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Local level estimates of food, drink 
and tobacco expenditure for Great 
Britain
William H. M. James  , Nik Lomax & Mark Birkin

We present expenditure estimates for 106 product categories across Great Britain for the years 2008–
2016. Estimates are at the Local Authority District level (n = 380) and the categories cover all food, drink 
and tobacco commodities. Reliable, local level expenditure estimates are crucial for understanding 
broader market trends, assessing economic stability and for projections. This is especially important 
for commodities such as alcohol, tobacco and unhealthy foods due to their role in the prevalence of 
non-communicable diseases. There has been relatively little research into local area spatial patterns of 
expenditure, with existing estimates often of insufficient resolution for informing planning decisions. 
We use spatial microsimulation to create an archive of expenditure datasets. This was achieved by 
linking socio-demographic foundations with detailed datasets on individual expenditure. Whilst initially 
developed to aid investigations into sociodemographic trends in the meat industry, the data have 
reuse potential in a number of disciplines, including public health, economics, retail geography and 
environmental management. The framework could be applied to other regions with appropriate data.

Background & Summary
Over the past 50 years, the UK has experienced major shifts in dietary patterns due to changes in agricultural 
practice, trade policies and food industry marketing1. Further changes may be on the horizon in the context of a 
UK exit from the European Union2. Against this backdrop of continuous national level change, there is substantial 
local level variability in food consumption and expenditure patterns, which has been attributed to spatial varia-
tions in factors including socio-economic status3–5 and demographics6. These changes are reflected by individual 
expenditure patterns as surveyed annually by the Living Costs and Food Survey7–15, with corresponding results 
published to the regional level across the UK16 (i.e. 12 geographical zones). To help understand the local level 
variability of expenditure, and to form a baseline for future projections, we present an open access archive of 
expenditure datasets for Great Britain for the years 2008 to 2016. Each annual dataset consists of an expenditure 
estimate for 106 food, drink and tobacco categories for every Local Authority District (LAD) (n = 380).

Robust estimates of local level spatial patterns of food and drink expenditure are crucial for understanding 
broader trends, for assessing market stability and for future projections. It has long been argued that the most 
powerful theoretical models for explaining human behaviour operate at the individual person level17, with emer-
gent higher-level properties giving the best opportunity to understand the entire system at all levels. Reliable and 
detailed information on the spatial distribution of food, drink and tobacco expenditure is also key for research 
in the fields of public health, environmental impact and retail geography. This importance is highlighted by the 
prevalence of non-communicable diseases such as cardiovascular disease, cancer and diabetes which currently 
account for 70% of all deaths worldwide and 90% in the UK18. As these diseases share key modifiable behavioural 
risk factors such as tobacco use, unhealthy diet and the harmful use of alcohol, it is clear that understanding 
expenditure patterns associated with key commodities is of great value for public health research. There is also an 
increased awareness of the environmental impact of food production, with livestock production responsible for 
14.5% of all anthropogenic greenhouse gas emissions in 200419, whilst 71.2% of deforestation in South America 
between 1990 and 2005 was for conversion to pasture20.

There has been relatively little research into local area spatial patterns of food and drink expenditure in the 
UK. Whilst expenditure data is routinely collected by companies and organisations, these are seldom open-access, 
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often at a coarse spatial resolution and only provide a snapshot of specific products or socio-economic groups. In 
the UK, comprehensive estimates of food and drink expenditure are published annually by the Department for 
Environment, Food & Rural Affairs (DEFRA)16, representative of the population. However, these data are only 
available at the regional level (12 geographical zones) and as such are not at a sufficient resolution for informing 
planning decisions related to public health infrastructure, retail or the environment at the local level. For example, 
concerns over access to healthy foods21 cannot be assessed using regional level data. Furthermore, there is little 
information on associated individual level socio-demographics, which have been shown to be strongly linked to 
expenditure3.

This study aims to bridge the identified data gap between the published regional level estimates of expendi-
ture16 and known drivers of local level variation3–6 by producing local area level datasets of expenditure using the 
technique of spatial microsimulation. Increasing computational efficiency and falling costs combined with the 
improved availability of survey microdata have increased the ability to produce such datasets22. As such, using the 
code developed by Lovelace and Dumont23, an archive of expenditure datasets has been created. This process used 
the most recent census and survey microdata available to the authors at the time of writing, alongside a range of 
geospatial datasets.

We believe spatial microsimulation techniques of the type described in this paper hold great potential benefits 
for a range of disciplines including economics, retail geography and public health. Whilst this study focusses on 
Great Britain, the framework here could be applied to any location with the appropriate data sources.

Methods
Spatial microsimulation. This study uses spatial microsimulation to generate expenditure estimates under 
the framework shown in Fig. 1. Spatial microsimulation involves ‘the creation, analysis and modelling of individual 
level data allocated to geographic zones’23, and has been used in the fields of health care demand24, educational 
attainment25, commuting patterns26, and population projections27 amongst others. For a comprehensive overview 
of the microsimulation process the reader is directed to Birkin and Clarke28 and a guide to implementation can 
be found in Lomax and Smith29.

As with most spatial microsimulation models, the input data for this study consists of microdata – a 
non-geographical individual level dataset – and constraint tables, which provide aggregate counts for each geo-
graphical zone (LAD). The framework is split into two separate microsimulation models as shown in Fig. 1; a 
comprehensive ‘adult’ model for those aged 16 and over and a ‘child’ model for those aged 15 and under. Once 
each of the models have completed, the results are merged to generate a full synthetic population and conse-
quently LAD level estimates of expenditure.

Specifically, this study employs Iterative Proportional Fitting (IPF), implemented within the R programming 
environment (https://www.r-project.org). IPF works by adjusting a large array of weights - rows corresponding 
to individuals and columns corresponding to the geographic zones (e.g. LADs) - iteratively, to maximise the fit 
between simulated and known (e.g. census/survey) data. The mathematics of IPF are covered by Fienberg30 a 
guide to implementation is provided in Lomax and Norman31 whilst the code used here for implementing IPF in 
R was developed by Lovelace and Dumont23.

Microdata - Living cost and Food Survey (LcF). Microdata are taken from the Living Cost and Food 
Survey (LCF), the most comprehensive survey on household spending in the UK, covering approximately 12,000 
respondents from 6,000 households each year. The LCF is carried out by the Office for National Statistics (ONS) 
and has been running in its current format since 2008. The LCF is designed to be representative of people living 
in households in the UK, using a multi-stage stratified random sample with clustering approach. The survey is 
weighted to compensate for non-response and also to ensure the sample distribution matches the population dis-
tribution in terms of region, age group and sex. The LCF runs continuously throughout the year to avoid seasonal 
variation32.

The LCF comprises an expenditure diary detailing purchases over a two-week period and an interview cov-
ering socio-demographic characteristics, income and regular items of household expenditure. Respondents are 
required to record all expenditure over the two-week period (regardless of outlet), thus providing a compre-
hensive account of household expenditure. Commodities recorded in the LCF diary (and consequently in this 
study) are grouped by category, based on The Classification of Individual Consumption by Purpose (COICOP) 
coding framework. COICOP groups products into homogenous categories for which food, drink and tobacco 
constitute 106 separate groups. Categories may define a specific product (e.g. 1.1.6.2.1 = Bananas – fresh) or a 
homogenous group of products (e.g. 1.1.1.4.1 = Cakes and puddings). The framework structure also allows easy 
aggregation to higher levels (e.g. 01.1.2.5 = Dried, salted or smoked meat and edible meat offal; 01.1.2 = Meat; 
and 01.1 = Food). The full list of 106 food, drink and tobacco expenditure codes used in this study can be found 
in Supplementary File 1. The 2016–2017 LCF survey reported some commodities (specifically those consumed 
away from home) only to an aggregate level, resulting in fewer categories for our 2016 dataset (n = 80). These 
aggregated categories are included in Supplementary File 1. Whilst grouping products in this manner may mean 
that analysis related to specific products is restricted, the 106 categories provide sufficient detail for most applica-
tions. Whilst various other coding frameworks are available, COICOP was specifically developed by the United 
Nations Statistics Division to analyse individual expenditures, and was therefore adopted by the ONS for use in 
the LCF. Datasets presented in this study can be directly compared with others which use the COICOP frame-
work, whilst the detailed descriptions provided in Supplementary File 1 allows cross-referencing with alternative 
frameworks if required.

The LCF is geocoded at a coarse level, detailing which of the 12 government regions each individual resides in 
(Scotland, Wales, Northern Ireland, South East, London, North West, East of England, West Midlands, South West, 
Yorkshire and the Humber, East Midlands, North East). As discussed previously, this is insufficient for informing 
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planning decisions related to public health infrastructure, retail or the environment at the local level. Whilst it 
would be technically possible to constrain the microsimulation model using these data (i.e. only individuals sam-
pled in the South West region of England from the LCF would be able to be assigned to LADs in the South West 
region), this would result in a much-reduced sampling pool insufficient for spatial microsimulation. As such, no 
initial geographical constraints are used in the microsimulation model although the regional information is used to 
account for relative regional price levels and for model validation purposes, as discussed in due course.

It should be noted that whilst the LCF survey includes individuals from Northern Ireland, insufficient con-
straint variables were available for microsimulation within Northern Ireland (see below). As such, whilst micro-
simulation outputs presented in this paper are restricted to Great Britain, individuals from Northern Ireland 
(from the LCF) are included within the sampling pool and may be allocated to any LAD in Great Britain if their 
socio-demographic characteristics are appropriate.
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Fig. 1 Schematic diagram of the expenditure estimation framework.
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Variable Description Values

ID Individual identifier code e.g. 3.2 (number before decimal point indicates household, number after indicates the 
individual within the household). This is used to link with the expenditure diary (Table 3)

Region Which UK region the individual is from

South East
London
Scotland
Wales
Northern Ireland
West Midlands
South West
North East
North West
Eastern
East Midlands
Yorkshire

Age & sex Age group and sex

Female, aged 0–9 years
Female, aged 10–15 years
Female, aged 16–24 years
Female, aged 25–34 years
Female, aged 35–49 years
Female, aged 50–64 years
Female, aged 65–74 years
Female, aged 75+ years
Male, aged 0–9 years
Male, aged 10–15 years
Male, aged 16–24 years
Male, aged 25–34 years
Male, aged 35–49 years
Male, aged 50–64 years
Male, aged 65–74 years
Male, aged 75+ years

Ethnicity Ethnicity

Black
White
Mixed
Other

Unemployed Whether or not is unemployed
Unemployed
Not-unemployed

Student Whether or not a full-time student
Student
Not-student

Gross wage Gross weekly wage (£) (employees only) e.g. £542.56

Employment type Type of employment
Employee
Self-employed
Other

Household type Type of household – grouped age of individual 
followed by number/age of dependent children

16_24_dep_n (Aged 16–24, no dependent children in household)
16_24_dep_y (Aged 16–24, dependent children in household)
25_34_dep_n (Aged 25–34, no dependent children in household)
25_34_dep_y_0_4 (Aged 25–34, youngest dependent child aged 0–4)
25_34_dep_y_5_10 (Aged 25–34, youngest dependent child aged 5–10)
25_34_dep_y_11_pl (Aged 25–34, youngest dependent child aged 11+)
35_54_dep_n (Aged 35–54, no dependent children in household)
35_54_dep_y_0_4 (Aged 35–54, youngest dependent child aged 0–4)
35_54_dep_y_5_10 (Aged 35–54, youngest dependent child aged 5–10)
35_54_dep_y_11_pl (Aged 35–54, youngest dependent child aged 11+)
55_64_mph_dep_n (Aged 55–64, no dependent children in household)
55_64_sph (Aged 55–64, single person household)
55_74_dep_y (Aged 55–74, dependent children in household)
65_74_mph_dep_n (Aged 65–74, multiple person household, no dependent children)
65_74_sph (Aged 65–74, single person household)
75_pl_mph (Aged 75+, multiple person household)
75_pl_sph (Aged 75+, single person household)

Table 1. LCF microdata fields and classes.
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Formatting the survey microdata. The LCF contains a wealth of information, much of which is not 
required for the purposes of this study and can thus be discarded. As the microsimulation process requires com-
mon variable classes for the microdata and corresponding constraint dataset, re-formatting is required to gen-
erate the appropriate classes. Table 1 lists the LCF variables used in this study and their categorisation. Table 2 
provides an example extract of the formatted socio-demographic microdata, and Table 3 shows an example of the 
diary information.

From 2015 onwards the LCF reporting window moved from a calendar year (January to December) to a 
financial year (April to March). To maintain consistency of our datasets, we use a calendar year throughout (i.e. 
our 2015 dataset represents LCF data from January 2015 to December 2015). As the LCF details when each survey 
was completed during the year, we achieve this by removing and appending records from each year as appropri-
ate. The 2015–2016 LCF survey also includes additional records from January to March 2015, making it possible 
to construct a seamless data series.

constraint variables. As with other microsimulation applications, the model presented here is underpinned 
by the assumption that the target variable (expenditure) is associated with the geographical constraint variables. 
Constraint variables were chosen following the guidelines of Lovelace and Dumont23, based upon relevance to the 
target variable (expenditure) and data availability. Table 4 details the constraint variables selected, the source data-
sets and their temporal coverage. The microsimulation is split into two separate sub-routines: a comprehensive 
‘adult’ microsimulation model for those aged 16 and over and a simpler ‘child’ microsimulation model for those 
aged under 16. This is because many of the variables are not available and/or not applicable for those under the 
age of 16 (e.g. unemployment). As noted previously, many of the constraints listed in Table 4 are not available for 
Northern Ireland and as a result the microsimulation presented here was restricted to Great Britain.

constructing the baseline population. Microsimulation requires the baseline population of each con-
straint (i.e. the total number of people in each zone) to correspond to the population from which the microdata 
has been sampled. For the LCF, this is all people living in households aged 16 and over (for the adult model) or 
aged 15 and under (for the child model). The IPF algorithm also requires the baseline population to be identical 
across all constraint variables. To meet these requirements, our baseline population for each year is taken from 
the Office for National Statistics mid-year population estimates, with residents living in communal establishments 
removed to result in only residents living in households. All other constraints are scaled to this baseline popula-
tion, as described by Lovelace and Dumont23. Table 5 shows an extract of the final 2008 age-sex constraint table 
(household residents only) for three local authorities.

With counts of communal establishment residents only available for the year 2011, we assume that this pop-
ulation is unchanged throughout the study years (2008 to 2016). This is a reasonable assumption, as communal 
establishment populations are usually fairly stable in terms of their size and demographic structure. For example, 
an elderly care home will contain a similar group of individuals from year to year. This stability is recognised by 
the ONS, who treats communal establishment populations as a different and more stable group to the household 
population when producing the mid-year estimates33. Furthermore, any deviation from the 2011 counts will have 
a negligible impact on the model output as communal establishment residents account for a small proportion of 
the overall population - just 1.7% in 201134.

Formatting the ethnicity constraint. Annual estimates of the number of people aged 16 and over per 
ethnic group for each LAD are taken from the Annual Population Survey (APS) (Table 4). These data are catego-
rised to correspond to the LCF microdata classes (Table 1) and scaled to the baseline population. An extract of the 
final 2008 dataset is shown in Table 6. As the APS sample already excludes most communal residents, we assume 
that the proportions of each ethnic group is consistent between the baseline population and the APS sample.

Formatting the unemployment constraint. Annual estimates of the number of unemployed people 
aged 16 and over in each LAD are taken from ONS Model Based Estimates of Unemployment (Table 4). These 
data are scaled to the baseline population, with an extract of the final 2008 dataset shown in Table 6. The unem-
ployment estimates are derived from the Labour Force Survey, which excludes most communal establishment 
residents35. As such, we assume that the proportion of those unemployed is consistent between the baseline pop-
ulation and the model based estimates.

ID
Expenditure 
region Age sex Ethnicity Unemployed Student

Gross weekly 
wage (£)

Employment 
type Household type

9.1 South East M_50_64 white N N 1052.97 Employee 35_54_dep_n

9.2 South West F_25_34 mixed N Y 0 Employee 25_34_dep_n

4583.3 London F_16_24 mixed N N 30 Employee 16_24_dep_n

3793.1 London F_25_34 white N N 0 Other 25_34_dep_y_5_10

5194.2 Scotland F_25_34 white N N 273.2 Employee 25_34_dep_n

2426.2 Wales M_35_49 white N N 350.8 Employee A_35_54_dep_y_0_4

3061.2 Wales F_50_64 white N N 0 Self-employed A_55_64_mph_dep_n

Table 2. Sample formatted microdata. See Table 1 for a description of variables.
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Formatting the student status constraint. Annual estimates of the total number of students aged 16 
and over are taken from the Annual Population Survey (Table 4). As the LCF microdata does not sample students 
who reside in halls of residence, these students are removed from the constraint estimate. This is achieved using 
2011 Census estimates of the numbers of people aged 16 and over who live in student accommodation (Table 4). 
As these records are only available for 2011, we assume that the number of students in halls of residence remains 
constant throughout 2008–16, a reasonable assumption due to the transient nature of the population. These 
resulting data are scaled to the baseline population, with an extract of the final 2008 dataset shown in Table 6.

Formatting the income constraint. Annual estimates of gross weekly pay (pre-tax) for each LAD is taken 
from the Annual Survey of Hours and Earnings (ASHE) (Table 4). This provides data on the pay levels and dis-
tribution of UK employees aged 16 and over. The ASHE is based on a sample of employee jobs taken from Her 
Majesty’s Revenue and Customs Pay As You Earn (PAYE) records and as such does not include those who are 
self-employed. The initial data is provided in terms of percentiles with data available for P10, P20, P30, P40, P50, 
P60, P70 and P80 (Table 7). Each percentile indicates the value below which a given percentage of the observa-
tions fall; for example a P20 value of £219.80 indicates that 20% of the sample has an income of less than £219.80.

To make the ASHE data compatible with the microsimulation model, it is first necessary to estimate the total 
number of people covered by the sample. This is achieved using employment status estimates from the Annual 
Population Survey (Table 4). This provides estimates of the number of employees (i.e. those covered by PAYE 
records) per LAD (Table 7).

Once the number of persons in each category has been estimated, a constraint table is generated containing 
the income brackets for each LAD (in £s) and the number of employees within each category (Table 8). As with 
other constraints the values are scaled to match the baseline population. The same income brackets are used to 
categorise the LCF microdata for each individual LAD as shown in Fig. 1.

Formatting the household characteristics constraint. Data on the household characteristics of each 
LAD is taken from the 2011 Census (Table 4). The dataset covers all individuals aged 16 and over living in a 
household, providing a description of household type (age and number of people and dependent children liv-
ing in the household). The categories are grouped to correspond with those in the LCF microdata (Table 1). As 
information is available only for 2011, we assume that the proportion of each household type remains constant, 
being scaled to the baseline population each year. Table 9 shows an extract of the final household characteristics 
constraint table.

child microsimulation model. For people aged under 16 years of age, a simpler microsimulation model is 
employed as many of the constraint variables are not applicable or not available (e.g. unemployment). A simpler 
model is also deemed appropriate as children contribute a negligible amount of total expenditure, accounting for 
just 0.78% in 2016–17 according to the Living Cost and Food Survey15. As with the adult model, ONS mid-year 
population estimates are used in conjunction with 2011 Census estimates of communal residents to create a base-
line population. The child model uses an age sex constraint with age categories of 0–9 years (male), 10–15 (male), 
0–9 years (female) and 10–15 (female), as shown in Fig. 1.

Missing variables. Whilst constraints of age-sex and household type are available for all 380 local authori-
ties across Great Britain, other constraints (students, unemployment, ethnicity and income) are unavailable for a 
minority of LADs due to small sample sizes or missing data. For example the Isles of Scilly have a total population 
of just 2,292 people (2014 estimate), meaning that some constraints would be disclosive if published. Whilst this 
is not deemed an issue in terms of model robustness, the model needs to be able to cope with missing data. This 
is achieved by dynamically adjusting the final constraint table for each LAD depending on which variables (and 
categories within) are available. Whilst the student and unemployment variables are binary (either available or 
not available), the variables of ethnicity and income may be partially complete (e.g. there may be an estimate of 
the number of individuals of black ethnicity but no estimate for those of mixed ethnicity). In these cases, the 
constraint (and microdata) is re-categorised to utilise the available data. For example, if an estimate for those 
of mixed ethnicity is unavailable for a particular LAD, new categories of ‘black’, ‘white’ or ‘other’ will be created.

In most circumstances a complete suite of constraints are available allowing for a full microsimulation model. 
As all LADs have complete age-sex and household type variables the microsimulation model will run on these as 
a minimum. Table 10 shows the number of LADs with each constraint available for each year.

Accounting for relative regional consumer price levels. It is well known that the price of goods 
and services varies throughout the UK36. In 2016 food and non-alcoholic beverages in London cost 2.2% more 
than the UK average whilst in Scotland they cost 0.2% below average36. This is a potential problem for the 

ID COICOP expenditure code Weekly expenditure (£)

2.2 11.7.1.1.5 23.08

2.2 11.1.3.1.5 25

8.1 1.1.1.2.2 0.52

8.1 1.1.8.4.1 0.5

8.1 1.2.2.2.1 0.375

Table 3. Sample expenditure diary structure.
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microsimulation model as the process allows an individual from the LCF microdata to be assigned to any LAD 
in Great Britain, according to the constraint variables. For example, if an individual from Scotland (from the LCF 
microdata) is assigned to a London LAD, their expenditure will likely be under-estimated.

To account for this, ONS Relative Regional Consumer Price Levels (RRCPLs) data36,37 are used to adjust 
expenditure values depending on their source region (from the LCF microdata) and their destination region (as 
assigned by the microsimulation model). Pre-microsimulation expenditure values are scaled to a ‘UK average’ 
price before being adjusted back to regional levels according to the region in which the microsimulation model 
assigns them to. The ONS provides an aggregate RRCPL value for each of the 12 regions (for all products) and 
provides more detailed category level values for London, Scotland, Northern Ireland and Wales. As such we use 
the detailed category level values where available and the aggregate value for all categories where not, as shown 
in Table 11 (for 2016). As RRCPL figures are not published annually, we use the closest datasets available; 2010 
RRCPLs37 for 2008 to 2012 and 2016 RRCPLs36 for 2013 onwards.

GiS expenditure datasets. Once the model is complete, GIS expenditure datasets may be created by join-
ing the expenditure tables with spatial boundaries. Figure 2 shows examples of selected datasets for the year 2012. 
Cumulative categories are generated by summing the appropriate individual COICOP categories (e.g. all food and 
drink: Fig. 2a, alcoholic drinks: Fig. 2b, tobacco and cigarettes: Fig. 2c) whilst individual COICOP categories can 
also be mapped (e.g. bacon and ham purchased for household supplies: Fig. 2d). For visualisation and integration 
with other datasets, the GIS vector shapefiles may be converted to a spatial grid of data cells in a similar manner 
to other spatial datasets (e.g. James et al.38).

Data Records
The local level expenditure datasets described in this article are publicly and freely available through Figshare39.

Model Constraint Source dataset(s) Sample description
Temporal 
coverage

Adult
Age and sex, 
household residents 
(cross tabulated)*

ONS Mid-year population estimates - local authority based by 
single year of age (http://www.nomisweb.co.uk) All residents aged 16 and over Annual 

2008–2016

Census 2011 Table LC1105EW - Residence type by sex by age. 
(http://www.nomisweb.co.uk)

Residents living in communal 
establishments aged 16+ (England and 
Wales)

2011

National Records of Scotland. Scotland’s Census 2011 - Table 
DC4414SCca - Communal establishment type by type of 
resident by sex by age. (http://www.scotlandscensus.gov.uk)

Residents living in communal 
establishments aged 16+ (Scotland) 2011

Adult Ethnicity ONS Annual Population Survey (http://www.nomisweb.co.uk)
Ages 16+. Excludes communal 
establishment residents other than those in 
NHS housing or student halls.

Annual 
2008–2016

Adult Student

ONS Annual Population Survey (http://www.nomisweb.co.uk)
Ages 16+. Excludes communal 
establishment residents other than those in 
NHS housing or student halls.

Annual 
2008–2016

Census 2011 Table LC4411EW - Student accommodation by age 
(http://www.nomisweb.co.uk)

Students living in communal establishments, 
ages 16+ (England and Wales) 2011

Scotland’s Census 2011 - Table DC4414SCca - Communal 
establishment type by type of resident by sex by age  
(http://www.scotlandscensus.gov.uk)

Students living in communal establishments, 
ages 16+ (Scotland) 2011

Adult Unemployment ONS Model-based estimates of unemployment  
(http://www.nomisweb.co.uk)

Ages 16+. Excludes communal 
establishment residents other than those in 
NHS housing or student halls.

Annual 
2008–2016

Adult Household type Census 2011 Table QS110UK - Adult life-stage (alternative adult 
definition) (http://www.nomisweb.co.uk) Household residents, aged 16+ 2011

Adult Income

ONS Annual Survey of Hours and Earnings  
(http://www.nomisweb.co.uk)

Ages 16+. Gross weekly pay - sample of 
employee jobs taken from HM Revenue and 
Customs PAYE records.

Annual 
2008–2016

ONS Annual Population Survey (http://www.nomisweb.co.uk)
Ages 16+. Count of employees and 
self-employed. Excludes communal 
establishment residents other than those in 
NHS housing or student halls.

Annual 
2008–2016

Child
Age and sex, 
household residents 
(cross tabulated)*

ONS mid-year population estimates - local authority based by 
single year of age (http://www.nomisweb.co.uk) All residents aged 16+ Annual 

2008–2016

Census 2011 Table LC1105EW - Residence type by sex by age 
(http://www.nomisweb.co.uk)

Residents living in communal 
establishments aged 15 and under (England 
and Wales)

2011

Scotland’s Census 2011 - Table DC4414SCca - Communal 
establishment type by type of resident by sex by age  
(http://www.scotlandscensus.gov.uk)

Residents living in communal 
establishments aged 15 and under 
(Scotland)

2011

Table 4. Constraint variables and source datasets for the adult and child microsimulation models. *The age and 
sex constraint forms the baseline population to which all other constraints are scaled to.
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Technical Validation
The validation of microsimulation models has received much attention in the literature due to the dangers of 
using incorrect model data to inform policy40,41. Validation of microsimulation models presents a substantial 
challenge since detailed spatial microdata are seldom available – in fact it can be argued that if such data were 
available the microsimulation process would be redundant. There are a variety of methods available for validation, 
broadly categorised as internal validation (ensuring the model makes sense in reality given the input data) and 
external validation (ensuring the model coincides with external reality).

internal validation. Internal validation is the most common form of microsimulation model evaluation and 
is the process of comparing the model’s output against data that are internal to the model itself23. We carried out 
internal validation in a similar manner to Lovelace, et al.26, by calculating for each LAD the correlation between 
the aggregate counts from the constraint variables and those generated in our spatial microsimulation. In our 
models, the results were affirmative; the lowest correlation for a single zone for all years was 0.9876 and in many 
cases was perfect (at least with an approximation to 4 decimals). The high correlation coefficients throughout give 
us confidence that the microsimulation process has worked correctly and common issues such as empty cells42 
and incorrectly specified constraint variables are not present.

However, internal validation needs to be viewed in context as IPF microsimulation always converges towards 
the optimal solution for known constraint variables: it is the unknown cross-tabulations and target variables that 
we are trying to simulate with spatial microsimulation, so external validation should also be used42.

LA code

Student constraint Unemployment constraint Ethnicity constraint

student
non-
student unemployed

not 
unemployed white mixed black other

E08000002 5745 138513 5032 139226 134004 804 1106 8344

E08000003 22054 342495 20375 344174 281654 5336 22105 55454

E08000004 8115 162144 8416 161843 139659 1405 803 28392

Table 6. Extract from the student, unemployment and ethnicity constraints for 2008. Counts are for those aged 
16 and over living in a household.

LA code

Gross weekly pay (percentiles) (ASHE) Employment status (APS)

P10 (£) P20 (£) P30 (£) P40 (£) P50 (£) P60 (£) P70 (£) P80 (£)
Employees 
(count)

Self-employed 
(count)

Other 
(count)

E08000002 144.0 219.8 293.0 358.7 408.3 480.5 584.7 669.9 75296 10053 58909

E08000003 90.0 161.1 237.4 288.5 342.9 402.7 473.2 556.0 168744 19342 176463

E08000004 116.2 220.7 261.4 304.6 359.9 428.5 483.5 571.6 81969 10434 77856

Table 7. Extract of initial employee earnings dataset (ASHE) and employment type (taken from the APS) for 
2008.

LA code F_16_24 F_25_34 F_35_49 F_50_64 F_65_74 F_75_pl ….. M_75_pl
Total (16+) 
Baseline

E08000002 9853 11541 21164 16872 8063 7124 ….. 4718 144258

E08000003 39476 44085 43929 28251 13180 13758 ….. 8531 364549

E08000004 13280 13949 24043 19388 9031 8009 ….. 5124 170259

Table 5. Sample of the age-sex constraint for 2008 (household residents only). (Note table is for illustrative 
purposes only and therefore does not display all age groups).

LA code

P0–P10 P10–P20 … P60–P70 P70–P80 P80–P100 Self-employed 
(count)

Other 
(count)£ range count £ range count … £ range count £ range count £ range count

E08000002 £0.0–
£144.0 7529.6 £144.0–

£219.8 7529.6 … £480.5–
£584.7 7529.6 £584.7–

£669.9 7529.6 £669.9 + 15059.2 10053 58909

E08000003 £0.0–
£90.0 16874.4 £90.0–

£161.1 16874.4 … £402.7–
£473.2 16874.4 £473.2–

£556.0 16874.4 £556.0 + 33748.8 19342 176463

E08000004 £0.0–
£116.2 8196.9 £116.2–

£220.7 8196.9 … £428.5–
£483.5 8196.9 £483.5–

£571.60 8196.9 £571.6 + 16393.8 10434 77856

Table 8. Extract of earnings constraint for three LADs. Note the different income brackets (in £s) for each LAD. 
(Note table is for illustrative purposes only and therefore does not display all income groups).

https://doi.org/10.1038/s41597-019-0064-z
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External validation. In addition to internal validation, we use two methods for external model validation: a) 
by comparing the simulation results at the aggregate level with estimates from a dataset external to the model, and 
b) by aggregating-up the small area estimates provided by the simulation to compare the results with expenditure 
data that is provided at higher geographies.

Previous studies have shown that there are relationships between socio-economic status/deprivation and 
expenditure on certain commodities. Total food expenditure and consumption of fruit and vegetables has been 
shown to be greater in more affluent households3,43 whilst smoking prevalence is often greater in more deprived 
areas44 and among those of lower socio-economic status45. As such, we explored the relationship between our LAD 
level estimates of product expenditure and deprivation as measured by an external dataset. We used the Index of 
Multiple Deprivation (IMD) (https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015), 
the official measure of relative deprivation for local authorities in England. IMD is based on seven different 
domains of deprivation: income deprivation; employment deprivation; education, skills and training deprivation; 
health deprivation and disability; crime; barriers to housing; and services and living environment deprivation. 
Whilst some of the domains are similar in nature to the constraints used in the microsimulation model (e.g. 
income deprivation), there are no common datasets between the IMD and the microsimulation, with metrics 
calculated in different ways. Furthermore, many of the IMD domains are completely absent from the microsimu-
lation (e.g. crime, health deprivation and disability) and vice-versa, resulting in a minimal risk of circularity when 
exploring relationships. As the majority of datasets used in the IMD were collected in 2012 and 2013 we use the 

LA code 16_24_dep_n 16_24_dep_y 25_34_dep_n 25_34_dep_y_0_4 …. 75_pl_mph 75_pl_sph

E08000002 8115 11208 11888 8058 …. 6543 5519

E08000003 51303 27259 62712 23892 …. 10259 9861

E08000004 9753 16287 12455 11719 …. 6673 6512

Table 9. Extract from final household characteristics constraint table for 2008. For description of variable 
names see Table 1. (Note table is for illustrative purposes only and therefore does not display all household 
types).

Age/sex
household 
type Student Unemployment

Ethnicity (limited 
categories)

Ethnicity  
(all categories)

Income (limited 
categories)

Income  
(all categories)

2008 380 380 356 378 379 97 377 292

2009 380 380 363 378 379 107 378 334

2010 380 380 367 378 379 107 378 334

2011 380 380 364 378 379 114 378 342

2012 380 380 356 378 379 114 377 329

2013 380 380 364 378 379 121 377 332

2014 380 380 364 378 379 117 378 339

2015 380 380 358 378 379 120 377 339

2016 380 380 351 378 379 120 377 334

Table 10. Number of LADs which have each constraint available for each year.

Food and non-alcoholic beverages Alcohol and tobacco

Restaurants and hotels(household consumption) (household consumption)

London 102.2 103 113

Scotland 99.8 99.4 100.4

Wales 100.8 102.3 95.1

Northern Ireland 99.7 98.6 98.3

South East* 101.5 101.5 101.5

Eastern* 99.8 99.8 99.8

West Midlands* 98.5 98.5 98.5

South West* 102.4 102.4 102.4

East Midlands* 99.6 99.6 99.6

North West & Merseyside* 98.8 98.8 98.8

North East* 98.8 98.8 98.8

Yorkshire and the Humber* 97.7 97.7 97.7

Table 11. Regional price level relative to national price level (UK = 100), 2016. Adapted from ONS36. *Product 
category breakdown RRCPLs are not available for some regions so aggregate RRCPLs are used for all categories.
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https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015


1 0Scientific Data |            (2019) 6:56  | https://doi.org/10.1038/s41597-019-0064-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Spearman’s Rho P-value

All food and drink 0.69 <0.01

Fruit and vegetables 0.69 <0.01

Tobacco and cigarettes −0.33 <0.01

Table 12. Correlation between IMD and microsimulation estimate for categories previously identified as being 
correlated with deprivation.

Fig. 2 Estimated average weekly expenditure per person for 2012. Contains National Statistics data © Crown 
copyright and database right 2018. Contains OS data © Crown copyright and database right 2018.
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2013 microsimulation results to test for a correlation against the IMD. As the IMD is a ranked dataset, we use the 
Spearman’s test of rank correlation, with the results shown in Table 12.

All correlations were significant with a strong positive correlation between IMD and estimates of ‘all food 
and drink’ and ‘fruit and vegetable’ expenditure, suggesting that expenditure on these categories is less in more 
deprived areas, as found by previous research3,43. Conversely, there is a negative correlation between tobacco and 
cigarette expenditure and IMD, suggesting expenditure is greater in more deprived areas, in agreement with pre-
vious studies44. These results are encouraging, suggesting the model is accurately capturing variation in expendi-
ture for different product categories at small area level.

Fig. 3 Estimates of average weekly expenditure per person using regionally averaged LCF survey values (blue line) 
and microsimulation aggregates (red line).
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As noted previously, the LCF is geocoded to a limited extent, with information provided on which of the 12 
regions each individual resides. This information is used by the Department for Environment, Food and Rural 
Affairs (DEFRA) to estimate the expenditure of products at the regional level, as published in the annual Family 
Food report series16. As this regional geographic information is not used in the microsimulation model other 
than for adjusting for relative regional price levels, this presents a useful form of validation by comparing the 
aggregated microsimulation results at the regional level to the corresponding values estimated directly from the 
LCF. Whilst both methods estimate the same parameter (expenditure by region), they are generated in completely 
different ways. The LCF averaging approach (as used by DEFRA16) takes the average weighted expenditure of 
surveyed individuals in each region, whilst the microsimulation approach generates a synthetic population with 
every individual assigned an expenditure profile which is then aggregated to the regional level. Figure 3 shows the 
results of the microsimulation model (aggregated to the regional level) alongside the corresponding values from 
the LCF, including error bars (±1.96 standard errors). Results are shown for a grouped category (all products) and 
an individual COICOP category (bacon and ham for household supplies). Corresponding 2012 maps for these 
categories are shown in Fig. 2.

Figure 3 demonstrates that the aggregated microsimulation results shows good correspondence with the LCF 
regional averages for both grouped categories (all products) and single COICOP categories (bacon and ham). 
Reassuringly, the majority of microsimulation estimates fall within the 95% confidence limit of the original LCF 
averages and the general trends in the LCF time series are reflected in the aggregated microsimulation results. 
This suggests that the simulated microdata correspond well to the ‘real world’ survey data. Whilst some regions 
such as the South East show a very close alignment between the aggregated microsimulation results and the LCF 
regional averages, others are not as closely aligned (e.g. North East). There are a number of possible reasons for 
these differences observed, including localised factors not accounted for by the microsimulation constraint var-
iables or insufficient detail of input information. For example, the relative regional consumer price levels used to 
account for spatial differences in product pricing are only available for 201037 and 201636 and only at the aggregate 
level for regions within England (Table 11). It should also be noted that the confidence limits referred to here for 
the LCF only cover sampling errors and not non-sampling errors (systematic errors and random errors)32, and as 
such this uncertainty in the LCF should also be considered when comparing the estimates.

The internal and external validations presented here suggest that the microsimulation estimates of expendi-
ture are capturing real differences. As such, we believe spatial microsimulation techniques of the type described 
in this paper hold great potential benefits for a range of disciplines including economics, retail geography and 
public health. Whilst this study focusses on Great Britain, the framework here could be applied to any location 
with the appropriate data sources.

Usage Notes
The expenditure estimates produced in this study are based on data from the LCF, Census and other official 
sources. Therefore, the outputs provided are subject to any biases or errors contained in the source datasets. 
Household surveys such as the LCF have the potential to suffer from issues such as non-response from specific 
groups (e.g. low income households46) and measurement error32, especially in relation to products consumed 
away from home47 and alcohol48. Whilst the ONS has a robust sampling, weighting and quality control framework 
for the LCF32, the end user should be aware of the potential biases and errors, especially when considering specific 
commodities or socio-demographic categories.

code Availability
The R (version 3.3.1; https://www.r-project.org) code developed for production of the expenditure datasets are 
publicly and freely available through Figshare39. The script is internally documented to both explain its purpose 
and, when required, guiding the user through its customisation.
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