randomization in experimental design. In within-subjects designs, we do not expect the responses from the

same participant to be independent, but responses between different participants in within-subjects designs

should be independent. In regression analysis, the errors in the regression model should also be uncorrelated

Data are normally distributed The raw data within each condition approximate a normal distribution or the residuals (individual minus the

mean value) approximate a normal distribution, depending on the type of test being carried out

Variance is the same throughout

the data

When comparing more than one group of participants, each of these groups should have approximately equal

variance. If carrying out a correlation, the variance of one of your variables should be stable at all levels of the

other variable. This is known as homogeneity of variance, or homoscedasticity, particularly in relation to

regression analysis. In within-subjects designs with three or more conditions, an assumption of sphericity is

also made. Sphericity refers to the variances of the differences between pairs of conditions being equal across

all combinations of conditions
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The nature of any divergence from a straight line
can also reveal something about how the data fail
to conform with normality. Figure 2 illustrates
how the normal data follow a relatively straight
line, whereas the nonnormal data curve upwards
at the larger response values, confirming the posi-
tive skew that is evident from the histogram.

A further method for visually inspecting the
distribution of data is the box plot. The median
value is indicated by the solid horizontal line
within the box. The box itself represents values
that are between the 25th and 75th quartiles. The
vertical lines or whiskers show the extent of values
that are within 1.5 times the IQR from each end of

Fig. 1. Histograms of simulated data with (left) normal and (right) nonnormal distributions.

Fig. 2. Quantile–quantile plots of simulated data with (left) normal and (right) nonnormal distributions.
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the box (greater than upper quartile + 1.5 IQR or
less than lower quartile − 1.5 IQR). Values that are
beyond this are shown as outliers and represented
by individual data points. The box plot would
suggest a normal distribution if it was approxi-
mately symmetric overall, the median line was at
the center of the interquartile box, the whiskers
were symmetric and slightly longer than the sub-
sections of the interquartile box above and below
the median line, and the number of outlying data
points was small (Ghasemi and Zahediasl 2012).
How small the number of outlying data points
should be depends on the sample size. In
a normal distribution, 0.8% of values would be
expected to be more extreme than the upper or
lower quartile ± 1.5 IQR and therefore flagged as
an outlying value in the box plot (Dawson 2011).
Figure 3 shows box plots for the simulated normal
and nonnormal data sets.

Alongside visual inspections of the data, it is
also useful to quantify any potential deviations
from a normal distribution. A first approach to
this is to quantify levels of skewness (how symme-
trical the distribution is and whether it has
a number of extreme values that produce a long
tail to the distribution) and kurtosis (the relative
thickness of the tails of the distribution, compared
to a normal distribution). Statistical packages such

as SPSS and R include simple methods for calcu-
lating skewness and kurtosis values. However, the
exact methods used in different packages may vary
(Joanes and Gill 1998). Whatever method is used,
a data set with a pure normal distribution will have
skewness and kurtosis values of zero.

To adequately assess deviations from normal-
ity, it is necessary to convert the skewness or
kurtosis statistic to a z-score by dividing it by
its standard error. These transformed values can
be compared against values you would expect to
get by chance alone, based on a normal distribu-
tion. A z-score of ±1.96 is significant at P < 0.05,
at ±2.58 it is significant at P < 0.01, and ±3.29 is
significant at P < 0.001. A significant z-score
may indicate that the distribution has significant
levels of skewness/kurtosis, although the thresh-
old to use is a matter of judgment. As the sample
size increases, the standard error becomes smal-
ler, resulting in a larger z-score. Large samples
are therefore more likely to provide transformed
skewness and kurtosis statistics that appear sig-
nificant, and it may therefore be appropriate to
use a larger threshold to indicate whether the
distribution of a large sample of data shows sig-
nificant skewness or kurtosis. Field et al. (2012)
suggested that it is not appropriate to utilize
z-score values of kurtosis and skewness for
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Fig. 3. Box plot visualizations of the simulated (left) normal and (right) nonnormal data sets.
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samples larger than 200. The z-score values of
skewness and kurtosis for the simulated normal
set of data are −0.30 and 0.23 respectively, indi-
cating no evidence of skewness or kurtosis. The
values for the nonnormal data set were 7.91 and
10.44, confirming significant skewness and kur-
tosis. These values have been calculated using the
“stats.desc” function in the “pastecs” R package
(Grosjean and Ibanez 2014).

A further method for quantitatively assessing
whether a distribution is normal or not is through
the use of a statistical test assessing a distribution for
deviations from normality. The two most commonly
used tests are the Shapiro-Wilk test and the
Kolmogorov-Smirnov test (other tests of normality
are also available, such as the Anderson-Darling test,
D’Agostino-Pearson omnibus test, and Jarque-Bera
test). If the test produces a significant P-value, this
indicates that the data significantly deviate from
a normal distribution. The Shapiro-Wilk may be
a more sensitive and powerful test than other normal-
ity tests (Razali and Wah 2011; Yap and Sim 2011),
although it is often assumed that it is best used with
samples less than 50 because the original development
of the test by Shapiro andWilk was limited to samples
of this size or less (Shapiro and Wilk 1965).

Statistical tests of deviation from normality
suffer from oversensitivity as the sample size
increases and may indicate even very minor
deviations from normality as being significant
with larger samples. This is illustrated in Fig. 4.
This plots the probability that a Shapiro-Wilk
test will give a significant result depending on

the sample size, when the sample is taken from
a population that shows marginal normality (ex-
Gaussian distribution, n = 10,000, mean = 5,
standard deviation = 1.5, tau = 1). These prob-
abilities were calculated using a Monte Carlo
method in which 100 samples were drawn from
the marginally normal population for each sam-
ple size between 10 and 500. The calculated
probability for each sample size was based on
the proportion of Shapiro-Wilk tests that pro-
duced a significant (P < 0.05) result. Because
the Shapiro-Wilk test will produce a significant
result even with a near-normal distribution,
given a large enough sample, it may be appro-
priate to use a more stringent alpha with larger
samples. When large samples are involved, con-
sideration of the W statistic calculated by the
Shapiro-Wilk test may also be useful in assessing
whether any deviation from normality is proble-
matic. Minor deviations from normality in
a large sample will still produce a significant
P-value, but if the W statistic is still large (e.g.,
greater than 0.98), the deviation could be con-
sidered to be minor and make little difference to
the validity of a parametric statistical test.

3.3. Assessment of equal variance

Parametric tests assume that the variance within
different parts of your data are equal. If you are
using a factorial design and have collected data
across different groups, this means that the var-
iance within each of those groups should be

Fig. 4. Probability that the Shapiro-Wilk test will be significant for a sample taken from marginally normal population, by sample
size.
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approximately equal. If your data are not grouped
but are continuous—for example, in a design that
uses regression—then the variance in data for one
variable should be equal across all levels of the
other variable (Field et al. 2012).

When data are collected in different groups—
for example, recording ratings of spatial brightness
for two or more different lamp types—the variance
within these groups should be equal. Levene’s test
can be used to test whether this assumption of
homogeneity of variance is true. A significant
result on this test (P < 0.05) indicates that the
variances of the different groups do significantly
differ and the assumption of equal variance is
violated. However, as the sample size increases,
Levene’s test is more likely to flag even minor
differences in variance as significant, and this
may be inappropriate. Field et al. (2012) suggested
also assessing homogeneity of variance using
Hartley’s Fmax statistic. This is the ratio of variance
in the group with the largest variance to the group
with the smallest variance. If this ratio is greater
than a critical value for a given sample size, then
the variances within the data are unlikely to be
equal. The critical values are given in Pearson and
Hartley (1976) but, as a rule of thumb, a sample
size of 10 per group would require an Fmax of less

than 10 to demonstrate equal variance, for
a sample size of 15–20 per group Fmax should be
less than 5, and for sample sizes of 30–60 per
group Fmax should be less than 3 (Field et al. 2012).

When a correlational design is used and data
collected are continuous—for example, as in linear
regression—the assumption of equal variance (the
variance on one variable is equal across all levels of
another variable) should be checked using visual
inspection methods, plotting the predicted value
against its residual. Figure 5 gives an example of
two such plots, one showing data that meet the
assumption of equal variance and the other show-
ing data that do not meet this assumption. Data
from variables that have equal variance should
present a random array of data points dispersed
around zero. The data points form a funnel shape
if the data come from variables with unequal var-
iance, indicating that the predictive power of the
regression model systematically changes as the
fitted value changes.

In within-subjects designs with more than
three conditions, it is also important to check
the assumption of sphericity. This assumes
that the variances of the differences between
pairs of conditions are the same across all possi-
ble pairs of conditions. Mauchly’s test of

Fig. 5. Example plots of fitted values compared with residuals for linear regression model, showing data with (left) equal variance
and (right)unequal variance.
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sphericity is usually used to test this assumption.
A significant result suggests a violation of the
sphericity assumption.

3.4. Consequences of violating statistical test

assumptions

To demonstrate the consequences of using parametric
tests on data that do not meet test assumptions,
a Monte Carlo procedure was used to identify the
likelihood that a parametric test will produce
a different conclusion than a nonparametric test
when used on samples drawn from populations that
are not normally distributed.

Two populations of simulated reaction timesmea-
sured in milliseconds with ex-Gaussian distributions
were generated using the “pastecs” R package. Both
populations had N = 1000 and parameters of stan-
dard deviation = 250 and tau = 500. Population 1 was
given a mean parameter of 500 and population 2
a mean parameter of 850. The distributions of popu-
lations 1 and 2 are shown in Fig. 6, illustrating a clear
difference in reaction times between the two popula-
tions. Two random samples of n = 15, one from each
of these populations, were drawn and tested for
normality using the Shapiro-Wilk test. Because the
aim was to ensure that one of these paired samples
was not normally distributed, if neither of the sam-
ples produced a significant result (P < 0.05) on the
normality test, the samples were discarded and new
samples drawn from each of the populations. This
process was stopped when a thousand pairs of

samples from each of the populations were obtained.
The parametric independent t-test and the nonpara-
metric Mann-Whitney U-test were used to compare
the samples in each of these pairs. These tests pro-
vided discrepant conclusions for 17% of the sample
pairs, defined as disagreement about whether the
samples were significantly different at P < 0.05. The
large majority of these disagreements (82%)
occurred because the Mann-Whitney test indicated
a significant difference whereas the t-test did not.
This simple demonstration highlights the potential
that the use of parametric methods will provide
inappropriate conclusions when used on nonnormal
data, in comparison to conclusions drawn from
appropriately used nonparametric methods. This
illustration highlights the potential for increased
risk of incorrectly accepting the null hypothesis
(type II error) when using parametric methods on
nonnormal data. However, in different circum-
stances there is also potential for an increased risk
of making a type I error (Wilcox 1998).

3.5. Addressing violations of assumptions

If data are assessed as violating one or more of the
assumptions required by parametric tests, there
are three options:

(1) Accept the violation and proceed with using
a parametric test anyway. The magnitude of
the violation should be considered. If small,
it may be acceptable to use a parametric test

Fig. 6. Density plots showing distributions of two populations of simulated reaction time data, generated using the “pastecs”
package in R.
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such as an ANOVA. For example, Field et al.
(2012) suggested that the ANOVA is reason-
ably robust to violations of homogeneity of
variance when group sizes are equal, and
minor violations of the normal distribution
can also still produce results that are similar
to those when the data are normally distrib-
uted (Schmider et al. 2010). The assumption
of normality can be ignored with increasing
confidence as the sample size rises above 30.
This is due to the central limit theorem,
which states that the means of a random set
of samples from a population (the sampling
distribution) approach normality as the size
of the sample increases. Sample sizes of
N ≥ 30 generally produce a normal distribu-
tion of sample means for all but the most
extreme nonnormal distributions. For such
distributions, a sample size greater than 30
may be required for the sampling distribu-
tion to approach normality, but such extreme
distributions are rare in most research. If the
sampling distribution is normal, the assump-
tion of normality is met and we can proceed
with using a parametric test even if the dis-
tribution of our sample is not normal.
However, with group samples of N < 30
that do not follow a normal distribution, or
if other parametric test assumptions are vio-
lated, the implications of proceeding with
parametric testing, as highlighted in section
4.4, should be carefully considered.

(2) Transform the data to make them meet the
violated assumption. Most dependent vari-
ables are measured on a linear scale, but the
use of a linear scale is arbitrary and data can
be legitimately transformed using some func-
tion to address the violation of a parametric
assumption while maintaining the informa-
tional integrity of the data. Transforms can

be used to address violations of different
assumptions; for example, to produce
a normally distributed set of data or to
increase homogeneity of variance. It is
important to be aware that although trans-
forming data does not change the relation-

ship between different variables, it does
change the differences between variables.
This means that when comparing differences
within the same variable (e.g., responses on
each level of a within-subjects factor), you
should transform all levels of that variable,
not just those that violate one of the assump-
tions you are assessing (Field et al. 2012).
The type of data transformation used will
depend on how an assumption is violated.
For example, log, square root, or reciprocal
transformations can correct for positive skew
and unequal variances, and a reverse score
transformation can correct for a negative
skew. Further details about transformations
can be found in Field et al. (2012) and
McDonald (2014).

(3) Use an alternative nonparametric statistical
test that is robust to the violation. A range of
statistical tests that do not rely on parametric
assumptions exists. A summary of some non-
parametric alternatives to commonly used
parametric tests is given in Table 3. Before
deciding to use a nonparametric test, it is
worth noting that they generally have less
power than parametric tests, leading to an
increased risk of making a type II error (falsely
retaining the null hypothesis). Other methods
that are robust to violations of parametric
assumptions but not listed in Table 3 are also
available. For example, if variance within
groups is not equal, Welch’s separate variances
t-test (for comparing two groups of data) or
Welch’s F test (for comparing three or more

Table 3. Nonparametric alternatives to commonly used parametric tests (see Motulsky 1995).

Assessment being made Parametric test Nonparametric test

Compare one group to a hypothetical value One-sample t-test Wilcoxon signed rank test

Compare two independent groups Independent t-test Mann-Whitney test

Compare three or more independent groups One-way ANOVA Kruskal-Wallis test

Compare two dependent groups (within subjects) Dependent t-test Wilcoxon signed rank test

Compare three or more dependent groups Repeated measures ANOVA Friedman test

Association between two variables Pearson correlation Spearman correlation

Predict value based on another value Linear/nonlinear regression Nonparametric regression/logistic regression
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groups of data) is available. Some researchers
have even suggested abandoning the tradi-
tional Student’s t-test in favor of Welch’s
t-test, because it performs better when sample
sizes and variances are unequal between
groups or just as well when they are equal
(Delacre et al. 2017). Bootstrapping procedures
and generalized linear mixed models also pro-
vide alternative approaches if data fail to meet
parametric assumptions. Some tests also pro-
vide corrected statistics to account for violated
assumptions. For example, if sphericity is not
present in the data, a correction can be applied
to produce a valid F-ratio. Options include the
Greenhouse-Geisser correction and the
Huynh-Feldt correction. Further details about
applying these corrections can be found in
most statistics textbooks (e.g., Field et al.
2012). Further information about nonpara-
metric statistics is available in Conover (1999)
and Siegel and Castellan (1988).

4. Reporting of effect sizes

When conducting research, we are generally inter-
ested in discovering whether our variables of interest
have some effect on what we are studying. This effect
may relate to a difference between groups; for exam-
ple, hazard detection rates under different lighting
conditions. Alternatively, it may relate to associations
between variables; for example, whether outdoor illu-
minance levels are associated with perceived safety. If
applied appropriately (see Section 3), null hypothesis
statistical testing and the P-value produced can pro-
vide evidence toward an effect being present (or at
least that no effect, the null hypothesis, is implausible).
As well as knowing whether an effect may be present,
we are also interested in how big this effect is—do our
variables have a big influence on what we are

measuring or only a trivial influence? A range of
methods is available to calculate the size of an effect,
some of which are listed in Table 4. Measures of effect
size often produce a standardized value that allows
comparison between studies using different metrics
and a consistent “language” of effect magnitudes.
Further information about effect sizes and their cal-
culation is available elsewhere (e.g., Cohen 1988, 1992;
Lakens 2013; Sullivan and Feinn 2012).

The size of any effect revealed within a study is
a valuable piece of information when results are
reported, for three reasons (Lakens 2013). First it
provides information about the magnitude of the
effect found, allowing its practical importance to be
considered. This information cannot be adequately
gleaned from only a P-value (Durlak 2009). Second,
it can be incorporated into meta-analyses that com-
bine the findings from multiple studies to provide
holistic evidence and more definitive conclusions
about a research question or area. Third, it can be
used in the design of future related research to
estimate required samples sizes, through a priori
power analyses, as discussed above. However,
despite the evidential and scientific value of report-
ing effect sizes, this is rarely done in lighting
research. The review of recent lighting research
papers and papers related to spatial brightness
(Section 2) showed that only 24% of the 50 studies
included in the review reported effect sizes of some
kind, with the majority of effect size measures being
R2 values from a linear regression.

It may be possible for the reader of a study
article to calculate for him- or herself some mea-
sures of effect size using commonly reported data
such as the means and standard deviations
(Cohen’s d can be estimated using the difference
between group means and the pooled standard
deviation, for example). However, most readers
are unlikely to make such calculations for every

Table 4. Small, medium, and large effect size criteria conventions, for different effect size measures, based on statistical tests used in
studies published in Lighting Research & Technology and LEUKOS in 2017.

Effect size statistic Statistical test(s) Small effect Medium effect Large effect

Cohen’s d One-sample t-test 0.2 0.5 0.8

Cohen’s dz Dependent t-test; Wilcoxon signed rank test 0.2 0.5 0.8

Cohen’s f Repeated measures ANOVA; between-subjects ANOVA 0.1 0.25 0.40

Cohen’s f2 Regression 0.02 0.15 0.35

Odds ratio McNemar’s test 1.22 1.86 3.00

Kendall’s w Friedman ANOVA 0.1 0.3 0.5

g Binomial test 0.05 0.15 0.25
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study they read about or may not have sufficient
information available to make the calculations cor-
rectly. It is also unwise to rely on the reader’s
intuitions about statistical effect sizes or power
achieved by a study, even if he or she highly
statistically literate, as he or she is likely to be
incorrect (Bakker et al. 2016; Tversky and
Kahneman 1971). Authors of lighting research
papers should therefore be encouraged to explicitly
report effect sizes within their results. The type of
effect size measure that should be reported will
depend on the statistical test used and the experi-
mental design (e.g., see Table 4 for effect size
measures associated with statistical tests reported
in lighting research papers included in the review).
The range of possible effect size measures limits
any discussion of how to calculate and report
effect sizes in this paper, but a number of relevant
guides exist (e.g., see Lakens 2013; and Durlak
2009). G*Power (Erdfelder et al. 1996) is also
recommended as a convenient and powerful open-
source application that can calculate effect sizes for
a range of tests and designs.

The limited reporting of effect sizes within light-
ing research literature may reflect wider inconsis-
tencies in how statistical information is reported, as
indicated by the review carried out in Section 2.

Variations were found in the reporting of summary
statistics, including whether measures of variance
such as standard deviations or standard errors were
presented. There were also inconsistencies in the
reporting of test statistics—some papers provided
the test statistic, such as t or F, the degrees of free-
dom, and the P-value, whereas others provided only
the P-value. In many circumstances, P-values were
not even provided, particularly when a test was not
significant. There were also variations in the preci-
sion of statistical reporting and whether exact
P-values were given, with the broad statement of
“P < 0.05” being frequently used. Whether a statis-
tical test was one- or two-tailed was rarely stated.

5. Sample size and power

As discussed in previous sections, key goals of
any research study are to discover whether an
effect exists (which requires appropriate applica-
tion of statistical tests; see Section 3) and the
magnitude of any effect (which requires the cal-
culation and reporting of a measure of effect
size; see Section 4). The sample size used has
implications for both of these objectives. Sample
size is an essential determinant of the size of the

Fig. 7. Calculated power of one-tailed independent t-test for between-subjects designs (left) and dependent t-test for within-
subjects designs (right), by sample size and effect size (Cohen’s d for between subjects, Cohen’s dz for within subjects), assuming an
alpha of 0.05. Independent t-test uses group sample size, not total sample size.
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effect that study will be able to reveal. It also
contributes to determining the power of the
study—the probability that a significant effect
will be revealed through statistical testing when
a true effect does really exist (i.e., the probability
of avoiding a type II error). Increasing the sam-
ple size increases the power of a study, thus
making it more able to detect an effect of
a smaller size, reducing the likelihood that the
null hypothesis will be incorrectly accepted.
Figure 7 shows how power changes with sample
size, for small, medium, and large effects, using
independent and dependent t-tests. Note that the
effect size metric for between subjects (left plot)
is Cohen’s d, whereas for within subjects (right
plot) it is Cohen’s dz.

Within-subjects designs have greater power
than between-subjects designs for the same sample
sizes due to reduced individual variance.
A number of effect size measures exist for within-
subjects designs (e.g., see Lakens [2013] and
Rosnow and Rosenthal [2003]). For example, the
classical Cohen’s d can be used for two matched
groups; however, this does not take into account
the correlations between paired values in within-
subjects data. An alternative is to calculate Cohen’s
dz, which accounts for the correlated nature of
paired data. The greater the correlation between
the paired values, the larger dz becomes. Caution
should be taken in comparing the size of d (for
between-subjects designs) and dz (for within-
subjects designs), however. For a given difference
between two means and associated standard devia-
tions in values, the effect size calculated if the data
are treated as within subjects (dz) is likely to be
considerably larger than if the data are treated as
between subjects (d). The size of this difference
will depend on the strength of the correlations
between paired values. Lakens (2013) provided
hypothetical analysis to illustrate this, showing
that when illustrative data were treated as between
subjects, Cohen’s d was 1.13, but when the same
data were treated as within subjects, Cohen’s dz
was 1.50. Effect sizes for within-subjects designs
may therefore be inflated, relative to the default
effect size calculations for between-subjects
designs (Dunlap et al. 1996).

If comparing two unrelated groups using an
independent t-test, a sample size of 310

participants in each group would be required to
find an effect size of d = 0.2 (a small effect
according to Cohen’s thresholds), assuming
a power of 0.8. If comparing two related groups
using a dependent t-test, a sample size of 156
would be required to find an effect size of dz
= 0.2. The inflated nature of the dz measure
means that it may be more realistic to seek
a larger effect size. For illustration purposes,
a dz of 0.4 would require a sample size of 41.
The median sample sizes found in the review of
lighting publications (Section 2) were all below
40, highlighting the potential that ongoing
research in the lighting field runs the risk of
being underpowered, if past sample sizes are indi-
cative of sample sizes used in future research.

To explore this issue in more detail, estimates
of the power capable of being achieved by the
sample sizes and statistical tests used in papers
included in the review (Section 2) were calculated
for small, medium, and large effect sizes. Note
that this is not an attempt to calculate the
observed power within each study. Post hoc cal-
culation of observed power, using the observed
effect size and sample size used, provides almost
no information of value. By definition, a study
had sufficient power to detect an effect if
a significant effect was revealed. As Hoenig and
Heisey (2001) stated, “Power calculations tell us
how well we might be able to characterize nature
in the future given a particular state and statistical
study design, but they cannot use information in
the data to tell us about the likely states of nature”
(p. 23). In this analysis, the sample sizes and
statistical tests reported in a sample of lighting
research papers are used as example data in deter-
mining the power achieved for different effect
sizes. This aims to reveal the power capable of
being achieved by existing research practices
within the lighting field.

The effect size criteria used in this analysis
were defined by convention for the specific sta-
tistical test (e.g., Cohen 1988, 1992; Olivier et al.
2017) as shown in Table 4. Power estimates were
calculated for each type of test and sample size
used within these papers and for each threshold
of effect size (small, medium, and large) using
the G*Power software (Erdfelder et al. 1996). If
the same type of test was used multiple times

156 J. UTTLEY



in the same paper, only the test parameters and
sample size that would produce the largest power
were included in this analysis. This meant that
each paper provided only one set of details per
category of test carried out, providing a more
representative sample of values and avoiding
some studies that used large numbers of tests
dominating the results of this analysis.

For the six papers that did not report inferential
statistics, a judgment was made about an appro-
priate statistical test and power estimated based on
this. A total of 67 estimates of power for each
effect size criterion were calculated from 42
papers. Power estimates were unable to be esti-
mated from eight papers due to the type of test
used (e.g., Friedman’s ANOVA) or insufficient
information provided. The distribution of power

estimates is shown in Fig. 8. These histograms
illustrate how current lighting research practice,
in terms of the sample sizes and statistical tests
used, is very unlikely to be capable of revealing
a small effect, with no statistical tests reaching the
recommended power criteria of 0.8. For detection
of a medium-sized effect, only 42% of studies
reported tests that would reach the 0.8 power
criteria. The situation was better for detection of
a large effect, with 75% of reported tests capable of
reaching a power of 0.8 or more.

Note also that the power estimates suggested in
Figs. 7 and 8 may be optimistic because they are
based on use of a one-tailed test. One-tailed tests,
in which the direction of an effect is explicitly
predicted, provide greater power than two-tailed
tests. The difference in power is a function of

Fig. 8. Estimated power of statistical tests used in reviewed papers, based on sample size and other parameters such as number of
measurements (in within-subjects methods), for small (top), medium, (center) and large (bottom) effect sizes. Vertical dashed line
indicates conventional minimum recommended power of 0.8 (Cohen 1988).
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a number of factors including the test used, the
effect size, and the sample size. As an example, the
power for a group sample size of 20 and an effect
size of 0.2 is 0.15 for a one-tailed dependent t-test.
This reduces to 0.09 when a two-tailed t-test is
used. Lighting research papers included in the
review rarely reported whether a one- or two-
tailed test was used. Justification for use of a one-
tailed test was also absent in nearly all reviewed
papers, a finding that is in common with other
research areas (e.g., Ruxton and Neuhäuser 2010).

Although the ability to detect small effect sizes
in lighting research appears to be limited, the need
or desirability of detecting small effects should also
be considered. It is reasonable, particularly in
applied lighting research, for investigators to only
be interested in detecting effect sizes of a certain
magnitude. The practical implications of a small
effect may be negligible, and this could justify
powering studies to only detect larger effect sizes.

It is good practice to carry out an a priori power
analysis to determine the sample size required to
be confident in revealing an effect if there is one
truly present. Despite its benefits, no evidence was
found of a priori power analysis in the sample of
lighting research papers reviewed, suggesting that
it may not be routine practice in lighting research.

A power analysis requires knowledge of three
things. The first is the alpha level, the probability
of observing the measured effect you are willing to
accept, when in reality no true effect exists (effec-
tively, the probability of making a type I error).
Common practice usually sets the alpha at 0.05,
although, as highlighted earlier, the choice of alpha
to use should not be inflexible (Lakens et al. 2018).
The second thing we need to know is the power we
aim to achieve with our test—the probability of
detecting an effect when one truly does exist
(avoiding making a type II error). A common
minimum required power is 0.8 (Cohen 1992).
The final piece of information required for
a power analysis is the effect size that is anticipated
or that the test should be capable of revealing.
Armed with these three pieces of information, we
can calculate required sample sizes using statistical
software such as G*Power (Erdfelder et al. 1996)
or the “pwr” package in R.

The alpha and power threshold are generally
predetermined based on conventions, but

a potential effect size has to be estimated. One
approach to determining an estimated effect size is
by examining previous related literature to estimate
an average effect size for the type of effect you are
interested in. This may be difficult within lighting
research because there are very few meta-analyses
that summarize effect sizes from a range of studies
within a specific research topic, and many pub-
lished studies fail to report effect sizes (as demon-
strated in the review carried out for this article) or
provide the necessary statistics to calculate an effect
size. There is also the potential that the effect sizes
reported in published literature may not reflect the
true effect size due to publication bias and the
general underpowering of studies (e.g., Button
et al. 2013; Paterson et al. 2016; Quintana 2017).
An alternative approach to deciding on an effect
size for use in a power analysis is to state the mini-
mum effect size that you are willing to accept as
detectable with your study or to assess what the
minimum effect size would be for it to be mean-
ingful and not trivial (the smallest effect size of
interest; Albers and Lakens 2018).

6. Conclusions

Publication bias and the reproducibility crisis are
issues that pose a significant risk to the evidential
value of research within a number of fields but parti-
cularly within lighting research. At the heart of these
issues lies the risk of making type I or type II errors.
The statistical methods employed in research are
designed to reduce these errors, and their role in
determining the presence and importance of any effect
is critical to the veracity of published research. This
article reviewed a sample of general and topic-specific
lighting research papers. The review highlighted the
relatively small samples used in behavioral lighting
research and the lack of power this introduces. The
sample sizes used inmost lighting studies may only be
capable of revealing medium to large effects.

It is important to consider whether an effect of
a certain size is of practical significance.
Depending on the specific research area and ques-
tion being investigated, a small effect size may be
insufficiently interesting or noteworthy to warrant
investigation, and researchers may only be inter-
ested in discovering effects equal to or greater than
a certain magnitude. With limited research
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funding and resources available, the size of an
effect that is worth detecting is an important con-
sideration when determining the sample size of
a study. Whatever size of effect is judged to be
sufficiently large to be of interest, it remains
important to justify the sample size used.
However, the justification of sample sizes, based
on anticipated or targeted effect sizes, was virtually
nonexistent within the papers reviewed here.

One possible reason for this absence of sample
size justification is that the practice of reporting
effect sizes in lighting research papers is not com-
monplace and therefore it may be difficult to esti-
mate anticipated effect sizes with any confidence.
Only 24% of reviewed papers reported any kind of
effect size measure. The American Psychological
Association Task Force on Statistical Inference
(Wilkinson 1999) states that: “… reporting and
interpreting effect sizes in the context of pre-
viously reported effects is essential to good
research” (p. 599). Increased reporting of effect
sizes should be encouraged within lighting
research, as should detailed, accurate, and appro-
priate statistical analysis and reporting. This can
help reduce the promotion of unsupported find-
ings within lighting research literature.

The review presented in Section 2 highlighted that
parametric statistical tests, including t-tests,
ANOVAs, and linear regressions, are the dominant
type of testing carried out. Parametric tests require
a number of assumptions to be made about the data,
including a normal distribution and equality of var-
iances. Despite this, very few papers explicitly stated
that these assumptions had been assessed before
a statistical test was used. Inappropriate use of para-
metric statistical tests can result in an increase in type
II errors (false negatives), as illustrated by the simple
example presented in Section 3.4. Wilcox (1998) also
demonstrated that even a small departure from nor-
mality could reduce the power of a t-test from 0.96 to
0.28. Inappropriate use of parametric tests may also
lead to an increase in type I errors, as stated by Erceg-
Hurn and Mirosevich (2008): “… the P values
reported by statistical packages such as SPSS may be
extremely inaccurate if the data being analyzed are
non-normal and/or heteroscedastic; the inaccuracy
may lead researchers to unwittingly make Type
I errors” (p. 593). The evidential value and accuracy
of studies within the lighting research literature would

be improved if the assumptions of the statistical tests
proposed for use were assessed and reported on. This
article provides guidance on how the assumptions of
a normal distribution and equal variances can be
assessed.

This article highlights three issues relevant to
improving the evidential quality within lighting
research: determination and justification of sample
sizes, assessment of test assumptions, and reporting
of statistical results, particularly effect sizes. Further
treatment of these issues can also be found in
a number of other texts (e.g., Abelson 1995;
Cohen 2013; Field et al. 2012; Haslam and
McGarty 2018).

There are other practices and methods that can
improve evidential quality that also warrant discus-
sion within the lighting research community. For
example, preregistration of studies may help
address publication bias and control for researcher
degrees of freedom (Simmons et al. 2011) and ques-
tionable research practices (John et al. 2012).
Research quality and transparency can also be
improved through justification of all research
design decisions within a study, including the sam-
ple size used, analytical methods, and P-value
thresholds chosen (Lakens et al. 2018). Some
researchers suggest abandoning the term “statisti-
cally significant” (Lakens et al. 2018; McShane et al.
2017) because it induces a rigid interpretation of
a set of results when in reality the interpretation
may be context dependent and the meaning of
“significance” may vary depending on the topic
and research field. Discussion of these ideas would
be valuable in the context of lighting research.
However, null hypothesis statistical testing is likely
to remain the de rigeur method for assessing results
in the foreseeable future. All of those involved in
research publication, from researchers to reviewers
and editors, should aim to ensure that this approach
is applied appropriately, taking heed of the three
issues discussed in this article. This should include
accurate and appropriate reporting of the results of
such statistical analysis. To support this aim, light-
ing journals should consider adopting existing
guidelines for reporting quantitative results pro-
vided by expert organizations such as the
American Psychological Association (Appelbaum
et al. 2018) for studies with outcome measures
from the behavioral and social sciences.
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Appropriate statistical analysis and reporting
will help ensure that research resources are not
wasted, participants’ time is not wasted and they
are not exposed to undue risk through participa-
tion in unnecessary or poor research, and readers’
time is not wasted.
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