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Abstract One approach to automated constraint modelling is to generate, and

then select from, a set of candidate models. This method is used by the automated

modelling system CONJURE. To select a preferred model or set of models for a

problem class from the candidates CONJURE produces, we use a set of training

instances drawn from the target class. It is important that the training instances

are discriminating. If all models solve a given instance in a trivial amount of time,

or if no models solve it in the time available, then the instance is not useful for

model selection. This paper addresses the task of generating small sets of dis-

criminating training instances automatically. The instance space is determined by

the parameters of the associated problem class. We develop a number of methods

of finding parameter configurations that give discriminating training instances,

some of them leveraging existing parameter-tuning techniques. Our experimental

results confirm the success of our approach in reducing a large set of input models

to a small set that we can expect to perform well for the given problem class.

1 Introduction and Background

Numerous approaches have been taken to automating aspects of constraint model-

ling, including: learning models from examples [8,4,5,17,3]; automated transformation

of medium-level solver-independent constraint models [23,21,24,20]; theorem proving

[7]; case-based reasoning [18]; and refinement of abstract constraint specifications [10]

in languages such as ESRA [9], ESSENCE [11], F [14] or Zinc [19,16]. We focus on the

refinement approach, where a user writes a constraint specification describing a problem

above the level of abstraction at which modelling decisions are made. Constraint spe-

cification languages support abstract decision variables with types such as set, multiset,

relation and function, as well as nested types, such as set of sets and multiset of rela-

tions. Therefore, problems can typically be specified very concisely. However, existing

constraint solvers do not support these abstract decision variables directly, so abstract

constraint specifications must be refined into concrete constraint models.

We use ESSENCE [11]. An ESSENCE specification (see Fig. 1) identifies: the para-

meters of the problem class (given), whose values define an instance; the combinatorial

objects to be found (find); and the constraints the objects must satisfy (such that).

An objective function may also be specified (min/maximising) and identifiers de-

clared (letting). Our CONJURE system3 [2] employs refinement rules to convert

3 http://bitbucket.org/stacs cp/conjure-public



an ESSENCE specification into the solver-independent constraint modelling language

ESSENCE′ [23]. We use SAVILEROW4 [22] to translate an ESSENCE′ model into input

for a particular constraint solver while performing solver-specific model optimisations.

By following alternative refinement paths CONJURE typically produces a large set

of models for a given ESSENCE specification. In our previous work [1] we developed

a racing process to select among these candidate models, in which a set of training

instances drawn from the problem class being modelled is used to gauge relative model

performance. For this process to be effective, it is important that the instances chosen

are discriminating: if all models solve a given instance in a trivial amount of time, or

if no model solves it in the time available, then the instance is not useful for model

selection. Our previous work assumed that such instances were given. In this paper we

address the task of generating discriminating training instances automatically.

2 Racing for Automated Model Selection

Our approach to model selection follows that we reported in [1], but with an improved

method of producing a set of winning models described below. It takes as input a set

of instances drawn from the target problem class. Our performance measure of a model

with respect to an instance is the time taken for SAVILEROW to instantiate the model

and translate for input to the MINION constraint solver [12] plus the time taken for MIN-

ION to solve the instance. We include the time taken by SAVILEROW since it adds desir-

able instance-specific optimisations, such as common subexpression elimination [13].

We conduct a race [6] for each provided instance. Given a parameter ρ ≥ 1, a model

is ρ-dominated on an instance by another model if the measure for the second model is

at least ρ times faster than the first. The ‘winners’ of an instance race are the models not

ρ-dominated by any other model. So that trivial instances do not discriminate we do not

consider any model that solves within 1s to be dominated. All models enter each race,

but for efficiency a model is terminated as soon as it is ρ−dominated by some other

model. Furthermore, the order in which the models are executed is influenced by their

performance in previous races: well-performing models are executed first to establish a

good ρ bound early. In order to guide our exploration of the instance space we assign

a discriminatory quality value to an instance with respect to the results of the race run.

This is the fraction of models that are ρ-dominated.

A set of instances is ρ-fractured if every model is ρ-dominated on at least one in-

stance. In the presence of fracturing, care must be taken in defining the set of winning

models over a race sequence. We do so as follows. We first find a minimum hitting set of

winning models {a1, a2, a3, ...} which covers all instance races. We then define the set

Ai as the set of models that won every race that ai won. The set of sets {A1, A2, A3, ...}
then gives a summary of the winning models over all fractured parts of the instance

space. Note that each Ai ∩ Aj = ∅ (where i 6= j) as otherwise we could find a smal-

ler hitting set. Also note that in an unfractured instance space the unique A1 is simply

the set of models which won all races. However, for fractured spaces the set {Ai} is

not uniquely defined as it depends on the hitting set found: nevertheless it gives us a

representation of one particular fracturing of the instance space.

4 http://savilerow.cs.st-andrews.ac.uk



3 Methods for Generating Discriminating Instances

The instance space is defined by the parameters of a problem class. Consider the ES-

SENCE specifications in Figure 1. Langford’s Problem has two independent integer

parameters and hence a two-dimensional instance space. The Knapsack Problem is an

example of a more complex instance space, consisting of two integers and two func-

tions. The first integer, n, governs the number of items and also the domain of the two

given functions, which define the weights and values of those items. Our three methods

for generating discriminating instances in these spaces are described below. All run a

sequence of races and combine the results following the method described in Section 2.

Undirected: For each race in a sequence, undirected simply draws a sample

from the instance space and runs a race. Section 4 describes our sampling method.

Markov: This method is loosely based on the Markov chain Monte Carlo methods

used, e.g., to estimate the value of a multi-dimensional integral. We assume that dis-

criminating instances are likely to be found near (by some proximity measure) other dis-

criminating instances, and non-discriminating instances near other non-discriminating

instances. This naturally leads to a Markov chain that walks the instance space, is

attracted towards known discriminating instances, and is repelled from known non-

discriminating instances. Our measure of proximity per parameter type:

Integer The distance is simply the absolute difference between the two values.
Total Function Given functions f and g we compute the distance between f(i) and

g(i) for each i where both functions are defined, and aggregate using Euclidean

distance. When f and g have different domains of definition, some mappings in

f and/or g will be discarded. Suppose we had given weights : function

(total) int(1..n) --> int(1..100) (as in the Knapsack Problem) with

n a parameter. If the domain of definition int(1..n) differs between f and g,

then n must differ and this will count towards the instance distance.
Set Given sets S and T , the distance is

√

|S \ T |+ |T \ S|, also Euclidean.
Relation Treating a relation as a set of tuples, we use the distance measure for sets.

To obtain the instance distance, we combine the distance measure for each parameter

again using the Euclidean distance. This combines elegantly with the Euclidean dis-

tances computed per parameter. An initial instance is sampled using the method de-

scribed in Section 4. A race is run using this instance and a record taken of its discrim-

inatory quality. Each subsequent instance (sampled using the same method) is accepted

or rejected according to the scheme below. If an instance is accepted a race is run with

that instance, otherwise another instance is generated, and so on until the required race

sequence is complete. We use the following acceptance function, where xi−1 is the

previous accepted instance and x′

i is the proposed instance.

A(xi−1, x
′

i) =
G′(x′

i)

G(xi−1)

G′ estimates the discriminatory quality of the instance in the interval [0, 1] using the

quality values of previously accepted instances found by racing. We define a radius of

influence r, which is 10% of the greatest possible distance between any two instances,



LANGFORD’S PROBLEM (CSPLIB 24)
given k, n : int(1..)

letting seqLength be k * n

letting seqIndex be domain int(1..seqLength)

find seq : function (total, surjective) seqIndex --> int(1..n)

such that forAll i,j : seqIndex , i < j .

seq(i) = seq(j) -> seq(i) = j - i - 1

THE KNAPSACK PROBLEM

given n, totalWeight : int(1..)

given weights, values : function (total) int(1..n) --> int(1..)

find picked: set(maxSize n, minSize 1) of int(1..n)

maximising (sum i in picked . values(i) )

such that (sum i in picked . weights(i) ) <= totalWeight

THE PROGRESSIVE PARTY PROBLEM (CSPLIB 14)
given n_upper, n_boats, n_periods : int(1..)

letting Boat be domain int(1..n_boats)

given capacity, crew : function (total) Boat --> int(1..n_upper)

where forAll i : Boat . crew(i) <= capacity(i),

find hosts : set of Boat,

sched : set (size n_periods) of function (total) Boat --> Boat

minimising |hosts|

such that forAll p in sched . range(p) subsetEq hosts,

forAll p in sched . forAll h in hosts . p(h) = h,

forAll p in sched . forAll h in hosts .

(sum b in preImage(p,h) . crew(b))<= capacity(h),

forAll b1,b2 : Boat , b1 != b2 .

(sum p in sched . (p(b1) = p(b2))) <= 1

THE WAREHOUSE LOCATION PROBLEM. (CSPLIB 34)
given n_upper, n_stores, n_warehouses : int(1..30)

letting Store be domain int(1..n_stores),

WHouse be domain int(1..n_warehouses)

given capacity : function (total) WHouse --> int(1..n_upper),

opencost : function (total) WHouse --> int(1..n_upper),

cost : function (total) tuple (Store, WHouse) --> int(1..n_upper)

find open : function (total) Store --> WHouse

minimising (sum r in range(open). opencost(r)) + sum s : Store . cost((s,open(s)))

such that forAll w : WHouse . |preImage(open,w)| <= capacity(w)

Figure 1. Four sample ESSENCE specifications.

using the distance measure above. G′(x′

i) finds the set of all previous accepted instances

within distance r of x′

i. If this set is non-empty, G′(x′

i) returns the mean of the true

quality values for the set. Otherwise, G′(x′

i) = 0.5. G(xi−1) gives the true quality of

xi−1. Finally, a pseudorandom number a is generated within [0, 1], and x′

i is accepted

if A(xi−1, x
′

i) ≥ a then. Hence, the proposed instance is always accepted if G′(x′

i) is

greater than G(xi−1).

Smac: Our final method is based on SMAC [15], an automatic algorithm configura-

tion system. Given an algorithm, a description of its parameters, and a set of instances,

it finds the set of parameters for the algorithm that delivers the best performance on

the set of instances. Finding discriminatory instances is a very similar setting – the al-

gorithm is the problem class specification, its parameters instantiate particular instances

of the class and the set of problem “instances” is the set of models. We want to find the

set of problem class parameters – the set of problem instances – that has the optimum

discriminatory power with respect to the models.



We encode the problem class parameters into SMAC’s input format, which uses in-

teger and categorical variables. Integer givens are converted to integer parameters

with the range specified in the problem definition. We model structured givens such

as functions using multiple SMAC parameters. When one given depends on another,

such as the size of the domain of the function depending on n in the Knapsack Prob-

lem, we must be conservative: sufficient SMAC parameters are used to accommodate

the maximum size of the structured given. The extraneous parameters are ignored

when racing the instances so produced. Although SMAC has demonstrated that it is able

to handle large parameter spaces, this conservative encoding may hinder its ability to

cover the space effectively, since many of the values it is producing may be ignored.

Furthermore, SMAC does not support the complex constraints between parameters that

we sometimes require (where), so we use CONJURE to validate the instances that

SMAC generates and discard those that do not satisfy the constraints.

4 Uniform Versus Non-uniform Sampling

Except for SMAC, which has its own sampling method, our generation approaches re-

quire the ability to sample from the instance space associated with a problem class.

Since the instance spaces of the problem classes we consider are typically infinite, our

method requires some sensible bounds on the parameters involved in order to circum-

scribe a finite sub-space of interest. For example in Langford’s Problem, as discussed in

Section 5, we limit the two integer parameters to the ranges 2..10 and 1..50 respectively.

When the parameters defining the space are independent (e.g. the pair of integer

parameters to Langford’s problem), uniform sampling is straightforward: simply gener-

ate a value uniformly and independently for each parameter. When the parameters are

not independent, uniform sampling is more difficult. Reconsider the Knapsack Problem

from Figure 1. An approach to sampling from this space is first to generate n uniformly

then uniformly and independently generate a mapping for each element of the domain

(1..n) of the two functions weights and values. However, this introduces bias: there

are many more possible functions for large values of n than there are for small values of

n. Hence, if we generate n uniformly then a particular function for small n is far more

likely to be selected than a particular function for large n.

A solution to this problem is to enumerate all of the valid instances of the instance

sub-space and sample uniformly from this set. This enumeration problem is naturally

cast as a (simple) constraint problem. An ESSENCE specification E∗ for the enumera-

tion problem can be obtained automatically from an original ESSENCE specification E

simply by replacing in E the given (parameter) statements with find (decision vari-

able) statements and discarding the rest of E. As a very simple example, performing

this process for Langford’s Problem produces:

find k : int(2..10)

find n : int(1..50)

Care must be taken that this transformation produces valid ESSENCE. For the Knapsack

Problem (assuming sensible parameter limits) it produces:

find n : int(1..100)



find totalWeight : int (1..1000)

find weights : function (total) int(1..n) --> int(1..100)

find values : function (total) int(1..n) --> int(1..100)

This is invalid because a decision variable is used to define the size of the domain of

the two function variables. The solution we adopt is to leave n as a parameter, solve the

problem for each value of n and take the union of the results.

We obtain a single model for E∗ automatically using CONJURE and the Compact

heuristic [1] — this is sufficient because the enumeration problem is typically easy.

MINION is then used to find all solutions to the model. Our uniform sampling method

is to select uniformly from this set of solutions.

The drawback of uniform is that it limits the size of space that we can consider.

An alternative approach, which we call solver-random, is to sample by requesting

a single solution from MINION, employing a random variable and value order. This in-

troduces bias for much the same reason as described above: the distribution of solutions

to the model may not be uniform. However, solver-random is much more scalable.

In order to compare uniform with solver-random we performed an exper-

iment on two problem classes: Warehouse Location and the Progressive Party Prob-

lem (see Figure 1). So that uniform sampling was feasible, the instance space for

each problem class was restricted to around a billion instances by limiting the upper

bounds of each of their parameters. For each problem class we ran three sequences of

thirty races using our Markov and Undirected generation approaches. In this ex-

periment there was no substantive difference between Markov and Undirected —

probably because of the (lack of) discriminatory quality of the instance sampled as we

discuss below. For Warehouse Location the performance of the two sampling methods is

identical, reducing 128 input models to 64 non-dominated models. For the Progressive

Party Problem solver-random actually performs better than uniform, reducing

256 input models to 16 non-dominated models, whereas uniform produces between

63 and 77 non-dominated models. The bias inherent to solver-uniform appears to

have been beneficial in this case, guiding the methods to discriminating instances.

These experiments provide some evidence that solver-random is a reasonable

approach to sampling the instance space. It is also worth noting that the restrictions

on the size of the instance space that we explore (to accommodate uniform) restricts

the discriminatory quality of the instances that we find — producing 64 non-dominated

models for Warehouse Location is a relatively weak result. solver-random scales

easily to more challenging, hence more discriminating, instances as we will see in the

following section where we use solver-random exclusively.

5 Experimental Results

In this section we report an experimental evaluation of our instance generation meth-

ods. Following the outcome of our experiment in Section 4, we use solver-random

sampling throughout. We experiment on six problem classes described below with res-

ults summarised in Table 1. For each class we run three independent sequences of races.

For Markov and Undirected we run 30 races, each with a time budget of 6 hours.

This time budget is divided by the number of models to obtain the maximum time al-

lowed for a particular model to solve an instance. Rather than a maximum number of



runs, SMAC requires a total time budget. We specify the maximum time either of the

other methods took to complete the race sequence.

Given the volume of experiments we use heterogeneous compute resources, while

ensuring that all experiments for each problem class are run on the same resource. In

all cases, a model is given 6.5GB of RAM and run on an AMD-based architecture. The

Social Golfer Problem was run on a 32-core 2.1GHz machine, Warehouse Location

on a 64-core 2.1GHz machine, and the remainder on 2.1GHz processors on Microsoft

Azure.

Our results are summarised in Table 1. For each problem class we record: the num-

ber of models refined by CONJURE from the associated ESSENCE specification; the

size of the output set(s) of models as described in Section 2; the number of discovered

fractured parts of the instance space; and, for Markov and Undirected, the number

of races until convergence. This last measure indicates how many of the 30 races are

necessary to achieve the final result. Detailed discussion follows.

The Knapsack Problem The parameter space is limited as described in Section 4.

All of our methods perform well on this problem class, identifying that the instance

space is fractured into two parts. The parts correspond to satisfiable versus unsatisfiable

instances. For the satisfiable part, all three methods returned a single winner model

(from the 64 input), which employs a 0/1 model of the problem. For the unsatisfiable

part, all three methods also returned a single winning model based on an explicit rep-

resentation of the set of items in the knapsack. Both Markov and Undirected show

some variability in how quickly they converge on this result.

Langford’s Problem The parameters to this problem are a pair of independent in-

tegers (limited as described in Section 4). Therefore, solver-random sampling is

unbiased for this problem. None of our methods found the instance space to be frac-

tured, and each was able to reduce the input set of models drastically to a small set of

non-dominated models. Over the three independent runs, Markov shows a slight edge

in performance returning a single model in one case, whereas Undirected on one

occasion returns six models. Both show some variability in steps to convergence.

The Social Golfer Problem The parameters to this problem are a triple of inde-

pendent integers, hence solver-random sampling is again unbiased. Each parameter

is limited between 1 and 100. Hence, a large fraction of this instance space is unfeas-

ibly difficult so we would expect our more informed approaches to perform better in

this case study. In fact, SMAC struggles with this class, in two cases finding no discrim-

inating instances at all. Undirected’s performance is variable, sometimes outputting

a single model, but on one occasion also finding no discriminating instances. By con-

trast Markov performs well, reducing the 24 input models to between 1 and 4 on each

run and on one occasion identifying a fracture in the instance space.

The Progressive Party Problem This class has the most (256) input models. Per-

haps unsurprisingly, therefore, the instance space is fractured — but this is only iden-

tified by Markov and Undirected. When fracturing is detected, Markov is more

consistent than Undirected in the size of the returned set for the first fractured part.

The Warehouse Location Problem All three methods are able to reduce the input

set of 128 models significantly. Markov has the best performance, followed by SMAC

and then Undirected. No fracturing was found.



Markov SMAC Undirected

Output Steps to Output Output Steps to

Problem #Models Sizes Frac. Conv. Sizes Frac. Sizes Frac. Conv.

Knapsack-1 64 1,1 2 20 1,1 2 1,1 2 7

Knapsack-2 64 1,1 2 13 1,1 2 1,1 2 30

Knapsack-3 64 1,1 2 2 1,1 2 1,1 2 3

Langford-1 154 4 1 28 4 1 6 1 1

Langford-2 154 1 1 14 3 1 4 1 14

Langford-3 154 4 1 2 4 1 3 1 29

SGP-1 24 1,4 2 26 1 1 1 1 7

SGP-2 24 4 1 13 24 1 1 1 15

SGP-3 24 1 1 7 24 1 24 1 30

PPP-1 256 32,8 2 2 8 1 53,8 2 19

PPP-2 256 32,8 2 12 16 1 27,8 2 11

PPP-3 256 8 1 9 15 1 17 1 7

Warehouse-1 128 32 1 17 32 1 45 1 16

Warehouse-2 128 24 1 13 49 1 72 1 26

Warehouse-3 128 8 1 16 27 1 54 1 26

BACP-1 48 1,1 2 24 26 1 1 1 8

BACP-2 48 1 1 1 8 1 1 1 25

BACP-3 48 1 1 2 25 1 1 1 7

Table 1. Results for the six problem classes over three independent runs.

Balanced Academic Curriculum Problem Only Markov is able to detect a frac-

ture in the instance space for this class, and only on one of its runs. Both Markov

and Undirected reduce the input model set drastically from 48 to a single winning

model. SMAC performs much less well on this class, perhaps hampered by the neces-

sary encoding compromises (see Section 3) on what is a more complex instance space

defined by 7 integers, two functions and a relation.

6 Conclusions

We have developed and investigated three methods for generating discriminating in-

stances for the purpose of automated constraint model selection. Our experimental

evaluation shows that all of these methods are capable of reducing a large number of

possible models to a much smaller set. The methods are able to detect fracturing if it

occurs and successfully determine the best models for each fraction. Overall, our novel

Markov approach has the best performance on the problem classes in our experiments.
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