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Research Article

David Garber, Delaram Kahrobaei and Ha T. Lam

Length-based attacks in polycyclic groups

Abstract: The Anshel-Anshel-Goldfeld (AAG) key-exchange protocol was implemented and studied with
the braid groups as its underlying platform. The length-based attack, introduced by Hughes and Tannen-
baum, has been used to cryptanalyze the AAG protocol in this setting. Eick and Kahrobaei suggest to use the
polycyclic groups as a possible platform for the AAG protocol. In this paper, we apply several known variants
of the length-based attack against the AAG protocol with the polycyclic group as the underlying platform.
The experimental results show that, in these groups, the implemented variants of the length-based attack are
unsuccessful in the case of polycyclic groups having high Hirsch length. This suggests that the length-based
attack is insufficient to cryptanalyze the AAG protocol when implemented over this type of polycyclic groups.
This implies that polycyclic groups could be a potential platform for some cryptosystems based on conjugacy
search problem, such as non-commutative Diffie-Hellman, El Gamal and Cramer—-Shoup key-exchange pro-
tocols. Moreover, we compare for the first time the success rates of the different variants of the length-based
attack. These experiments show that, in these groups, the memory length-based attack introduced by Garber,
Kaplan, Teicher, Tsaban and Vishne does better than the other variants proposed thus far in this context.
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1 Introduction

The Anshel-Anshel-Goldfeld (AAG) key-exchange protocol was introduced in 1999 [1]. Following its intro-
duction, the AAG protocol was extensively studied using different groups as its underlying platform. Ko et al.
[15] used braid groups. Moreover, Myasnikov and Ushakov [18] studied the security of the AAG protocol with
respect to several attacks on any platform groups satisfying some theoretic properties (exponentially generic
free basis property).

Hughes and Tannenbaum [11] introduced the length-based attack (LBA) on the AAG protocol with its
implementation in braid groups. They emphasized the importance of choosing the correct length function.
Later, Garber et al. [6] gave several realizations of this approach, particularly a length function for the braid
group and experimental results suggesting that the attack fails for the parameters suggested in existing pro-
tocols. However, Garber et al. [5] also suggested an extension of the length-based attack which uses memory
which succeeded in cryptanalyzing the AAG protocol. A similar attack was implemented against a system
based on the Thompson group [19]. Most recently, Myasnikov and Ushakov [17] analyzed the reasons behind
the failure of the previous implementations of the LBA, such as the occurrence of commutator-type peaks,
and gave an experimental evidence that the LBA can be modified to cryptanalyze the AAG protocol with high
success rate. However, this work is again done the braid groups as the underlying platform.
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Eick and Kahrobaei [3] have suggested a different platform for the AAG protocol — the polycyclic group.
In polycyclic groups, the word problem can be solved efficiently [7], but known solutions to the conjugacy
problem are much less efficient. Using experimental results, Eick and Kahrobaei showed that while the con-
jugacy problem can be solved within seconds using polycyclic groups with small Hirsch length, the conjugacy
problem in polycyclic groups with high Hirsch length requires a much longer time for its solution.

Taking inspiration from this result, we investigate the success rate of the length-based attack on the AAG
protocol, where the underlying platform is the polycyclic groups, especially those with high Hirsch length.
Toward this end, we first construct polycyclic groups of high Hirsch length using a method introduced by
Holt et al. [10]. Then, we implement the different variants of the LBA presented in [5, 6, 17]. The experimental
results that we collect suggest that the LBA is insufficient to cryptanalyze the AAG protocol, when we use the
polycyclic groups with high enough Hirsch length as the underlying platform. Consequently, the polycyclic
group is the first underlying platform which the LBA is insufficient for cryptanalyzing the AAG protocol on this
platform, whereas the solution for the word problem is quite efficient. A suggestion for concrete parameters
appears in the last section.

Moreover, we compare for the first time on any platform the success rates of the different variants of the
LBA.

As a wider application, we note that the conjugacy search problem is the basis for various cryptographic
protocols besides AAG, such as the non-commutative Diffie-Hellman key-exchange [15], the non-commu-
tative El Gamal key-exchange [12], the non-abelian Cramer—Shoup key-exchange [2] and the non-commutative
digital signatures [13]. The LBA can be applied to all these protocols; therefore, a platform group which ex-
perimental results show that the LBA is insufficient for cryptanalyzing the AAG protocol over this platform,
such as polycyclic groups, can help instantiate them.

The paper is organized as follows. In Section 2, we introduce the Anshel-Anshel-Goldfeld key-exchange
protocol. In Section 3, we give a short review of polycyclic groups and the construction that we have used. In
Section 4, we review the length-based attack, and in Section 5, we present the experiments, their results and
corresponding conclusions.

2 The Anshel-Anshel-Goldfeld key-exchange protocol

Following [17], we present here the Anshel-Anshel-Goldfeld key-exchange protocol (for more details, see [1]).
As usual, we use two entities, called Alice and Bob, for presenting the two parties which plan to communicate
over an insecure channel.

Let G be a group with generators g;,..., g,. First, Alice chooses her public set a = (a;,...,ay,), where
a; € G, and Bob chooses his public set b = (b, .. .,by,), where b, € G. They both publish their sets. Alice
then chooses her private key A = a;' ---aft, where a, € a and ¢ € {1}. Bob also chooses his private key
B= bfl‘ ---bfLL, where b, € b and 8; € {+1}. Alice computes b' = A™'b,A for all b, € b and sends it to Bob. Bob
also computes a; = B™'a;B for all 4; € @ and sends it to Alice. Now, the shared secret key is K = A™' B AB.
Alice computes this key by

K, = A"l(a:f1 ---as'fL)
=A™ (Ba,B)" - (B 'a, B)*
= A"'B'(a ---al)B
= A'B'AB =K.
Similarly, Bob can compute K = B‘l(bt'l‘s1 : -~bt'L6L) = B'A'BA, and then he knows the shared secret key by
K=K
In order to find K, it is enough for the eavesdropper either to find A’ € (a,,..., ay, ) such thatd’ = A""'bA’
orto find B' € (by,...,by,) such that a' = B™'aB' (an incompatible sufficient condition can be found in [14]).
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Thus, the security of the AAG protocol is based on the assumption that the subgroup-restricted simultaneous
conjugacy search problem is hard.

3 Polycyclic groups

In this section, we give a short review for polycyclic groups and describe the construction of polycyclic groups
of high Hirsch length. For more details, see [10].

3.1 The polycyclic presentation

Recall that G is a polycyclic group if it has a polycyclic series, i.e., a subnormal series
G=G, >G> >G,, =11},

with non-trivial cyclic factors. The polycyclic generating sequence of G is the n-tuple (g;,...,g,), such that
G;=(9,Gy)forl<i<n.
Any polycyclic group has a finite presentation of the form

-1
(gl,...,gnlgj" = wj;, gf" =v;;, g =ugforl <i<j<nandkel),

where wyj, v;j, uy are words in the generators g,,,..., g, and I is the set of indices i € {1,...,n} such that
r, = [G, : G,,] is finite. Here a” stands for b™'ab.

It is known by induction that each element of G defined by this presentation can be uniquely written as
g=g; g wheree; € Zfor1 <i<n,and0<e; <r fori el Wecall g=g] g the normal form of an
element in G. If every element in the group can be uniquely presented in the normal form, then the polycyclic
presentation is called consistent. Note that every polycyclic group has a consistent polycyclic presentation
(see [10]).

The Hirsch length of a polycyclic group is the number of indices i such that r; = [G; : G,,,] is infinite. This
number is invariant of the chosen polycyclic sequence.

3.2 Constructing polycyclic groups using number fields

There are several ways for constructing polycyclic groups. For the purpose of this paper, we construct poly-
cyclic groups by semidirect products of the maximal order and the unit group of a number field. This con-
struction follows [10].

Let f(x) € Z[x] be an irreducible polynomial. The polynomial f defines a field extension F over Q. The
maximal order or the ring of integers O, of the number field F is the set of algebraic integers in F,

Og = {a € F | there exists a monic polynomial f,(x) € Z[x] such that f,(a) = 0}.

The unit group of F is
Up={aeOp|lat0anda’ € Ogl.

For constructing the polycyclic group by the maximal order and the unit group of a number field F where
[F : Q] = n, werecall two results. First, the maximal order O, forms a ring whose additive group is isomorphic
to Z" (see [20]). Second, Dirichlet’s unit theorem states that given n = s + 2t, where s and 2t are the numbers
of real field monomorphisms F — R and complex field monomorphisms F — C respectively, then the unit
group Uy is a finitely-generated abelian group of the form U, = Z**'"! x Z,,, for some even m (see [20]). Here,
we use the fact that the unit group is a finitely-generated abelian group and hence Uy, is also polycyclic.
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Let G be a group and N < G, it is easy to see that if N and G/N are both polycyclic, then the group G is
also polycyclic by putting together the polycyclic series of N and the series induced by the polycyclic series
of G/N. Since the above results guaranteed that the maximal order is a polycyclic group and the unit group,
which is isomorphic to G/Oy, is also polycyclic, the group G = O x U is polycyclic. The action which defines
the semidirect product is a multiplication from the right of U, on Oy.

If N < G, the Hirsch length of a polycyclic group G is h(G) = h(N) + h(G/N); in our case,

h(G) = h(Og) + h(Ug),

where h(Oy) is n, which is the degree of the generating polynomial f. Hence, for constructing a polycyclic
group of high Hirsch length, we have to find an irreducible polynomial of high enough degree, and then
the polycyclic group constructed by the above method will have Hirsch length larger than the degree of the
polynomial.

3.3 Polycyclic groups as platform groups for the AAG protocol

Polycyclic groups are suitable as platform groups for the AAG protocol for several reasons. First, the word
problem can be solved efficiently using the collection algorithm [7], see also [3]. Second, the conjugacy search
problem has no efficient solution in general polycyclic groups. This assessment is due to Eick and Kahro-
baei [3], using the following experiment: Let K = Q[x]/(f,,) be an algebraic number field for a cyclotomic
polynomial f,,, where w is a primitive r-th root of unity. Let G(w) = O x U, where O is the maximal order
and U the unit group of K, r the order of w and h(G(w)) the Hirsch length. The average time used for 100
applications of the collection algorithm on random words and the average time used for 100 applications of
the conjugacy algorithm on random conjugates is

r h(G(w)) Collection Conjugation
3 2 0.00 seconds 9.96 seconds
4 2 0.00 seconds 9.37 seconds
7 6 0.01 seconds 10.16 seconds
11 14 0.05 seconds > 100 hours

We can see that the collection algorithm works very fast even for polycyclic groups of high Hirsch length,
and therefore the word problem has an efficient solution. On the other hand, the solution to the conjugacy
problem is not efficient for polycyclic groups having high Hirsch length.

4 The length-based attack

The length-based attack (LBA) is a probabilistic attack against the conjugacy search problem in general, and
against the AAG protocol in particular, with the goal of finding Alice’s (or Bob’s) private key. It is based on
the idea that a conjugation of the correct element should decrease the length of the captured package. Using
the notations of Section 2, the captured package is b’ = (b}, ... ,b,'\,z), where b/ = A™'b,A. If we conjugate b’
with elements from the group (a,,...,ay ) and the length of the resulting tuple has been decreased, then
we have found a candidate for the conjugating factor. The process of conjugation is then repeated with the
decreased-length tuple until a longer candidate for the conjugating factor is found. The process ends when
the conjugated captured package is the same as b = (..., by,), which is known. Then, the conjugate can be
recovered by reversing the sequence of conjugating factors. For more details on the LBA, see [5, 6, 9, 16, 17].

Authenticated | dkahrobaei@gc.cuny.edu author's copy
Download Date | 3/27/19 11:46 AM



DE GRUYTER D. Garber, D. Kahrobaei and H.T. Lam, Length-based attacks in polycyclic groups =— 37

4.1 Variants of the LBA

In [5, 6, 17, 19], several variants of the LBA are presented. Here, we give four variants of the LBA that we
implemented against the AAG protocol having the polycyclic group as its underlying platform. In all these
variants, the following input and output are expected:
- Input:a=(a,...,ay),b=(b,...,by)andb' = (by,..., b)), such that b = b fori = 1,...,N,.
«  Output: An element A’ € (a,,...,ay ) such that b/ = b* fori=1,...,N,, or FAIL if the algorithm cannot
find such A’.
We will use the following notation: if¢ = (¢, ..., ¢.), then its total length [c| is fozl ;| (the length of ¢;, |¢,
will be discussed in Section 4.2).

4.1.1 LBA with backtracking

The most straight-forward variant of LBA (see Algorithm 1) conjugates v directly with afl € {ay,...,ay }. This
is termed “LBA with backtracking” by Myasnikov and Ushakov [17].

4.1.2 LBA with a dynamic set

Through analysis, Myasnikov and Ushakov [17] concluded that different types of peaks make LBA unsuccess-
ful. To overcome this, they suggested a new version of the algorithm, which they termed “LBA with a dynamic
set”. Here (see Algorithm 2), if a generator g; causes a length reduction, only the conjugates and products in-
volving g; are added to the dynamic set. On the other hand, if no generator causes a length reduction, all
conjugates and two generators products are added. Their experimental results suggest that this algorithm
works especially well in the case of keys composed from long generators, but it is not worse than the naive
algorithm in the other cases. The algorithm presented here is a modified version of their algorithm, which we
implemented to attack the AAG protocol having the polycyclic group as its underlying platform.

4.1.3 Memory-LBA

Another variant, presented in [5], is also considered. In this variant (see Algorithm 3), we allocate an array S
of a fixed size M. The array S holds M tuples every round. In every round, all elements of S are conjugated, but
only the M smallest conjugated tuples (with respect to their length) are inserted back into S. For the halting
condition, we use a predefined time-out.

4.1.4 LBA* (with memory)

We present a different variant of memory-LBA which is again based on a fixed-size array allocated for the
algorithm. Here (see Algorithm 4), S holds M tuples every round and is sorted by the first element (with
respect to the length of conjugated element) of each tuple. In every round, only the smallest element of S is
removed and conjugated by all the generators and their inverses. The conjugated tuples are inserted back into
S depending on whether there is a free place in S. If there is no more places in S, and the conjugated tuple is
smaller than the largest element in S, swap them and re-sort S. Since S is always kept sorted, any operation
to find the “smallest element” costs constant time. As in the previous variant, we use a predefined time-out
as the halting condition.

Authenticated | dkahrobaei@gc.cuny.edu author's copy
Download Date | 3/27/19 11:46 AM



38 —— D.Garber, D. Kahrobaei and H. T. Lam, Length-based attacks in polycyclic groups DE GRUYTER

Algorithm 1. LBA with backtracking

1: Initialize S = {(¥',idg)}.
2: while S + ¢ do

3:
4
5
6
7
8
9

10:

Choose (c, x) € S such that |¢| is minimal. Remove (g, x).
fori=1,...,N,ande = +1do

Compute 8, = [c| - [¢%].

ifc® = bthen output inverse of xa; and stop.

if §;, > 0 then

Add (&%, xa;)to S.

end if

end for

11: end while
12: Otherwise, output FAIL.

> length has been decreased

> no more elements to conjugate

Algorithm 2. LBA with a dynamic set

1: Initialize S = {(¥',1dg)}.
2: while S # 0 do

w0

18:

Choose (c, x) € S such that |c| is minimal. Remove (c, x).
fori=1,...,Nyande = +1do
Compute §;, = [¢] - [ |

end for
if §;, < 0 for all i then
- = -1 2 T
Define G, = aU {x;x;x; , x;x;, % | x5, x; €@ i # jh
— - -1 2 1 ;
else Definea,,, =au (XXX 75 X X o X X5 X,y | X5 €@, m # j}
where x,, is such that §,,, = max{5,;, | i = 1,...,N;}.

end if
forall w € g, do
Compute §,, = [c| — [c”].
end for
if ¢ = b then output inverse of xw and stop.
if 5, > 0 then
Add (c¥, xw) to S.
end if

19: end while
20: Otherwise, output FAIL.

> length has been decreased

> no more elements to conjugate

Algorithm 3. Memory-LBA

1: Initialize S = {(|b'], b/, id)}.
2: while not time-out do

10:

4
5
6
7
8
9

for (|c|,¢c,x) € Sdo
Remove (¢, ¢, x) from S.
Compute ¢* foralli e {1...N;}and ¢ € {#1}.
if ¢ = b then output inverse of xaf and stop.
Save (|c% |, %, xaf) in §'.

end for

After finished all conjugations, sort S’ by the first element of every tuple.

Copy the smallest M elements into S and delete the rest of §'.

11: end while
12: Otherwise, output FAIL.
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Algorithm 4. LBA* (with memory)

1 Initialize S = {(|b'],¥',idg)}.
2: while not time-out do
3: Choose (|c|, ¢, x) € S such that |c| is minimal. Remove (|c|, c, x).

4 fori=1,...,N,ande = +1do
5: Compute ¢% .
6: if ¢ = b then output inverse of xa; and stop.
7: if Size(S) < M then
8: Add ('E“"s | &, xaf) to S and sort S by first element of every tuple.
9: else > no more space in S
10: if [c% | is smaller than first element of all tuples in S then swap them
11: end if
12: end for
13: end while
14: Otherwise, output FAIL. > no more elements to conjugate

The name LBA* comes from the general idea of A* search algorithm [8], which uses a best-first search (as
we are doing here - taking the smallest element of S and conjugated it). We should note that a very similar
algorithm was independently introduced by Tsaban [21], and the difference between the two variants is that
our variant starts the search from 17, while Tsaban’s variant starts the search from both directions: b’ and b’
(using the idea of “meet in the middle”).

4.2 The length function

In the implementation of the LBA, the choice of the length function is important (see [5, 9]). In our case,
the length of a word is chosen to be the sum of the absolute values of the exponents in its normal form. We
choose this function because the experimental results presented below show that it satisfies the requirement
2(a”'ba) > £(b) (as needed for a length function used for LBA).

The first step of the experiments is the construction of a polycyclic group G of a given Hirsch length
h(G), following the construction in Sections 3.2 and 5.1. Then, an element b of length between 10 and 13
is randomly chosen; we choose elements of this length for consistency with the LBA parameters. Another
random element a satisfying the same length interval is chosen and b” is computed, and finally, we compute
|b?| — |b]. We performed 100 tests for each group and the average difference is recorded.

Polynomial h(G) Average difference
X2 —x-1 3 79.92
X -xP-1 7 80.17
- -1 16 44.93

As we can see, the average difference is large; specifically |b°| - |b| is significantly larger than |a|, indicat-
ing that the condition £(a 'ba) > £(b) is indeed satisfied.

5 Experimental results

Our goal is to apply the LBA on the AAG protocol having the polycyclic group as its underlying platform. To
that end, we implemented the four variants of the LBA presented in Section 4 and performed experiments on
several polycyclic groups having different Hirsch lengths.
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5.1 Implementation details

Each polycyclic group is constructed by choosing an irreducible polynomial f over Z, thus f defines an alge-
braic field F over Q. Let Oy be its maximal order and Uy, be its unit group, thus O, x Uy, is the desired polycyclic
group. This construction follows [10] and is a part of the Polycyclic package of GAP (see [4]).

A random element a;, for Alice’s public set, or b;, for Bob’s public set, is generated by taking either some
random generators of the group or their inverses and multiplying them together, while maintaining that the
length of the element is between a predefined minimum and maximum. By this method, we take control over
the length of the element.

Alice’s private key A is generated by taking a fixed number of random elements ina = (a,,...,ay,) and
multiplying them together. Here we forgo control over length to preserve interesting cases of conjugations
actually decreasing the length of b;, such as a commutator-type peak. The way for choosing the keys is similar
to what has been used in [17]. This way also reflects the characterization of the polycyclic group.

5.2 Results

We performed several sets of tests, all of which were run on an Intel Core 17 quad-core 2.0 GHz computer
with 12 GB of RAM, running Ubuntu Version 12.04 with GAP Version 4.5 and 10 GB of memory allocation. In
all these tests, the polycyclic group G having Hirsch length h(G) is constructed by the above method using
polynomial f. The sizes of Alice’s and Bob’s public sets are both N, = N, = 20.

5.2.1 The effect of the Hirsch length

In the first set of tests, the length of each random element g, or b, is in the interval [L |, L,] = [10, 13] and Alice’s
private key is the product of L = 5 random elements in Alice’s public set. The time for each batch of 100 tests
is recorded together with its success rate. In each case, a time-out of 60 minutes is enforced for each test. The
following results are obtained by LBA with a dynamic set

Polynomial h(G) Time Success rate of
LBA with a dynamic set

xt-x-1 3 0.20 hours 100%
X -x-1 7 76.87 hours 35%
X -x -1 10 94.43 hours 8%
X —7x0 -1 14 95.18 hours 5%
xMox -1 16  95.05 hours 5%

From this table, we can see that with a small Hirsch length, the LBA cryptanalyzes the AAG protocol
easily with high success rate. However, as the Hirsch length is increased to 7, the success rate decreases. In
polycyclic groups with higher Hirsch lengths, we can see the effect of the time-out more prominently as the
total time did not increase much more, but the success rate is dropped to 5%. Although a success rate of 5% is
not negligible, note that we use a very small value for L. Based on the current experimental results, we expect
that increasing the value of L will reduce the success rate to 0%.

5.2.2 The effect of the key length

In the second set of tests, we vary the number of elements L that compose Alice’s private key. Myasnikov
and Ushakov [17] suggested that the LBA with a dynamic set has a high success rate with long generators,
i.e. random elements have longer length [L,, L,]. Therefore, we also vary the length of random elements
according to the parameters in [17].
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The following results are obtained by LBA with a dynamic set, with a time-out of 30 minutes:

Polynomial h(G) [10,13] [20, 23] [40, 43]

L=10 L=10 L=20 L=50

X —x¥-1 10 2% 0% 0% 0%
X -7x -1 14 0% 0% 0% 0%
xKM-3x-1 17 0% 0% 0% 0%

The results of this set of tests indicate that just by increasing the number of generators of Alice’s private
key from 5 (as in the previous set of tests) to 10, the LBA already fails with polycyclic groups having Hirsch
length as small as 10.

5.2.3 Comparing the four variants of the LBA

In this paper, we compare the success rates of the four variants of the LBA for the first time on any platform.
For comparing the success rates of the four variants of the LBA, we purposely choose the value of the test
parameters to be very small in this set of tests. They are as follows: N, = N, = 20, [L,, L,] = [5, 8], L = 5, there
is a time-out of 30 minutes and a memory of size M = 500. The polynomial usedis f = x* — x — 1, constructing
a polycyclic group of Hirsch length 4.

Algorithm Time Success rate
LBA with backtracking 0.57 hours 58%
LBA with a dynamic set 37.35 hours 95%
Memory-LBA (with memory M = 500)  4.01 hours 92%
LBA* (with memory M = 500) 32.00 hours 36%

Algorithm LBA with a dynamic set gives the best success rate but took much longer than Algorithm
Memory-LBA which gives a similar success rate in much shorter time. We conclude that with a sufficient size
of memory, Algorithm Memory-LBA is the best variant of the LBA.

5.2.4 Using the four variants of the LBA on our test parameters

In the fourth set of tests, we want to see the effect of the four different variants of the LBA presented in Sec-
tion 4.1 applied to our test parameters. Therefore, we keep the following parameters for all the algorithms:
the length of each random element is in the interval [L,, L,] = [10, 13], Alice’s private key is the product of 10
elements and the length of both public sets are N; = N, = 20. There is a time-out of 30 minutes per test and
in the case of the two memory variants of the LBA, Algorithm Memory-LBA and Algorithm LBA*, a memory of
size M = 1000 is used. The same polycyclic group G having Hirsch length 14 constructed by the polynomial
x° — 7x> — 1is used for all the variants of the LBA.

Algorithm Time Success rate
LBA with backtracking 48.68 hours 0%
LBA with a dynamic set 50.04 hours 0%
Memory-LBA (with memory M = 1000)  49.35 hours 3%
LBA* (with memory M = 1000) 50.00 hours 0%

As we can see, Memory-LBA algorithm has the best performance in this set of parameters, but even then,
it has only 3% success rate. To further test Memory-LBA algorithm, we run another set of tests where we
increase the length of random elements to [L,, L,] = [20, 23] and increase the number of factors of the private
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key to L = 20. To give it a chance of success, we increase the size of the memory M to 40,000. The result is 0%
success rate.

5.2.5 The effect of increasing the time-out

Since it is possible that the time-out of 30 minutes for each test is too short, we run another set of tests, where
the time-out is 4 hours for each test. Memory-LBA algorithm showed the most promise, so we chose it with
the following parameters: the length of random elements is in the interval [L,, L,] = [20, 23], the number of
factors of the private key is L = 20 and the size of the memory M is 1000. The polynomial used is x° — 7x* — 1
producing a polycyclic group of Hirsch length 14. Due to the long time-out, we performed only 50 tests. We
still get 0% success rate.

Based on the above experimental results, we conclude that the LBA is insufficient for cryptanalyzing the
polycyclic groups of high enough Hirsch lengths. One can suggest the following parameters: h(G) = 16, L = 20
and [L,, L,] = [20, 23] for achieving an AAG protocol based on the polycyclic group, which the known variants
of the LBA have 0% success rate for cryptanalyzing this protocol.

5.2.6 Additional experimental results concerning LBA with a dynamic set algorithm

Here, we present some additional experimental results for LBA with a dynamic set. The time-out for each test
is 1 hour. The polynomials used are f and h(G) is the Hirsch length of the corresponding polycyclic group.
The sizes of Alice’s and Bob’s public sets are N;, N, respectively. Each random element g; or 4, has length in
[L,,L,] and Alice’s private key is the product of L = 5 random elements in Alice’s public set. The success rate
of a batch of 100 tests is recorded.

Polynomial  h(G) N, =N, =5 N, =N, =20

(58]  [15,18] [10,13]
x-1 1 98% 98%
X —x-1 3 98% 96% 100%
X —x-1 4 95% 100%
X -x>-1 7 35%
X -x-1 10 8%
-7 -1 14 5%
M ox -1 16 59% 53% 5%
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