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Abstract The process algebra CSP has been studied as a notation for model-
based testing. Theoretical and practical work has been developed using its trace
and failure semantics, and their refinement notions as conformance relations. Two
sets of tests have been defined and proved to be exhaustive, in the sense that
they can identify any SUT that is non-conforming with respect to the relevant
refinement relation. However, these sets are usually infinite, and in this case, it is
obviously not possible to apply them to verify the conformity of an SUT. Some
classical selection criteria based on models have been studied. In this paper, we
propose a procedure for online test generation for selection of finite test sets for
traces refinement from CSP models. It is based on the notion of fault domains,
focusing on the set of faulty implementations of interest. We investigate scenarios
where the verdict of a test campaign can be reached after a finite number of test
executions. We illustrate the usage of the procedure with some case studies.

1 Introduction

Model-based testing (MBT) has received increasing attention due to its ability
to improve productivity, by automating test planning, generation, and execution.
The central artifact of an MBT technique is a model. It serves as an abstraction
of the system under test (SUT), manageable by the testing engineers, and can be
processed by tools to derive tests automatically.

Most modelling notations for testing are based on states; examples are Finite
State Machines, Labelled Transition Systems, and Input/Output Transition Sys-
tems. Many test-generation techniques are available for them [11,17,35,28]. Other
notations use state-based machines as the underlying semantics [18,22].

CSP [32] is a process algebra for refinement. It has been around for decades
and availability of good tools has ensured adoption in industry. CSP has a denota-
tional, an algebraic, and an operational semantics, which have been proved to be
consistent. CSP also has extensions to deal with time [33], and has been combined
with data-modelling notations to define state-rich process algebra [34,31,8].
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More recently, CSP has also been used as a modelling notation for test deriva-
tion. The seminal work in [27] formalises a test-automation approach based on
CSP. More recently, CSP and its model checker FDR [15] have been used to auto-
mate test generation with ioco as a conformance relation [26]. A theory for testing
for refinement from CSP has been fully developed in [4].

In [4], two sets of tests have been defined and proved to be exhaustive: they can
identify any SUT that is non-conforming according to traces or failures refinement.
Typically, however, these test sets are infinite, rendering them impractical for real
applications. A few selection criteria have been explored: data-flow and synchro-
nisation coverage [5], and mutation testing [1] for a state-rich version of CSP. As
far as we know, the traditional approaches for test generation from state-based
models have not been studied in this context.

Even though the operational semantics of CSP defines a Labelled Transition
System (LTS), applying testing approaches based on states in this context is chal-
lenging: (i) not every process has a finite LTS, and it is not trivial to determine
when it has; (ii) even if the LTS is finite, it may not be deterministic; (iii) for re-
finement, we are not interested in equivalence of LTS as in state-based approaches;
and (iv) to deal with failures, the notion of state needs to be very rich.

Here, we present a novel approach for selection of finite test sets from CSP
models by identifying scenarios where the verdict of a campaign can be reached
after a finite number of test executions. We adopt the concept of fault domain
from state-based methods to constrain the possible faults in an SUT [29].

Fault-based testing is more general than the testing approaches induced by the
selection criteria previously considered for CSP mentioned above. In fault-based
testing, the test engineering can embed knowledge about the possible faults of the
SUT into a fault domain to guide generation and execution [19].

Here, we define a fault domain as a CSP process that is assumed to be refined
by the SUT. With that, we establish that some tests are not useful, as they cannot
reveal any new information about the SUT. In addition, we propose a procedure for
online generation of tests for traces refinement. In general terms, tests are derived
using a CSP specification and a fault model, and applied to the SUT. Based on
the verdict, either the SUT is cast incorrect, or the fault domain is refined and the
procedure iterates to derive and apply further tests.

We present some scenarios where our procedure is guaranteed to provide a
verdict after a finite number of steps. A simple scenario is that of a specification
with a finite set of traces: unsurprisingly, after that set is exhaustively explored our
procedure terminates. A more interesting scenario is when the SUT is incorrect;
our procedure also always terminates in this case.

We present a formal proof of the correctness of the procedure in these cases
using a refinement calculus [24,10]. We show that it refines a simple specification
for an algorithm that gives a correct verdict. The invariant and variant that we
use give insight into the design of the procedure. Moreover, the proof establishes
that, even if the specification has an infinite set of traces and the SUT is correct,
and so the procedure may not terminate, we have partial correctness. This means
that, if the procedure does terminate, it does give the correct verdict.

We have also investigated the scenario where the set of traces of the specifica-
tion is infinite, but that of the SUT is finite and the SUT is correct. A challenge
in establishing termination in this case is that, while when testing using Mealy
and finite-state machines every trace of the model leads to a test, this is not the
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case with CSP. For example, for traces refinement, traces of the specification that
lead to states in which all possible events are accepted give rise to no tests. After
such a trace, the behavior of the SUT is unconstrained, and so does not need to
be tested. Another challenge is that most CSP fault domains are infinite.

Our approach is similar to those adopted in the traditional finite state-machines
setting, but addresses these challenges. We could, of course, change the notion of
test and add tests for all traces. A test that cannot fail, however, is, strictly
speaking, just a probe. For practical reasons, it is important to avoid such probes,
which cannot really reveal faults but add to the cost of the testing activity.

In summary, the problem we address here is generation of a finite number of
tests based on a CSP model, taking advantage of a fault model that captures
partial information about the SUT. For that, we cast the core concepts of fault-
based testing in CSP, and solve the problem for tests for traces refinement.

The contributions of this paper are as follows.

1. The introduction of the notion of fault domain in the context of a process
algebra for refinement;

2. A procedure for online testing for traces refinement validated by a prototype
implementation;

3. Formal proof of correctness of the procedure;
4. Characterization of some scenarios in which the procedure terminates;
5. A number of case studies that show the practical relevance of the procedure.

Preliminary results have been published in [9]. Compared to that work, besides
explanations throughout, we add the contributions 3, and 4 above.

The practical use of our procedure requires the definition of a fault-domain
in CSP, and this may prove to be a hurdle in terms of the learning curve that
it imposes. On the other hand, we do not require any knowledge or assumption
about a state-based model of the SUT. An obvious limitation, however, is that the
procedure does not terminate in all cases as explained above. We believe that in
such cases there may well be no finite set of tests that can demonstrate correctness
of the SUT. In practice, as usual, we need to consider another selection criteria. It
can be as simple as a restriction on the length of traces used to define tests. Such
restrictions may also be useful when the set of tests is finite, but very large.

Next, in Section 2 we present background material: fault-based testing, and
CSP and its testing theory. Section 3 casts the traditional concepts of fault-based
testing in the context of CSP. Our procedure is presented in Section 4. Correctness
and termination are studied in Section 5. Section 6 describes a prototype imple-
mentation of our procedure and our experiments. Finally, we conclude in Section 7,
where we also present related and future work.

2 Preliminaries

In this section, we describe the background material to our work.

2.1 CSP: testing and refinement

CSP is distinctive as a process algebra for refinement. In CSP models, systems
and components are specified as reactive processes. These are black boxes that
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interact with each other and with their environment via atomic, instantaneous, and
synchronous events. A CSP model specifies processes by defining their patterns
of interaction. A communication takes place via a channel, and an event may
represent an input, output, or simple synchronisation on a channel.

We describe here core operators of CSP. A prefixing a → P is a process that is
ready to communicate by engaging in the event a and then behaves like the process
P . The external choice operator ✷ combines processes to give a menu of options
to the environment. The following example illustrates the use of these operators.

Example 1 The process Counter uses events add and sub to count up to 2.

Counter = add → Counter1
Counter1 = add → Counter2 ✷ sub → Counter

Counter2 = sub → Counter1

Counter1 offers a choice to increase (event add) or decrease (event sub) the counter.
In this case add and sub are channels that are used just for synchronisation; they
do not communicate values. ✷

Other operators combine processes in internal (nondeterministic) choice (⊓), par-
allel (|[ . . . ]|), sequence (; ), and so on. Nondeterminism can also be introduced
by interleaving (|||), a form of parallelism in which the parallel processes do not
communicate, and by hiding internal communications, for example. We say more
about the operators in the sequel when they are used.

There are three standard semantics for CSP: traces, failures, and failures-di-
vergences, with refinement as the notion of conformance. As usual, the testing
theory assumes that specifications and the SUT are free of divergence, which is
observed as deadlock in a test. So, tests are for traces or failures refinement.

We write P ⊑T Q when P is trace-refined by Q ; similarly, for P ⊑F Q and
failures-refinement. In many cases, definitions and results hold for both forms of
refinement, and we write simply P ⊑ Q . In all cases, P ⊑ Q requires that the
observed behaviours of Q (either its traces or failures) are all possible for P .

The CSP testing theory adopts two testability hypothesis. The first is often
used to deal with a nondeterministic SUT: there is a number k such that, if we
execute a test k times, the SUT produces all its possible behaviours. In the liter-
ature, it appears in [21,35,20], for example, as fairness hypothesis or all-weather
assumption. The second hypothesis is that there is an (unknown) CSP process
SUT that models the SUT. Thus, similarly to other MBT approaches, we assume
that the specification and an SUT are modelled using the same notation, CSP.

The notion of execution of a test T for a specification S is captured by a
CSP process ExecutionS

SUT (T ) defined below. This notion is independent of the
conformance relation and the kind of test that is used. In the definition we take
advantage of the fact that the test T is also a process. The set αS contains the
specification events, which are used by T and the SUT .

ExecutionS

SUT (T ) = (SUT |[ αS ]| T )\αS

The process ExecutionS

SUT (T ) composes the SUT and the test T in parallel with αS

as a synchronisation set. So, the parallelism requires that SUT and T synchronise
on these events, but T can proceed independently when raising special events that
give the verdict. These are pass, fail , or inc, respectively, for a successful execution

4



of the test, for tests that fail, and for inconclusive tests that cannot be executed
to the end because the SUT does not have the trace that defines the test. The
events of the specification are hidden (using the CSP operator \αS), so that, in a
test execution we can only observe the verdict events.

The testing theory also has a notion of successful testing experiment: a property
passes⊑(S ,SUT ,T ) defines that the SUT passes the test T for a specification
S . A particular definition for passes⊑(S ,SUT ,T ) typically uses the definition of

ExecutionS

SUT (T ), but also explains how the information arising from it is used to
achieve a verdict. For example, for traces refinement, we have the following.

passesT (S ,SUT ,T ) =̂ ∀ t : traces [[ExecutionS

SUT (T )]] • last(t) 6= fail

For a process P , the set traces [[P ]] contains all traces of P , and for any trace t , its
last element is given by last(t). For simplicity, if t is the empty trace, last(t) 6= fail

is deemed to hold trivially. For a definition of passes⊑(S ,SUT ,T ) and a test suite
TS , we use passes⊑(S ,SUT ,TS) as a shorthand for ∀T : TS • passes⊑(S ,SUT ,T ).

In general, for a given definition of passes⊑(S ,SUT ,T ), we can characterise
exhaustivity Exhaust⊑(TS) of a test suite TS as follows.

Definition 1 A test suite TS satisfies the property Exhaust⊑(S ,TS), that is, it is
exhaustive for a specification S and a conformance relation ⊑ exactly when, for
every process P , we have S ⊑ P ⇔ passes⊑(S ,P ,TS).

Different forms of test give rise to different exhaustive sets. We use Exhaust⊑(S)
to refer to a particular exhaustive test suite for S and ⊑.

For a trace 〈a1, a2, . . . 〉 with events a1, a2, . . ., and one of its forbidden con-
tinuations a, that is, an event a not allowed by the specification after the trace
〈a1, a2, . . . 〉, the traces-refinement test TT (〈a1, a2, . . . 〉, a) is given by the process
inc → a1 → inc → a2 → ... → pass → a → fail . In alternation, TT (〈a1, a2, . . . 〉, a)
gives an inc verdict and offers an event of the trace to the SUT, until all the trace
is accepted, when it gives the verdict pass, but offers the forbidden continuation.
If it is accepted, the verdict is fail . The exhaustive test set ExhaustT (S) for traces
refinement includes all tests TT (t , a) formed in this way from the traces t and
forbidden continuations a of the specification S .

Example 2 We consider the specification from Example 1. The exhaustive test set
for Counter and traces refinement is sketched below.

{ pass → sub → fail → STOP ,

inc → add → inc → add → pass → add → fail → STOP ,

inc → add → inc → sub → pass → sub → fail → STOP ,

. . .}

We note that there is no test for the trace 〈add〉, since after this event both add

and sub are accepted, and, thus,there is no forbidden continuation. ✷

In [3], it is proven that Exhaust⊑T
(S ,ExhaustT (S)).
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2.2 Fault-based testing

The testing activity is constrained by the amount of resources available. There
usually is an infinite number of possible tests and it is obviously not feasible to
apply them all. Some criteria is needed to select a finite subset of finite tests.

Fault-based criteria consider that there is a fault domain, modelling the set of
all possible faulty implementations [29,19]. They restrict the set of required tests
using the assumption that the SUT is in that domain [38]. Testing has to consider
the possibility that the SUT can be any of those implementations, but can discard
all other possibilities. It is in this way that a fault domain allows us to reduce the
number of tests [23]. We note that, in spite of its name, the specification S itself
and any number of its correct implementations may be in the fault domain.

For Finite State Machines (FSMs), many test-generation techniques assume
that the SUT may have a combination of initialisation faults (that is, the SUT
initialises in a wrong state), output faults (that is, the SUT produces a wrong
output for a given input), transfer faults (that is, a transition of the SUT leads
to the wrong state), and missing or extra states (that is, the set of states of the
SUT is increased or decreased) [11]. Therefore, for a specification with n states, it
is common that the fault domain is defined denotationally as “the set of FSMs (of
a given class) with no more than m states, for some m ≥ n.” [14,11,17]. In this
case, all faults above are considered, except for more extra states than m − n.

Fault domains can also be used to restrict testing to parts of the specification
that the tester judges more relevant. For instance, some events of the specification
can be trivial to implement and the tester may decide to ignore them. In this case,
an approach for modelling faults of interest, using FSMs, is to assume that the
SUT is a submachine of a given nondeterministic FSM, as in [19]. Thus, the parts
of the SUT that are assumed to be correct are modelled by a copy the specification,
and the faults are modelled by adding extra transitions with the intended faults.

Fault domains can also be modelled by explicitly enumerating the possible
faulty implementations, known as mutants [13]. In these approaches, tests can be
generated targeting each of those mutants, in turn.

In the next section, we define fault domains by refinement of a CSP process.

3 Fault-based testing in CSP

For CSP, we define a fault domain as a process FD ⊑ SUT ; it characterises the
set of all processes that refine it. We use the term fault domain sometimes to refer
to the CSP process itself and sometimes to the whole collection of processes it
identifies, indistinctively, if the context makes it clear what we mean.

In the CSP testing theory, the specification and SUT are processes over the
same alphabet of events. Otherwise, refinement is not meaningful. Accordingly,
here, we assume that a fault domain FD uses only those events as well.

The usefulness of the concept of fault domain is illustrated below.
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Example 3 We consider the specification S1 = a → b → S1. The infinite exhaustive
test set for S1 and traces refinement is sketched below.

{ pass → b → fail → STOP ,

inc → a → pass → a → fail → STOP ,

inc → a → inc → b → pass → b → fail → STOP ,

. . .}

We first take just FD1 = RUN ({a, b}) as a fault domain. For any alphabet A, the
process RUN (A) repeatedly offers all events in A. So, with FD1, we add no extra
information, since every process that uses only channels a and b trace refines FD1.
A more interesting example is FD2 = a → (a → FD2 ✷ b → FD2). In this case, the
assumption that FD2 ⊑T SUT allows us to eliminate the first and the third tests
in the set above, because an SUT that refines FD2 always passes those tests. ✷

In examples, we use traces refinement as the conformance relation, and assume
that we have a fixed notion of test. The concepts introduced here, however, are
relevant for testing for either traces or failures refinement.

It is traditional in the context of Mealy machines to consider a fault domain
characterised by the size of the machines, and so, finite. Here, however, if a fault
domain FD has an infinite set of traces, it may have an infinite number of refine-
ments. For traces refinement, for example, for each trace t , a process that performs
just t refines FD . Thus, we do not assume that fault domains are finite.

Just like we define the notion of exhaustive test set to identify a collection of
tests of interest, we define the notion of a complete test set, which contains the
tests of interest relative to a fault domain.

Definition 2 For a specification S , and a fault domain FD , we define a test set
TS : PExhaust⊑(S) to be complete, written CompleteS⊑(TS ,FD), with respect to
FD if, and only if, for every implementation I in FD we have

¬ (S ⊑ I ) ⇒ ∃T : TS • ¬ passes⊑(S , I ,T )

This is a property based, not on the whole of the fault domain, but just on its
faulty implementations. For traces refinement, the exhaustive test set is given by
ExhaustT (S) and the verdict by passesT (S ,SUT ,T ) defined in Section 2.1.

The following result relates the exhaustive and complete test sets.

Theorem 1 If FD is the bottom of the refinement relation ⊑, then a complete test set

TS is also exhaustive.

Proof We prove two results arising from Complete(TS ,⊥), where we use ⊥ to
represent whatever is the least refined process, that is, the bottom of the order ⊑,
and consider an arbitrary process I in the fault domain.

Complete(TS ,⊥)

⇔ ⊥ ⊑ I ⇒ (¬ (S ⊑ I ) ⇒ ∃T : TS • ¬ passes⊑(S , I ,T ))

[definition of Complete(TS ,⊥)]

= ¬ (S ⊑ I ) ⇒ ∃T : TS • ¬ passes⊑(S , I ,T ) [⊥ ⊑ I holds for all I ]

= (∀T : TS • passes⊑(S , I ,T )) ⇒ S ⊑ I [predicate calculus]

= passes⊑(S , I ,TS) ⇒ S ⊑ I [definition of passes⊑(S , I ,TS)]

7



In addition, we have the following implication.

Complete(TS ,⊥)

⇒ TS ⊆ Exhaust⊑(S) [type of TS in the definition of Complete(TS ,⊥)]

= ∀T : TS • T ∈ Exhaust⊑(S) [definition of ⊆]

⇒ ∀T : TS • S ⊑ I ⇒ passes⊑(S , I ,T ) [definition of Exhaust⊑(S)]

= S ⊑ I ⇒ ∀T : TS • passes⊑(S , I ,T ) [predicate calculus]

= S ⊑ I ⇒ passes⊑(S , I ,TS) [definition of passes⊑(S , I ,TS)]

So, we have that Complete(TS ,⊥) ⇒ (S ⊑ I ⇔ passes⊑(S , I ,TS)). Therefore,
Complete(TS ,⊥) ⇒ Exhaust⊑(TS). ✷

It is direct from Definition 2 that a complete test set is a subset of the exhaus-
tive test set, and so unbiased: it does not reject a correct SUT. We also need
validity: only a correct SUT is accepted. This is also fairly direct as shown below.

Theorem 2 Provided FD ⊑ SUT, we have that

∃TS : PExhaust⊑(S) • complete(TS ,FD) ∧ passes⊑(S ,SUT ,TS)

implies S ⊑ SUT.

Proof

∃TS : PExhaust⊑(S) • complete(TS ,FD) ∧ passes⊑(S ,SUT ,TS)

= ∃TS : PExhaust⊑(S) •
(¬ (S ⊑ SUT ) ⇒ ∃T : TS • ¬ passes⊑(S ,SUT ,T )) ∧
passes⊑(S ,SUT ,TS)

[Definition 2]

= ∃TS : PExhaust⊑(S) •
((∀T : TS • passes⊑(S ,SUT ,T )) ⇒ (S ⊑ SUT )) ∧
passes⊑(S ,SUT ,TS)

[predicate calculus]

= ∃TS : PExhaust⊑(S) •
(passes⊑(S ,SUT ,TS) ⇒ S ⊑ SUT ) ∧ passes⊑(S ,SUT ,TS)

[definition of passes⊑(S ,SUT ,TS)]

⇒ (S ⊑ SUT ) [predicate calculus]

✷

Finally, if an unbiased test is added to a complete set, the resulting set is still
complete. Unbias follows from inclusion in the exhaustive test set.

Theorem 3 For any unbiased test T , we have the following property.

Complete(TS ,FD) ⇒ Complete(TS ∪ {T},FD)

Proof

Complete(TS ,FD)

⇒ ¬ (S ⊑ I ) ⇒ ∃T : TS • ¬ passes⊑(S , I ,T ) [Definition 2]

⇒ ¬ (S ⊑ I ) ⇒ ∃T : TS ∪ {T} • ¬ passes⊑(S , I ,T ) [predicate calculus]

8



= Complete(TS ∪ {T},FD) [T is sound and definition of soundness]

✷

Similarly to the exhaustive test set, typically, a complete test set is infinite. There-
fore, as already said, a practical technique still needs to use extra assumptions.

An important set is those of the useless tests for implementations in the fault
domain. The fact that we can eliminate such tests from any given test suite has
an important practical consequence that we explore later.

Definition 3

Useless⊑(S ,FD) = {T : Exhaust⊑(S) | passes⊑(S ,FD ,T )}

Since FD passes the tests in Useless⊑(S ,FD), all implementations in that fault
domain also pass those tests, provided passes⊑(S ,P ,T ) is monotonic on P with
respect to refinement. This is established by the result below.

Theorem 4 For every I in FD, and T : Useless⊑(S ,FD), we have passes⊑(S , I ,T ),
if passes⊑(S ,P ,T ) is monotonic on P with respect to ⊑.

Proof

FD ⊑ I

⇒ passes⊑(S ,FD ,T ) ⇒ passes⊑(S , I ,T ) [monotonicity of passes]

= T ∈ Useless⊑(S ,FD) ⇒ passes⊑(S , I ,T ) [definition of Useless⊑(S ,FD)]

✷

Example 4 We recall that the definition for passesT (S ,SUT ,T ) is monotonic, as
shown below, where we consider processes P1 and P2 such that P1 ⊑T P2.

ExecutionS

P1
(T ) = (P1 |[ αS ]| T )\αS [definition of ExecutionS

P1
(T )]

⇒ ExecutionS

P1
(T ) ⊑T (P2 |[ αS ]| T )\αS

[monotonicity of CSP operators with respect to refinement]

= ExecutionS

P1
(T ) ⊑T ExecutionS

P2
(T ) [definition of ExecutionS

P2
(T )]

⇒ traces [[ExecutionS

P2
(T )]] ⊆ traces [[ExecutionS

P1
(T )]] [definition of ⊑T ]

⇒ (∀ t : traces [[ExecutionS

P1
(T )]] • last(t) 6= fail) ⇒

(∀ t : traces [[ExecutionS

P2
(T )]] • last(t) 6= fail)

[∀ t : traces [[ExecutionS

P1
(T )]] • t ∈ traces [[ExecutionS

P1
(T )]]]

= passesT (S ,P1,T ) ⇒ passesT (S ,P2,T ) [definition of passesT (S ,P ,T )]

✷

Typically, it is expected that the notions of passes⊑(S ,P ,T ) are monotonic on P

with respect to the refinement relation ⊑, so that a testing experiment that accepts
a process, also accepts its correct implementations.

It is important to note that there are tests that do become useless with a
fault-domain assumption. This is illustrated below.
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Example 5 In Example 3, the first and third tests of the exhaustive test set are
useless as already indicated. For instance, we can show that FD2 passes the first
test T1 = pass → b → fail → STOP as follows.

ExecutionS1

FD2

(T1)

= (FD2 |[ {a, b} ]| T1) \ {a, b} [definition of ExecutionS1

FD2

(T1)]

= (pass → (FD2 |[ {a, b} ]| b → fail → STOP)) \ {a, b}

[definitions of FD2 and T1, and step law of parallelism]

= pass → (FD2 |[ {a, b} ]| b → fail → STOP) \ {a, b} [step law of hiding]

= pass → STOP \ {a, b} [definition of FD2 and step law of parallelism]

= pass → STOP [step law of hiding]

So, traces [[ExecutionS1

FD2

(T1)]] = {〈〉, 〈pass〉}, none of which finish with fail . ✷

The above concepts and results are valid for all notions of refinement, although
traces refinement is used in examples. In the next section, we consider the gener-
ation of tests specifically for traces refinement using fault domains.

4 Generating test sets

To develop algorithms to generate tests based on a fault domain, we need to
consider particular notions of refinement, and the associated notions of test and
verdict. In this paper, we present an algorithm for traces refinement.

As explained in Section 2.1, the execution of a test can result in the verdicts
inc, pass, or fail. Due to nondeterminism in the SUT, the test may need to be
executed multiple times, resulting in more than one verdict. We assume that the
test is executed as many times as needed to observe all possible verdicts according
to our testability hypothesis. So, for a test T and implementation SUT , we write
verdSUT (T ) to denote the set of verdicts observed when T is executed to test SUT .

If fail ∈ verdSUT (T ), the SUT is faulty (if T is in Exhaust⊑(TS)). In this case,
we can stop the testing activity, since the SUT needs to be corrected. Otherwise,
we can determine additional properties of the SUT, considering the test verdicts.
The SUT is a black box, but combining the knowledge that it is in the fault domain
and has not failed a test, we can refine the fault domain.

If fail 6∈ verdSUT (T ), both inc and pass bring relevant information. We con-
sider a test TT (t , a), and recall that the SUT refines the fault domain FD . If
pass ∈ verdSUT (TT (t , a)), then t ∈ traces [[SUT ]], but t a 〈a〉 6∈ traces [[SUT ]]. Thus,
the fault domain can be updated, since we have more knowledge about the SUT: it
does not have the trace ta 〈a〉. Otherwise, if verdSUT (TT (t , a)) = {inc}, the trace
t was not completely executed, and hence the SUT does not implement t . We can,
therefore, update the fault domain as well.

In both cases, we include in the fault domain knowledge about traces not
implemented. Information about implemented traces is not useful. What we need
to is to refine the fault domain, and, in this way, reduce the set of processes that
can potentially model the behaviour of the SUT. A trace implemented by the SUT
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must be a trace of the fault domain, as otherwise the SUT would not refine the fault
domain, which is in contradiction with the definition of fault domain. Therefore,
given the definition of traces refinement, we cannot use a trace implemented by
the SUT to reduce, that is, refine the fault domain.

On the other hand, for a fault domain FD and trace t , with t 6∈ traces [[SUT ]],
we define a new (refined) fault domain as follows. First, we define a process
NOTTRACE(t), which tracks the execution of each event in t , behaving like the
process RUN (Σ) if the corresponding event of the trace does not happen. The set
Σ contains all possible events, and so RUN (Σ) accepts all possible events; it is the
least refined process from the point of view of traces refinement. If we get to the
end of t , then NOTTRACE(t) prevents its last event from occurring. It, however,
accepts any other event, and, after that, also behaves like RUN (Σ).

NOTTRACE(〈a〉) = ✷ e : Σ \ {a} • e → RUN (Σ)
NOTTRACE(〈a〉a t) = a → NOTTRACE(t)

✷

(✷ e : Σ \ {a} • e → RUN (Σ))

Formally, if the monitored trace is a singleton 〈a〉, then a is blocked by the process
NOTTRACE(〈a〉). It offers in external choice all events except a: those in the set
Σ of all events minus {a}. If such a different event e happens, then 〈a〉 is no longer
possible and the monitor accepts all events. If the monitored trace is 〈a〉 a t , for
a non-empty t , then, if a happens, we monitor t . If a different event e happens,
then 〈a〉a t is no longer possible and the monitor accepts all events.

We notice that NOTTRACE is not defined for the empty trace, which is a
trace of every process, and that, as required, t 6∈ traces [[NOTTRACE(t)]]. On
the other hand, for any trace s that does not have t as a prefix, we have that
s ∈ traces [[NOTTRACE(t)]]. To obtain a refined fault domain FDU (t) that ex-
cludes from a fault domain FD the trace t , we compose FD in parallel with
NOTTRACE(t) synchronising on the set Σ of all events.

FDU (t) = FD |[Σ ]| NOTTRACE(t)

Since the parallelism requires synchronisation on all events, it controls the oc-
currence of events as defined by NOTTRACE(t). So, the fault domain defined by
FDU (t) excludes processes that perform t . We next establish that FD ⊑T FDU (t).

Theorem 5 FD ⊑T FDU (t)

Proof

traces [[FDU (t)]]

= traces [[FD ]] ∩ traces [[NOTTRACE(t)]]

[definition of FDU (t) and of traces [[ ]] for parallelism]

⊆ traces [[FD ]] [property of set intersection (A ∩ B ⊆ A)]

✷

Since t 6∈ traces [[SUT ]] and FD ⊑T SUT , then FDU (t) ⊑T SUT . Thus, we have
FD ⊑T FDU (t) ⊑T SUT . If the fault domain trace refines the specification S , we
have that S ⊑T FDU (t) ⊑T SUT ; thus, we can stop testing, since S ⊑T SUT .
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1: procedure TestGen(S ,FDinit ,SUT )
2: FD := FDinit

3: failed := false

4: TS := ∅
5: while ¬ (S ⊑T FD) ∧ ¬ failed do

6: t := shortest(traces [[FD ]] ∩ traces [[S ]]) \ TS
7: if initials(FD/t) \ initials(S/t) 6= ∅ then

8: Select a ∈ initials(FD/t) \ initials(S/t)
9: verd := Apply(SUT ,TT (t , a))
10: if fail ∈ verd then

11: failed := true

12: else if pass ∈ verd then

13: FD := FDU (FD , t a 〈a〉)
14: else ⊲ that is, verd = {inc}
15: FD := FDU (FD , t)
16: end if

17: else ⊲ that is, initials(FD/t) \ initials(S/t) = ∅
18: TS := TS ∪ {t}
19: end if

20: end while

21: return ¬ failed
22: end procedure

Fig. 1 Procedure for test generation

Based on these ideas, we now introduce a procedure TestGen for test genera-
tion. Its parameters are a specification S , an implementation SUT , and an initial
fault domain FDinit . In the case that there is no special information about the
implementation, the initial fault domain can be simply RUN (Σ).

TestGen uses local variables failed , to record whether a fault has been found
as a result of a test whose execution gives rise to a fail verdict, and FD , to record
the current fault domain. Initially, their values are false and FDinit . A variable
TS records the set of traces for which tests are no longer needed, because all its
forbidden continuations, if any, have already been used for testing.

The procedure loops until it is found that the specification is refined by the
fault domain or a test fails. In each iteration, we select a trace t of both the
specification and the fault domain (line 6 of Figure 1). A test for a trace of the
specification that is not of the fault domain is guaranteed to lead to an inconclusive
verdict, as it is necessarily not implemented by the SUT. This is established below.

Theorem 6 For t ∈ traces [[S ]] \ traces [[FD ]], and any event a, the test TT (t , a) be-

longs to Useless⊑T
(S ,FD).

Proof

t ∈ traces [[S ]] \ traces [[FD ]]

⇒ t /∈ traces [[FD ]] [definition of set difference (\)]

⇒ t /∈ traces [[SUT ]] [FD ⊑T SUT , so traces [[SUT ]] ⊆ traces [[FD ]]]
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⇒ ∀ s : traces [[ExecutionS

SUT (TT (t , a))]] | s 6= 〈〉 • last(s) = inc

[definitions of TT (t , a), ExecutionS

SUT (TT (t , a)), and traces [[ ]]]

⇒ passesT (S ,SUT ,TT (t , a)) [definition of passesT (S ,SUT ,T )]

⇒ TT (t , a) ∈ Useless⊑T
(S ,FD)

[TT (t , a) ∈ ExhaustT (S) and definition of Useless⊑T
(S ,FD)]

✷

Next in the procedure (line 7 of Figure 1), we check whether t has a continuation
that is allowed by the fault domain FD , but is forbidden by S . For a process P with
a trace s, the set initials(P/s) includes the events on which P is ready to engage,
after performing the events in s. If t has a forbidden continuation allowed by FD ,
we choose one of them and record it in a (line 8 of Figure 1). If not, t is not (or no
longer) useful to construct tests, and is added to TS . This is because a forbidden
continuation a that is also forbidden by FD is guaranteed to be forbidden by the
SUT. Thus, testing for a is useless. This is established below.

Theorem 7 For t ∈ traces [[S ]] ∩ traces [[FD ]], and a such that a ∈ Σ \ initials(S/t)
and a /∈ initials(FD/t) \ initials(S/t), the test TT (t , a) belongs to Useless⊑T

(S ,FD).

Proof

t ∈ traces [[S ]] ∩ traces [[FD ]] ∧

a ∈ Σ \ initials(S/t) ∧ a /∈ initials(FD/t) \ initials(S/t)

= t ∈ traces [[S ]] ∩ traces [[FD ]] ∧ a ∈ Σ \ (initials(FD/t) ∪ initials(S/t))

[(A \ B) \ (C \ B) = A \ (B ∪ (C \ B)) = A \ (B ∪ C )]

⇒ t ∈ traces [[FD ]] ∧ a /∈ initials(FD/t) [B ⊆ A ∩ B and B ∩ (A \ B) = ∅]

⇒ t a 〈a〉 /∈ traces [[FD ]] [definitions of traces [[P ]] and initials(P/t)]

⇒ t a 〈a〉 /∈ traces [[SUT ]] [FD ⊑T SUT ]

⇒ ∀ s : traces [[ExecutionS

SUT (TT (t , a))]] | s 6= 〈〉 • last(s) ∈ {inc, passs}

[definition of TT (t , a) and ExecutionS

SUT (TT (t , a))]

⇒ passesT (S ,SUT ,TT (t , a)) [definition of passesT (S ,SUT ,T )]

⇒ TT (t , a) ∈ Useless⊑T
(S ,FD)

[TT (t , a) ∈ ExhaustT (S) and definition of Useless⊑T
(S ,FD)]

✷

In lines 9 to 19 of Figure 1, the resulting test TT (t , a) is used (as defined by
Apply(SUT ,T ) in terms of ExecutionS

SUT (T )) and the resulting set of verdicts verd
is analysed as explained above, leading to an update of the fault domain. The
value returned by the procedure indicates whether the SUT trace refines S or not.
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Example 6 We consider as specification the Counter from Example 1. A few tests
for traces refinement obtained by applying TT (t , a) to the traces t and forbidden
continuations a of Counter are sketched below in order of increasing length.

TT (〈 〉, sub) = pass → sub → fail → STOP

TT (〈add , sub〉, sub) = inc → add → inc → sub → pass → sub → fail → STOP

TT (〈add , add〉, add) = inc→ add → inc→ add → pass → add → fail → STOP

TT (〈add , add , sub, add〉, add) =
inc→add→inc→add→inc→sub→inc→add→pass→add→fail→STOP

TT (〈add , add , sub, sub〉, sub) = . . .

This is, of course, an infinite set, arising from an infinite set of traces. We recall,
however, that there are no tests for a trace that has one more occurrence of add
than sub, since, in such a state, Counter has no forbidden continuations.

The verdicts, of course, depend on the particular SUT; we consider below one
example: SUT = add → add → STOP . We note that, at no point, we use this
knowledge of the SUT to select tests. That knowledge is used just to identify the
result of the tests used in our procedure for illustration purposes.

In considering TestGen(Counter ,SUT ,RUN (Σ)), the first test we execute is
TT (〈〉, sub), whose verdict is pass. So, we have 〈sub〉 6∈ traces [[SUT ]], and the up-
dated fault domain is FD1 = NOTTRACE(〈sub〉) = add → RUN (Σ). The paral-
lelism with the fault domain RUN (Σ) does not change NOTTRACE(〈sub〉).

Counter is not refined by FD1, which after the event add has arbitrary be-
haviour. The next test is TT (〈add , sub〉, sub), whose verdict is inc. Thus, we have
that 〈add , sub〉 6∈ traces [[SUT ]]. Now, the fault domain is FD2 below.

FD2

= FD1 |[Σ ]| NOTTRACE(〈add , sub〉)

= (add → RUN (Σ)) |[Σ ]| (sub → RUN (Σ) ✷ add → add → RUN (Σ))

= add → add → RUN (Σ)

The next test is TT (〈add , add〉, add) with verdict pass. Thus, FD3 is the process
add → add → sub → RUN (Σ). Next, TT (〈add , add , sub, add〉, add) gives verdict
inc, and we get FD4 = add → add → sub → sub → RUN (Σ) when we update
the fault domain. Finally, TT (〈add , add , sub, sub〉, sub) has verdict inc as well. So,
FD5 = add → add → sub → STOP is the new domain. Since Counter ⊑T FD5, the
procedure terminates indicating that SUT is correct. ✷

Our procedure, however, may never terminate. We discuss below some cases where
we can prove that it does, and present a formal proof.

5 Generating test sets: termination

We assume that the set Σ of all events is finite. This is usual and essential for model
checking, for instance. In this setting, a finite specification, that is, a specification
with a finite set of traces is a straightforward case, since traces are themselves
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finite. It suffices to test with each trace and each forbidden continuation; if Σ is
finite, there are finitely many forbidden continuations as well.

Our procedure, however, can still be useful, because useless tests may be ap-
plied if the fault domain is not considered. Our procedure can reduce the number
of tests, which may still be very large in the general case.

In Section 5.1 below, we present a fully formal proof of termination for finite
specifications. In doing so, we bring insight into the design of our procedure and
pinpoint precisely the points where finiteness is required to establish termination.
That proof also establishes that, if the procedure does terminate, it does so with
the right result. This paves the way for us to discuss termination for a finite SUT
in Section 5.2. Finally, in Section 5.3, we explain what needs to be done to achieve
termination for an SUT with an infinite number of traces.

5.1 Finite specification

In our formal proof, we use a refinement calculus [24] and, in particular, adopt the
mathematical notation of Z [37] of the calculus in [10]. This is convenient because
that is the notation used in the formalisation of the CSP testing theory.

What we prove is that the procedure satisfies the following specification.

return : [FDinit ⊑T SUT , return ′ = S ⊑T SUT ]

It specifies the value of a variable return that represents the result, true or false,
returned by the procedure, using a pre and a postcondition. The precondition
FDinit ⊑T SUT simply records that FDinit is indeed a fault domain. The postcon-
dition return ′ = S ⊑T SUT establishes that the final value return ′ of the variable
return indicates whether the SUT is a traces-refinement of the specification S or
not. Final values of variables are denoted using the primed names of the variables.
The variables that can be changed are indicated in the frame: the list of variables
that precedes the pre and postcondition in the specification. In this case, it is just
return; the other variables of the procedure are local.

The proof here shows that the procedure terminates and establishes the post-
condition, changing only return. A proof in a refinement calculus proceeds by
applying algebraic refinement laws, which transform the specification to introduce
the control constructs and assignments of the procedure. Here, the notion of re-
finement is not any of those of CSP, but that for sequential code. In the laws, we
use the standard symbol ⊑. In this context, P1 ⊑ P2 holds when P2 has the same
or a weaker precondition than P1 and the same or a stronger postcondition. So, P2

terminates whenever P1 does and establishes its postcondition. A law application
typically generates a verification condition that must be proved as part of proving
refinement. The laws used here [10] are reproduced in Appendix A for convenience.

The first two refinement laws we apply are the Laws vrbI (variable introduction)
and seqcI (sequential composition introduction), which declare the local variables,
put them in the frame, so that they can be initialised and used, and break the
specification into a sequence of two: the first is for the variable initialisation (lines 2
to 4 of Figure 1), and the second is for the loop and the final assignment (lines 5
to 21 of Figure 1). For that, we need to choose the postcondition of the first
specification, which becomes the precondition of the second.
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Here, we need to use the loop invariant inv defined below. In the postcondition
of the first specification, we use inv ′, to enforce it on the value of the updated
variables. As expected, the initialisation needs to establish the invariant, and the
loop can assume that it holds. The result is shown below.

|[var FD , failed ,TS , tSoFar •

return,FD , failed ,TS , tSoFar : [FDinit ⊑T SUT , inv ′];
return,FD , failed ,TS , tSoFar : [inv , return ′ = S ⊑T SUT ]

]|

We introduce an extra local variable tSoFar to record the tests that have already
been covered in the procedure to facilitate specification and proof. It can be re-
moved from the code because it is never assigned to any other variable.

The definition of the invariant is as follows.

inv =̂

FD ⊑T SUT ∧ failed = (∃T : tSoFar • fail ∈ Apply(SUT ,T )) (1)

∧

tSoFar ⊆ ExhaustT (S) (2)

∧

(∀T : tSoFar • traces [[T ]] /∈ traces [[FD ]] ∨ fail ∈ Apply(SUT ,T ) ∨ traces [[T ]] ∈ TS)

∧ (3)

(∀ t : TS • t ∈ (traces [[FD ]] ∩ traces [[S ]]) ∧ initials(FD/t) \ initials(S/t) = ∅) (4)

∧

¬ (S ⊑T FD) ⇒ (traces [[FD ]] ∩ traces [[S ]]) \ TS 6= ∅ (5)

The invariant establishes that FD is a proper fault domain, that failed records
whether a test T considered so far has failed (1), and essential properties of these
tests. They are all in the exhaustive test set (2), and, moreover, for each such
test T , there are three possibilities: the trace traces [[T ]] used in T has already
been eliminated from the fault domain, it has failed, or it is in TS (3). The role
of TS is explained next (4). It contains the traces of FD and S that do not have
continuations that can be used to construct useful tests (see Theorem 7). Finally,
with (5) the invariant guarantees that, if the specification is not refined by the
fault domain, then there are still tests that can be used (see Theorem 6).

With the Law assigI (assignment introduction), which refines a specification
to an assignment, we justify the initialisation of the local variables as shown in
Figure 1 (lines 2 to 4 of Figure 1). Also, we initialise tSoFar with the set below.

tSoFar := {t : traces [[S ]] \ traces [[FDinit ]]; a | a /∈ initials(S/t) • TT (t , a)}

This assignment to tSoFar along with the other assignments satisfy the invariant.
First of all, we note that, for every t : traces [[S ]]\traces [[FDinit ]] and a /∈ initials(S/t),
the corresponding test TT (t , a) is in the exhaustive test set, and so we have (2).
Moreover, because FDinit ⊑ SUT , every trace of SUT is a trace of FDinit . So, t is
not a trace of SUT , and, therefore, TT (t , a) gives an inconclusive verdict (Theo-
rem 6). This establishes also (1) because failed is assigned false (and FDinit ⊑ SUT ).
In the case of (3), we note that, with the assignment above, the traces of the tests
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TT (t , a) in tSoFar are the traces t : traces [[S ]] \ traces [[FDinit ]] not in FDinit . So,
the first disjunct in (3) always holds. We finally note that, if TS = ∅, then (4) is
trivial, and we know that (traces [[FD ]] ∩ traces [[S ]]) \ TS is not empty because the
empty trace is a trace of every process. So, (5) also holds.

Next, we apply Law fassigI (following assignment) to introduce the assignment
return := ¬ failed at the end (line 21 of Figure 1), to represent the returned value.
This law splits a specification into another specification with the same frame and
precondition, followed by an assignment. The new specification takes into account
the assignment in its postcondition. With that, we are left with the specification
below for the loop, which enforces in the postcondition that the result is ¬ failed .

return,FD , failed ,TS , tSoFar : [inv ,¬ failed ′ = S ⊑T SUT ]

To refine this to a loop, we need to rewrite the postcondition in terms of the invari-
ant and the negation of the loop condition. For that, we use Law sP (strengthen
postcondition). We also apply Law cFR (contract frame) to remove return from the
frame, because this variable is not changed by the loop. The result is as follows.

FD , failed ,TS , tSoFar : [inv , inv ′ ∧ ((S ⊑T FD ′) ∨ failed ′)]

The application of sP requires us to prove that the new postcondition is stronger.
To show that this is the case, we assume inv ′ and we consider each of the two
cases identified in the negation of the loop condition in turn.

If S ⊑T FD ′, then, FD ′ ⊑T SUT from inv ′ (1) gives us S ⊑ SUT , because re-
finement is transitive. From that, the CSP testing theory establishes that the SUT
does not fail any of the tests of the exhaustive test set. Since inv ′ (1) establishes
that failed ′ captures whether any tests in that set have failed so far, failed ′ is false,
and so ¬ failed ′ = S ⊑T SUT . In the case failed ′, on the other hand, inv ′ ((1) and
(2)) establish that there is a test in the exhaustive test set that has failed. This
ensures that ¬ (S ⊑T SUT ). So, again, ¬ failed ′ = S ⊑T SUT .

To apply Law itI (iteration introduction) to introduce the loop, we need to
define a variant vrt for the loop that guarantees that it terminates; we present it
below. It is here, and only here, that we use the fact that S and Σ are finite.

vrt =̂ (#ExhaustT (S) +#traces [[S ]])− (#tSoFar +#TS)

The variant is an expression whose value is decreased every step of a loop, but
never below 0. Here, the number of traces and tests to be considered is bound by
the sizes of the exhaustive test set and of the set of traces of S . We recall that some
of the traces may have no tests, so it is not enough to include the number of tests
to be considered, namely, those in the exhaustive test set, since some iterations of
the loop generate no tests if the trace that is selected has none.

Finiteness of S and Σ ensures that these sets are finite, and so, their sizes are
well defined in #ExhaustT (S)+#traces [[S ]]. As the traces and tests are considered,
they are added to tSoFar or TS , and so, the difference in vrt is decreased at every
step. This difference never goes below 0, because the invariant guarantees that
tSoFar ⊆ ExhaustT (S) with (2) and TS ⊆ traces [[S ]] with (4).

Accordingly, after application of Law itI , we apply also Law sP to simplify
the postcondition of the specification of the loop body and require just that the
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variant is decreased. We obtain the specification below. Its precondition records
the loop condition, which is true at the start of each step of the loop.

while¬ (S ⊑T FD) ∧ ¬ failed do

FD , failed ,TS , tSoFar : [¬ (S ⊑T FD) ∧ ¬ failed ∧ inv , inv ′ ∧ vrt ′ < vrt ]
endwhile

We next use Laws vrbI and seqCI again to introduce and initialise a local variable
t to hold the next trace under consideration (line 6 of Figure 1). Law assigI is
also used to introduce the assignment to t , which is removed from the frame with
Law cfR, because this variable is no longer updated.

|[var t •

t := shortest(traces [[FD ]] ∩ traces [[S ]]) \ TS
FD , failed ,TS , tSoFar : [

¬ (S ⊑T FD) ∧ ¬ failed ∧ inv ∧ t ∈ shortest(traces [[FD ]] ∩ traces [[S ]]) \ TS ,
inv ′ ∧ vrt ′ < vrt ]

]|

With ¬ (S ⊑T FD) in the precondition, the invariant (5) ensures that the assign-
ment to t is well defined because (traces [[FD ]] ∩ traces [[S ]]) \ TS is not empty.

The remaining specification is refined to the outer conditional (lines 7 to 19
of Figure 1) using Law altI (alternation introduction). This law uses Dijkstra’s
notation of guarded commands [12] as usual in refinement calculi, but it is simple
to choose guards to justify a standard conditional as we need. So, the result of
applying Law altI and adapting the notation is as shown below.

if initials(FD/t) \ initials(S/t) 6= ∅ then

FD , failed ,TS , tSoFar : [
initials(FD/t) \ initials(S/t) 6= ∅ ∧

¬ (S ⊑T FD) ∧ ¬ failed ∧ inv ∧ t ∈ shortest(traces [[FD ]] ∩ traces [[S ]]) \ TS ,
inv ′ ∧ vrt ′ < vrt ]

else

FD , failed ,TS , tSoFar : [
initials(FD/t) \ initials(S/t) = ∅ ∧

¬ (S ⊑T FD) ∧ ¬ failed ∧ inv ∧ t ∈ shortest(traces [[FD ]] ∩ traces [[S ]]) \ TS ,
inv ′ ∧ vrt ′ < vrt ]

end if

In each branch of the conditional, we have the original specification, with the
precondition enriched to capture the case covered by that branch.

We first discuss the refinement of the else-branch, which can be tackled with
the Law assigI to introduce the multiple assignment below.

tSoFar ,TS := tSoFar ∪ {b | b /∈ initials(S/t) • TT (t , b)},TS ∪ {t}

A multiple assignment updates the variables in parallel. We recall that tSoFar

is considered just for reasoning and can be eliminated at the end to obtain the
procedure in Figure 1, where just TS is updated (line 18 of Figure 1).

We need to prove that, with this assignment, the invariant is maintained and
the variant is decreased. For the invariant, we consider each conjunct in turn. In
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the case of (1), first of all, FD has not been changed. Second, the precondition
states that ¬ failed . So, we know that there are no failed tests in tSoFar before the
assignment. Moreover, according to the precondition, t ∈ traces [[S ]] ∩ traces [[FD ]]
and the continuations b used to form the new tests T T (t , b) are not in the set
initials(FD/t) \ initials(S/t), since it is empty. So, because the new tests TT (t , b)
are formed from b ∈ Σ \ initials(S/t), then Theorem 7 establishes that they are
useless, and so do not fail either. For (2), the result is simple because t is a trace
of S , according to the precondition, and b is a forbidden continuation.

For (3), we have traces [[TT (t , b)]] = t and t ∈ TS ∪{t}. So the new tests satisfy
the last disjunct. For (4), the concern is just the new trace t added to TS , but the
precondition guarantees that it satisfies the required properties.

Finally, (5) is an important result, because it guarantees that if we have not
refined FD enough to get to a conclusion, then there must be more traces to
generate tests. This is not an obvious result, and we prove it more formally, by
contradiction. We assume that ¬ S ⊑T FD and suppose, by way of contradiction
that (traces [[FD ]] ∩ traces [[S ]]) \ (TS ∪ {t}) = ∅. We can then proceed as follows.

= (traces [[FD ]] ∩ traces [[S ]]) ⊆ (TS ∪ {t}) [A \ B = ∅ ⇔ A ⊆ B ]

⇒ ∀ u : traces [[FD ]] ∩ traces [[S ]] • u ∈ TS ∨ u = t

[u ∈ A ∪ B ⇒ u ∈ A ∨ u ∈ B and u ∈ {t} ⇔ u = t ]

⇒ ∀ u : traces [[FD ]] ∩ traces [[S ]] • initials(FD/u) ⊆ initials(S/u) ∨ u = t

[property of TS from inv (4)]

⇒ ∀ u : traces [[FD ]] ∩ traces [[S ]] • initials(FD/u) ⊆ initials(S/u)

[initials(FD/t) ⊆ initials(S/t) from initials(FD/t) \ initials(S/t) = ∅]

We now have a contradiction, because, as shown below, this allows us to prove
S ⊑T FD , that is, ∀ v : traces [[FD ]] • v ∈ traces [[S ]]. We carry out this proof by
induction on the trace v . For the empty trace, this is trivial, because it is a trace
of every process. For the inductive case va〈a〉 : traces [[FD ]], we proceed as follows.

v a 〈a〉 ∈ traces [[FD ]]

⇒ v ∈ traces [[FD ]] [prefix closure of traces [[P ]], for every P ]

⇒ v ∈ traces [[FD ]] ∩ traces [[S ]] [induction hypothesis]

⇒ initials(FD/v) ⊆ initials(S/v) [result above]

⇒ v a 〈a〉 ∈ traces [[S ]] [v a 〈a〉 ∈ traces [[FD ]]]

As for the variant, we are increasing the size of TS , since the precondition guar-
antees that t /∈ TS . So, the variant is decreased.

Going back to the specification of then-branch above, we follow a similar se-
quence of law applications to introduce the local variables a and verd (Law vrbI )
and their initialisations (Laws seqC and assigI ) in lines 8 and 9 of Figure 1, to be
left with the specification for the inner conditional (lines 10 to 16 of Figure 1).

We use a predicate init below to capture the initialisation. We note that init

records also an update of tSoFar and the property of t . At this stage, we do also
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introduce the assignment tSoFar := tSoFar ∪ {TT (t , a)} for convenience. In init ,
TSF stands for the value of tSoFar before this assignment.

init =̂ a ∈ initials(FD/t) \ initials(S/t) ∧
verd = Apply(SUT ,TT (t , a)) ∧
t ∈ shortest(traces [[FD ]] ∩ traces [[S ]]) \ TS ∧

tSoFar = TSF ∪ {TT (t , a)}

The application of Law seqC leaves us with a specification for the inner condi-
tional (lines 10 to 16 of Figure 1). After contracting its frame to record that we
do not further update a and verd , we obtain the following result.

FD , failed ,TS , tSoFar : [ init ∧ ¬ (S ⊑T FD) ∧ ¬ failed ∧ inv [TSF/tSoFar ],
inv ′ ∧ vrt ′ < vrt [TSF/tSoFar ] ]

The invariant in the precondition and the initial variant now refer to TSF .
To introduce the conditional with three branches, we again use Law altI .

if fail ∈ verd then

FD , failed ,TS , tSoFar : [ fail ∈ verd ∧

init ∧ ¬ (S ⊑T FD) ∧ ¬ failed ∧ inv [TSF/tSoFar ],
inv ′ ∧ vrt ′ < vrt [TSF/tSoFar ] ]

elseif pass ∈ verd then

FD , failed ,TS , tSoFar : [
FD , failed ,TS , tSoFar : [ fail /∈ verd ∧ pass ∈ verd ∧

init ∧ ¬ (S ⊑T FD) ∧ ¬ failed ∧ inv [TSF/tSoFar ],
inv ′ ∧ vrt ′ < vrt [TSF/tSoFar ] ]

elseif pass ∈ verd then

FD , failed ,TS , tSoFar : [
FD , failed ,TS , tSoFar : [ fail /∈ verd ∧ pass /∈ verd ∧

init ∧ ¬ (S ⊑T FD) ∧ ¬ failed ∧ inv [TSF/tSoFar ],
inv ′ ∧ vrt ′ < vrt [TSF/tSoFar ] ]

end if

We now apply Law assigI to each branch to obtain the right assignment. In each
case, we need to prove that the assignment satisfies the postcondition, when the
precondition holds and the other variables are not changed. Basically, we again
have to prove that the invariant is maintained and the variant is decreased.

For the first assignment, failed := true (line 11 of Figure 1), regarding the invari-
ant we need to prove true = ∃T : TSF ∪{TT (t , a)} • fail ∈ Apply(SUT ,T ) because
of (1). This follows from fail ∈ verd in the precondition and verd = Apply(TT (t , a))
in init . Also, because the precondition establishes that the invariant holds for TSF ,
rather than tSoFar , we need to prove (2) and (3) for tSoFar = TSF ∪ {TT (t , a)}.
TSF already satisfies these properties. So, we focus on the extra test TT (t , a). We
have (2) because, according to init , we can conclude that t is a trace of S , and a

is one of its forbidden continuations. For (3), again init and fail ∈ verd gives us
fail ∈ Apply(SUT ,TT (t , a)), the second disjunct. Since (4) and (5) do not involve
failed or tSoFar , they follow from the invariant in the precondition.

For the variant, we show that #tSoFar > #TSF , by showing TT (t , a) /∈ TSF .
From the precondition, we know that ¬ failed , so (1) in inv [TSF/tSoFar ] gives that
all tests in TSF do not fail. Since init and the precondition give us that TT (t , a)
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has failed, then we get the required conclusion. So, the value of vrt ′, namely,
(#ExhaustT (S)+#traces [[S ]])− (#tSoFar +#TS), because the only changed vari-
able is failed , is smaller than (#ExhaustT (S) +#traces [[S ]])− (#TSF +#TS).

For the assignment FD := FDU (FD , t a 〈a〉) (line 13 of Figure 1), regarding
the invariant, we need to establish FDU (FD , t a 〈a〉) ⊑T SUT because of (1).
Since pass ∈ verd ensures that t a 〈a〉 is not a trace of the SUT, this follows
from Theorem 5 as explained in the previous section. For (1), the precondition
gives failed = false, and so we need ¬ ∃T : tSoFar • fail ∈ Apply(SUT ,T ). This
follows from failed = false = ∃T : TSF • fail ∈ Apply(SUT ,T ) in inv [TSF/tSoFar ],
since init establishes tSoFar = TSF ∪ {TT (t , a)} and the precondition guarantees
that TT (t , a) does not fail. In the case of (2), the argument is as for the previous
assignment. By Theorem 5, we know FDU (FD , t a 〈a〉) has fewer traces than FD ,
so (3) for FDU (FD , t a 〈a〉) is simple: it follows from (3) in inv .

Proof of (4) and (5) is not trivial, and provides insight as to why update of the
fault domain does not affect the essential properties of TS . We tackle them more
formally. For (4), we first establish the following, where we use ≤ for trace prefix.

t a 〈a〉 /∈ traces [[S ]] [from init : a /∈ initials(S/t)]

⇒ {s | t a 〈a〉 ≤ s} ∩ traces [[S ]] = ∅ [prefix closure of traces [[S ]]]

⇒ {s | t a 〈a〉 ≤ s} ∩ TS = ∅ [property of TS in inv (4): TS ⊆ traces [[S ]]]

⇒ ∀ t : TS • t /∈ {s | t a 〈a〉 ≤ s} [A ∩ B = ∅ implies ∀ t : B • t /∈ A]

⇒ ∀ t : TS • t /∈ {s | t a 〈a〉 ≤ s} ∧ t ∈ traces [[FD ]]

[property of TS in inv (4): TS ⊆ traces [[FD ]]]

⇒ ∀ t : TS • t ∈ traces [[FDU (FD , t a 〈a〉)]] [definition of FDU (FD , t a 〈a〉)]

This is the first conjunct of (4) that we need. For the second conjunct, we can
establish the property of initials(FDU (FD , t a 〈a〉)/t) as follows.

∀ t : traces [[FDU (FD , t a 〈a〉)]] • initials(FDU (FD , t a 〈a〉)/t) ⊆ initials(FD/t)

[since FD ⊑T FDU (FD , t a 〈a〉)]

⇒ ∀ t : traces [[FDU (FD , t a 〈a〉)]] • initials(FD/t) \ initials(S/t) = ∅ ⇒

initials(FDU (FD , t a 〈a〉)/t) \ initials(S/t) = ∅

[A ⊆ B and B \ C = ∅ imply A \ C = ∅]

So, we get the required result because the conjunct (4) of the invariant in the
precondition ensures initials(FD/t) \ initials(S/t) = ∅.

For (5), we note that since t a 〈a〉 /∈ traces [[S ]], none of the extensions of these
traces are in traces [[S ]] either. These are the traces removed from the fault domain
FDU (FD , ta〈a〉). So, traces [[FDU (FD , ta〈a〉)]]∩traces [[S ]] = traces [[FD ]]∩traces [[S ]].
So, the conjunct (5) of the invariant in the precondition ensures that removing TS

from this set does not make it empty as required.
For the variant, we again show that #tSoFar > #TSF because TT (t , a) /∈ TSF

and tSoFar = TSF ∪ TT (t , a). With that, as for the previous assignment, we
establish that the variant is decreased. Again, since none of the variables that
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occur in the variant are assigned to, we need to show that vrt < vrt [TSF/tSoFar ]
and recall that vrt is (#ExhaustT (S) +#traces [[S ]])− (#tSoFar +#TS).

Here, we use (3) from inv [TSF/tSoFar ] in the precondition and establish that
TT (t , a) does not satisfy any of the identified properties of the elements of TSF
as follows. From init , we get t ∈ traces [[FD ]] and t /∈ TS ; from init and the pre-
condition (verd = Apply(SUT ,TT (t , a)) and fail /∈ verd ∧ pass ∈ verd), we get that
TT (t , a) has passed. So, TT (t , a) cannot be in TSF .

For the last assignment (line 15 of Figure 1), we introduce an assignment to
tSoFar as well as shown in the multiple assignment below.

tSoFar ,FD := tSoFar ∪ {b | b /∈ initials(S/t) • TT (t , b)},FDU (FD , t)

Proof requires us to establish FDU (FD , t) ⊑T SUT . Since neither fail or pass is in
verd , then the verdict is inc, which ensures that t is not a trace of the SUT. So,
the refinement follows from Theorem 5 as explained for the previous assignment.
For (1), we also need that failed = false is equivalent to

∃T : tSoFar ∪ {b | b /∈ initials(S/t) • TT (t , b)} • fail ∈ Apply(SUT ,T )

This follows for tSoFar as explained above for the previous assignment. For the
new tests in {b | b /∈ initials(S/t) • TT (t , b)}, we note that t is not a trace of SUT ,
so all of their verdicts is inc, just like for TT (t , a). In the case of (2), because the
precondition ensures that t ∈ traces [[S ]], we can conclude that the new tests are in
the exhaustive test set. For (3), the argument is as for the previous assignment,
but we also need to consider the new tests in {b | b /∈ initials(S/t) • TT (t , b)} now
added no tSoFar . Their traces are all t , which does not belong to FDU (FD , t), so
they all satisfy the first disjunct in the quantification. The proofs for (4) and (5)
are very similar to those presented above for the previous assignment.

For the variant, the same argument used for the previous assignment applies.
In this case, the test TT (t , a) does not pass: init and the precondition mean that
it is inconclusive, but what matters is that it does not fail.

To complete, we note that there is no assignment of an expression depending on
tSoFar to any other variable. So, it is what is technically called in refinement calculi
an auxiliary variable, and can be eliminated from the code that we have proved
correct. After this elimination, the code we obtain is exactly that in Figure 1. This
establishes that it is correct, and terminates whenever ExhaustT (S) and traces [[S ]]
are finite. For ExhaustT (S), it follows from finiteness of Σ and traces [[S ]] itself.

5.2 Finite SUT

The proof in the previous section establishes that our procedure gives the correct
result if it terminates, and that it terminates if the specification is finite. We now
discuss a scenario where the specification is not finite, but the SUT is.

We note, first of all, that if the SUT is incorrect, that is, it does not trace refine
the specification, the procedure always terminates. The fact that, in this case, it
returns false is a correctness issue already addressed in the previous section. In
the sequel, we denote by pref (t) all prefixes of t , that is, pref (t) = {s : Σ∗ | s ≤ t}.

Theorem 1 If ¬ (S ⊑T SUT ), then TestGen(S ,FDinit ,SUT ) terminates (and re-

turns false), for any fault domain FDinit .
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Proof By ¬ (S ⊑T SUT ), there exists a trace s ∈ traces [[SUT ]] \ traces [[S ]]. We
let t be the longest prefix of s that is a trace of S , that is, the longest trace in
pref (s) ∩ traces [[S ]], which gives rise to the shortest test that reveals an invalid
prefix of s. We let a be such that t a 〈a〉 ∈ traces [[SUT ]] \ traces [[S ]]. We know that
a is a forbidden continuation of t , since t ∈ traces [[S ]], but t a 〈a〉 /∈ traces [[S ]].
Moreover, since traces [[SUT ]] ⊆ traces [[FD ]], it follows that t a 〈a〉 ∈ traces [[FD ]]
because ta 〈a〉 ∈ traces [[SUT ]]. Hence a ∈ initials(FD/t)\ initials(S/t). Thus, there
exists a test TT (t , a) which, when applied to the SUT produces a fail verdict.

Since t is the longest trace in pref (s)∩ traces [[S ]], tests generated for any prefix
of t do not exclude t from the traces of the updated fault domain. Moreover, the
event a remains in initials(FD/t) \ initials(S/t), since no tests for traces longer
than t are applied before t . Therefore, the test TT (t , a) is applied (unless a test
for a trace of the same length of t is applied and the verdict is fail , in which case
the result also follows). In this case, TestGen(S ,FDinit ,SUT ) assigns true to the
variable failed , since the verdict is fail and terminates with ¬ failed , that is, false.
✷

Based on this result, next we consider only the case when the SUT is finite and
correct. For some specifications, like the Counter from Example 1 the procedure
terminates, but not for all specifications as illustrated below.

Example 7 We consider the specification

UNBOUNDED = a → UNBOUNDED ✷ b → STOP

the initial fault domain FDinit = RUN (Σ), where Σ = {a, b}, and the SUT STOP .
In TestGen(UNBOUNDED ,SUT ,RUN (Σ)), the first trace we choose is 〈〉, for
which there is no forbidden continuation, and so, no test. The next trace is 〈a〉,
for which again there is no forbidden continuation. For 〈b〉, the events a and b are
forbidden continuations; TT (〈b〉, a) results in an inc verdict. Thus, the fault do-
main is updated to FD1 = FDU (FDinit , 〈b〉) = NOTTRACE(〈b〉) = a → RUN (Σ).
As expected, 〈b〉 is not a trace of the fault domain anymore and no further tests
are generated for it: it is never again selected in line 6 of Figure 1.

The next trace we select is 〈a, a〉, for which there is no forbidden continua-
tion. We then select 〈a, b〉, with forbidden continuations a and b. TT (〈a, b〉, a) is
executed with an inc verdict. The next fault domain is FD2 = FDU (FD1, 〈a, b〉).

FD2 = FD1 |[Σ ]| NOTTRACE(〈a, b〉)

= (a → RUN (Σ)) |[Σ ]| (b → RUN (Σ) ✷ a → a → RUN (Σ))

= a → a → RUN (Σ)

If we proceed, we observe that the refined fault domains are always of the form

a → a → ... → a → RUN (Σ)

This is because there is no test generated for a trace 〈a〉k , for k ≥ 0. So, the
procedure does not terminate. This happens for any correct SUT with respect to
the specification UNBOUNDED . For an incorrect SUT , as proved in Theorem 1,
the procedure terminates. ✷

In the next example, we illustrate a situation where the procedure does terminate.

23



Example 8 We now consider Counter from Example 1 and explain why our proce-
dure terminates for its correct finite implementations.

First, we recall that our procedure uses traces of increasing length for deriving
and applying tests (line 6 of Figure 1). For a finite SUT , there is a k such that all
traces of the SUT are shorter than k . We consider a trace t ∈ traces [[Counter ]] of
length k . There are then three possibilities for the process Counter/t .

Two possibilities are Counter/t = Counter or Counter/t = Counter2, in which
case we have initials(Counter/t) 6= Σ and, thus, there is a test TT (t , a) for a
forbidden sub or add . The verdict for this test is inc because the SUT has no trace
of the length of t and the fault domain is updated to remove t (line 15 of Figure 1)
from it and, thus, exclude t as a possible trace of the SUT .

If Counter/t = Counter1, we have that initials(Counter/t) = Σ and no test can
be derived from t . However, for each trace s, such that t a s ∈ traces [[Counter ]],
s starts with either add or sub. In either case, a test will be generated, since
Counter/t a 〈add〉 = Counter2 and Counter/t a 〈sub〉 = Counter1, for which there
are tests, as explained above. For those tests, the verdict is inc, the fault domain
is similarly updated, and the traces t a 〈add〉 and t a 〈sub〉 are removed.

Eventually, the set of traces extending t that remain in the fault domain is
empty. More formally, in terms of the loop invariant, (traces [[FD ]]∩traces [[S ]])\ = ∅,
and so according to (5), we get S ⊑T FD , and the procedure terminates.

The fact that t for which Counter/t = Counter1 cannot be arbitrarily extended
just to traces without tests is the key property required for the procedure to
terminate. For some specifications, like UNBOUNDED , there may be no tests for
an unboundedly long trace. In this case, a correct SUT does not fail and, in spite
of this, no test is applied that prunes the fault domain. ✷

To characterise the above termination scenario, we introduce some notation.

For traces r and t such that r ≤ t , there exists s such that ra s = t . A prefix is
proper, denoted r < t , if s 6= 〈〉. We say that t is a (proper) suffix of r if, and only
if, r is a (proper) prefix of t . We denote by ppref (t) the set of all proper prefixes
of t , that is, ppref (t) = pref (t) \ {t}. Similarly, suff (t) is the set of all suffixes of t .

For a process S and k ≥ 0, we define the set traces [[S ]]
k
of the traces of S

of length k . Formally, traces [[S ]]
k

= {t : traces [[S ]] | #t = k}. Another subset
hfc(S ,FD) of traces of S includes those for which there is at least one forbidden
continuation that takes into account the fault domain.

hfc(S ,FD) = {t : traces [[S ]] | initials(FD/t) \ initials(S/t) 6= ∅}

Importantly, for each t ∈ hfc(S ,FD), there exists at least one test TT (t , a) for a
forbidden continuation a that is allowed by the fault domain. Finally, given a set
of traces Q , we denote by minimals(Q) the set of traces of Q that are not a proper
prefix of another trace in Q . Formally, minimals(Q) = {t : Q | ¬ ∃ s : Q • t < s}.

We use hfc(S ,FD) to define conditions for termination of our procedure. They
are identified in the theorem below, whose proof justifies termination.

Theorem 2 For a specification S, fault domain FDinit , and finite SUT, if, for any

finite set of traces P ⊆ traces [[S ]], there is a k ≥ 0, such that, for each r ∈ traces [[S ]]
k
,

there is a prefix of r that is not in P and has a forbidden continuation, that is,

((pref (r) \ P) ∩ hfc(S ,FDinit )) 6= ∅, then TestGen(S ,FDinit ,SUT ) terminates.
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Proof If ¬ (S ⊑T SUT ), by Theorem 1, the procedure terminates. We, therefore,
assume that S ⊑T SUT , and so traces [[SUT ]] ⊆ traces [[S ]].

We let k ≥ 0 be such that, for each r ∈ traces [[S ]]
k
, we have

((pref (r) \ traces [[SUT ]]) ∩ hfc(S ,FDinit )) 6= ∅

This k is larger than the size of the largest trace of SUT , since otherwise, if
r ∈ traces [[SUT ]], then pref (r) \ traces [[SUT ]] is empty, and, therefore, so is the
intersection above. We note that such a k exists because traces [[SUT ]] is finite.

Let now Q = (pref (traces [[S ]]
k
) \ traces [[SUT ]]) ∩ hfc(S ,FDinit ) and also let

M = minimals(Q). Let p ∈ traces [[SUT ]]. Let r ∈ traces [[S ]]
k
be such that p ≤ r .

There is at least one s ∈ pref (r) such that p ≤ s and s ∈ hfc(S ,FDinit ) because
((pref (r) \ traces [[SUT ]]) ∩ hfc(S ,FDinit )) 6= ∅. Without loss of generality, assume
that s is the shortest such a trace. Thus, s ∈ M and p ∈ pref (M ), since p ≤ s. It
follows that traces [[SUT ]] ⊆ pref (M ) since p is arbitrary.

For each t ∈ M , there exists at least a ∈ initials(FDinit/t) \ initials(S/t), since
t ∈ hfc(S ,FDinit ). Therefore, if the test TT (t , a) is applied to the SUT , the verdict
is inc, since t 6∈ traces [[SUT ]] because t ∈ M ⊆ Q and Q ∩ traces [[SUT ]] = ∅. In this
case, the fault domain is updated to remove t from it.

If all tests derived for each t ∈ M are applied, we obtain a fault domain FD such
that traces [[FD ]] ⊆ pref (M ). As all traces in M have length at most k , eventually,
all traces in M are selected (unless the procedure has already terminated) and the
tests derived for those traces are applied. Since

pref (M ) ⊆ Q ⊆ hfc(S ,FDinit ) ⊆ traces [[S ]]

then traces [[FD ]] ⊆ traces [[S ]], that is, S ⊑T SUT . TestGen(S ,FDinit ,SUT ) then
terminates, with failed = false, and the result is true. ✷

One scenario where the conditions in Theorem 2 hold is if there is an event in
the alphabet that is not used in the model. In this case, that event is always a
forbidden continuation and thus a test is generated for all traces. Even though this
can be rarely the case for a specification at hand, the alphabet can be augmented
with a special event for that purpose, guaranteeing that the procedure terminates.
Such an event would act as a probe event. As said before, in practice, it is best to
avoid probes since the tests that they induce can reveal no faults.

5.3 Infinite SUT

In the cases that we have considered so far, the number of traces of the specification
or of the SUT is finite. These scenarios are relevant in practice, when systems have
a set of paths leading from initiation to a conclusion. Most systems, however, do
have an infinite behavior and thus an infinite set of traces.

There are some approaches to deal with this situation, all of them rendering
the set of processes in the fault domain finite. For instance, the complexity of the
SUT processes can be somehow constrained, limiting the number of states they
may have. This is what is done in classical fault-domain testing from Finite State
Machines, when the SUT is assumed to have a maximum number of states. Albeit
interesting, as previously said, the correlation between the states and the traces
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1: procedure TestGen(S ,FDinit ,SUT )
2: FD := FDinit

3: failed := false

4: TS := ∅
5: while ¬ (S ⊑T FD) ∧ ¬ failed ∧ (traces [[FD ]]

k
∩ traces [[S ]]

k
) \ TS 6= ∅ do

6: t := shortest(traces [[FD ]] ∩ traces [[S ]]) \ TS
7: if initials(FD/t) \ initials(S/t) 6= ∅ then

8: Select a ∈ initials(FD/t) \ initials(S/t)
9: verd := Apply(SUT ,TT (t , a))
10: if fail ∈ verd then

11: failed := true

12: else if pass ∈ verd then

13: FD := FDU (FD , t a 〈a〉)
14: else ⊲ that is, verd = {inc}
15: FD := FDU (FD , t)
16: end if

17: else ⊲ that is, initials(FD/t) \ initials(S/t) = ∅
18: TS := TS ∪ {t}
19: end if

20: end while

21: return ¬ failed
22: end procedure

Fig. 2 Modified procedure for test generation.

of a CSP process is not trivial. So, this approach cannot be easily integrated with
our procedure without resorting to low-level representations of CSP processes.

Another approach that is usually employed to render the test activity always
finite is to set an upper bound on the length of traces considered during the test.
Similar solutions have been used in [6] and [36] for limiting the tests by setting
the maximum length of the trace in the test. We observe that this approach is
usual, but is indeed a tradeoff between completeness and finiteness; while the test
execution is now always finite (provided that the event alphabet is finite), the pass
verdict is only a partial answer that should be read as correct up that trace length.
Further conclusions depend on a regularity hypothesis [16].

In the procedure, the adjustment to be done is in the loop condition in line 5 of
Figure 2. If k is the maximum length of the traces to be used for test generation,
the loop condition in the procedure should then be changed as indicated in 2.

In revisiting the proof in Section 5.1, it can proceed in much the same way, with
the size of the set (traces [[FD ]]

k
∩ traces [[S ]]

k
)\TS as the variant. The specification,

however, needs to be modified. We can, for example, add a precondition that states
that all traces of the SUT that have more than k elements are in the specification.
This is, in some sense, a way of restricting the fault domain.

6 Tool support and case studies

We have developed a prototype tool that implements our procedure. It and all
examples presented here are available at www.github.com/adenilso/CSP-FD-TGen.

The tasks related to the manipulation of the CSP model, such as checking
refinement, computing forbidden continuations, determining verdicts, and so on,
are handled by FDR. The tool is implemented in Ruby. It submits queries (assert
clauses) to FDR and parses FDR’s results in order to perform the computations
required by the procedure. Specifically, FDR is used in three points:
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1. Checking whether the specification refines the fault domain (line 5 in Figure 2).
This is a straightforward refinement check in FDR.

2. Computing forbidden continuations (lines 7 and 8 in Figure 2). For instance, to
compute the forbidden continuations of a process S after a trace t , that is, the
complement of initials(S/t), we invoke FDR to check S ⊑T TTHENANY (t),
where S is compared to the process TTHENANY (t) that performs t and then
any event e from the whole set of events Σ. It is defined as follows.

TTHENANY (〈〉) = ✷ e : Σ • e → STOP

TTHENANY (〈a〉a t) = a → TTHENANY (t)

If t is a trace of S , counterexamples to this refinement check provide traces
t a 〈e〉, where e is not in the set initials(S/t).

3. Computing initials (lines 7 and 8 in Figure 2). We use the same check above, but
obtain initials(S/t) by collecting the events in Σ for which no counterexample
exists. It is just the complement of the set we obtain, since we want the initials,
rather than the forbidden continuations.

We have carried out two significant case studies, the Transputer-based sensor for
autonomous vehicles in [30], and the Emergency Response System (ERS) in [2].
The sensor is part of an architecture where each sensor is associated with a Trans-
puter for local processing and can be part of a network of sensors. Its CSP model1

has 14 channels and six process definitions.
The ERS allows members of the public to identify incidents requiring emer-

gency response; it is a system of operationally independent systems (a Phone
System, a Call Center, an Emergency Response Unit, and so on). The ERS en-
sures that every call is sent to the correct target. It is used in [25] to assess the
deadlock detection of a prototype model checker for Circus [8], a combination of
CSP and Z [37]. The CSP model of the ERS2 has 15 channels and 29 processes.

For each case study, we have randomly generated 1000 finite SUTs. The exper-
imental results confirm that all incorrect SUTs are identified and the procedure
terminates for all finite SUTs identified in Theorem 2. The CSP model for the sen-
sor, the ERS, and other examples are in www.github.com/adenilso/CSP-FD-TGen.
The data for the SUTs used in these case studies are also available.

We have measured the effort of generating and executing the tests for our case
studies. Most of the time is consumed by the invocations of FDR for the tasks
enumerated above. In Figure 3, we show the relation between the number of test
cases executed and the number of FDR invocations for each case study. In Figure 4,
we present the execution time variation related to the number of test cases. From
both figures, we can conclude that the main component of the execution time is
the invocation of the FDR tool. In the case studies, both the execution time and
the number of invocation grows linearly with the number of test cases.

We have also run the tool with a set of small examples to assess the expected
execution time of the tool. The examples have been collected from [33], and illus-
trate many aspects of CSP operators. In all cases, again 1000 mutants have been
generated and tested. The verdict was correct in every case. We can observe that,
even though some executions took almost one minute to complete, the average

1 Available at github.com/adenilso/CSP-FD-TGen/blob/master/case-studies/robot.csp.
2 Available at github.com/adenilso/CSP-FD-TGen/blob/master/case-studies/ers.csp.
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ERS Autonomous Vehicles

Fig. 3 Number of Test Cases versus Number of Invocations to FDR

ERS Autonomous Vehicles

Fig. 4 Number of Test Cases versus Execution Time

Example Short Description Average Time Max Time Max. Num.
(Seconds) (Seconds) Test Cases

Counter Running Example 0.89 47.91 9
Cross Train Gate Control 0.87 33.39 19
Pump Gas Dispenser Simulation 1.24 42.17 58
Purchase Simple Transaction Simulation 0.96 50.02 33
Shopping Security Control Simulation 0.82 70.13 27

Table 1 Time Execution and Test Cases for Case Studies.

execution time is about one second or less (See 1). All examples and respective
mutants are also available in the above mentioned repository.
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7 Conclusions

In this paper, we have investigated how fault domains can be used to guide test
generation from CSP models. We have cast core notions of fault-domain testing
in the context of the CSP testing theory. For testing for traces refinement, we
have presented a procedure which, given a specification and a fault domain, it
tests whether an SUT trace refines the fault domain. If the SUT is incorrect, the
procedure selects a test that can reveal the fault. In the case of a correct SUT, we
have stated conditions that guarantee that the procedure terminates.

There are specifications for which the procedure does not terminate. We pos-
tulate that for those specifications, there is no finite set of tests that is able to
demonstrate the correctness of the SUT. Finiteness requires extra assumptions
about the SUT. We plan to investigate this point further in future work.

The CSP testing theory also includes tests for conf , a conformance relation that
deals with forbidden deadlocks; together, tests for conf and traces refinement can
be used to establish failures refinement. Another interesting failures-based confor-
mance relation for testing from CSP models takes into account the asymmetry of
controllability of inputs and outputs in the interaction with the SUT [7]. The mo-
tivation is exactly work with testing. It is worth investigating how fault domains
can be used to generate finite test sets for these notions of conformance; conf , and,
therefore, failures refinement, and input-output failures refinement.

Extra experiments with the use of the procedure are also of interest to establish
scalability, and help identify complementary test-selection criteria. For that, we
need to optimise the prototype. Currently, it calls FDR many times from scratch.
As a future optimization, we will incorporate the caching of the internal results of
the FDR, to speed up posterior invocations with the same model.

A Refinement laws

Law altI Alternation introduction

w : [pre, post ]

⊑ altI

if i • gi & w : [gi ∧ pre, post ] fi

provided pre ⇒ (
∨

i • gi )

Syntactic Restrictions

– Each gi is a well-scoped predicate;
– No gi has free dashed variables;
– { i • gi } is non-empty.
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Law assigI Assignment introduction

w ,VCL : [pre, post ]

⊑ assigI

VCL := el

provided pre ⇒ post [el/vl ′][ /′]

Syntactic Restrictions

– vl contains no duplicated variables;
– vl and el have the same length;
– el is well-scoped and well-typed;
– el has no free dashed variables;
– The corresponding variables of vl and expressions of el have the same type.

Law cfR Contract frame

w , x : [pre, post ]

⊑ cfR

x : [pre, post [w/w ′] ]

Syntactic Restriction The variables of w are not in x .

Law fassigI Following assignment introduction

w ,VCL : [pre, post ]

⊑ fassigI

w ,VCL : [pre, post [el [w ′, vl ′/w ,VCL]/VCL′] ] ; VCL := el

Syntactic Restrictions

– vl contains no duplicated variables;
– vl and el have the same length;
– el is well-scoped and well-typed;
– el has no free dashed variables;
– The corresponding variables of vl and expressions of el have the same type.

Law itI Iteration introduction

w : [inv , inv [w ′/w ] ∧ ¬ (
∨

i • gi [w
′/w ])]

⊑ itI

do i • gi & w : [inv ∧ gi , inv [w
′/w ] ∧ 0 ≤ vrt [w ′/w ] < vrt ] od

Syntactic Restrictions

– vrt is a well-scoped and well-typed integer;
– Each gi and vrt have no free dashed variables. expression.

30



Law vrbI Variable introduction

w : [pre, post ]

= vrbI

|[var dvl • VCL,w : [pre, post ] ]|

where dvl declares the variables of vl .

Syntactic Restrictions

– dvl is well-scoped and well-typed;
– The variables of vl and vl ′ are not free in w : [pre, post ] and are not dashed.

Law seqcI Sequential composition introduction

w , x : [pre, post ]

⊑ seqcI

w : [pre,mid [w ′/w ] ] ; w , x : [mid , post ]

Syntactic Restrictions

– mid is well-scoped and well-typed;
– mid has no free dashed variables;
– No free variable of post is in w .

Law seqcI Sequential composition introduction

w , x , y!, z ! : [pre, post ]

⊑ seqcI

|[ con dcl • w , y! : [pre,mid ] ; w , x , y!, z ! : [mid [cl/w ][ /′], post [cl/w ] ] ]|

where dcl declares the constants of cl .

Syntactic Restrictions

– mid is well-scoped and well-typed;
– The names of cl and cl ′ are not free in mid and w , x , y!, z ! : [pre, post ];
– cl and w have the same length;
– The constants of cl have the same type as the corresponding variables of w .

Law sP Strengthen postcondition

w : [pre, post ]

⊑ sP

w : [pre,npost ]

provided pre ∧ npost ⇒ post

Syntactic Restriction npost is well-scoped and well-typed.
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