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ABSTRACT:   
Background: Mapping is an increasingly common method used to predict instrument-specific 

preference-based health state utility values (HSUVs) from data obtained from another health-related 

quality of life (HRQoL) measure.  There have been several methodological developments in this area 

since a previous review up to 2007.  

Objective: To provide an updated review of all mapping studies that map from HRQoL measures to 

target generic preference-based measures (EQ-5D measures, SF-6D, HUI measures, QWB, AQoL 

measures, 15D/16D/17D, CHU-9D) published from January 2007 to October 2018.  

Data Sources: A systematic review of English language articles using a variety of approaches: 

searching electronic and utilities databases, citation searching, targeted journal and website searches.   

Study selection: Full papers of studies that mapped from one health measure to a target preference-

based measure using formal statistical regression techniques. 

Data extraction: Undertaken by 4 authors using predefined data fields including measures, data used, 

econometric models and assessment of predictive ability. 

Results: There were 180 papers with 233 mapping functions in total. Mapping functions were generated 

to obtain EQ-5D-3L/EQ-5D-5L-EQ-5D-Y (n=147), SF-6D (n=45), AQoL-4D/AQoL-8D (n=12), 

HUI2/HUI3 (n=13), 15D (n=8) CHU-9D (n=4) and QWB-SA (n=4) HSUVs. A large number of different 

regression methods were used with ordinary least squares (OLS) still being the most common 

approach (used ≥75% times within each preference-based measure). The majority of studies assessed 

the predictive ability of the mapping functions using mean absolute or root mean squared errors 

(n=192, 82%), but this was lower when considering errors across different categories of severity (n=92, 

39%) and plots of predictions (n=120, 52%). 

Conclusions: The last 10 years has seen a substantial increase in the number of mapping studies and 

some evidence of advancement in methods with consideration of models beyond OLS and greater 

reporting of predictive ability of mapping functions. 
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Key points for decision-makers  

 Mapping or cross-walking enables utility values to be generated from other health related quality 

of life measures in studies where the preferred preference-based measure has not been used 

 This updated review shows that compared to 10 years ago, there are now many mapping 

functions (n=233 across 180 published studies) which can be used to generate utility values 

from a large number of measures with the majority being to EQ-5D-3L 

 Mapping studies now report important information that enable decision-makers to better 

understand and interpret mapped utility estimates, but mapping remains a second-best 

alternative to using the preference-based measures directly 
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1 INTRODUCTION 
Resource allocation decisions in healthcare are frequently informed by Health Technology Assessment 

(HTA) using cost-effectiveness analysis where benefits are measured using quality adjusted life years 

(QALYs). QALYs are a measure that combine both health-related quality (HRQoL) and quantity of life, 

and can be used across patient groups and interventions, reflecting both changes in HRQoL and life 

expectancy. QALYs are generated by multiplying a quality adjustment weight (health state utility value 

(HSUV)) for health by duration, where the HSUV is often measured using a preference-based measure 

(PBM).  

 

PBMs are made up of a descriptive system which describes HRQoL based on dimensions such as 

physical functioning, pain, social functioning and emotional functioning and with severity levels within 

each dimension. This allows HRQoL to be classified using a combination of the dimensions and 

severity levels in each dimension. For example, EQ-5D-3L has 5 dimensions (mobility, self-care, usual 

activities, pain/discomfort, anxiety/depression) each with 3 levels of severity (none, moderate, severe) 

which results in 243 health states that can be used to describe HRQoL [1]. Descriptive systems for 

PBMs have a HSUV on a 0 (dead) to 1 (full health) scale, with some measures having negative values 

for health states considered to be worse than dead. The HSUVs are usually derived from representative 

members of the general public who complete a preference elicitation task such as time trade off (TTO) 

or standard gamble (SG) to generate a value set. Patients complete the PBM and the value set is then 

applied to their responses to generate HSUVs.  

 

Generic PBMs can be used across different conditions while condition-specific PBMs are specific to a 

condition [2]. The focus here is on generic PBMs. There are a number of generic PBMs, with the most 

common used being the EQ-5D-3L [3], though there is a new 5 level version, the EQ-5D-5L [1]. The 

other measures include the SF-6D [4, 5], the Health Utilities Index  (HUI2 [6] and HUI3 [7]), the 

Assessment of Quality of Life measures (AQoL-4D, AQoL-6D and AQoL-8D) [8], the 15D [9], and the 

Quality of Wellbeing-Self Administered (QWB-SA) [10]. The majority of PBMs are adult measures 

although there are child or adolescent versions: 16D and 17D [11, 12] and EQ-5D-Y [13]; while AQoL-

6D has been adapted for use in adolescent populations [14]. HUI2 was originally designed for children 

and the original version of QWB-SA was tested in both adult and children populations [15]. The Child 

Health Utility 9 dimensions (CHU-9D) is another generic measure developed specifically for use in 

children [16].  

 

PBMs vary with respect to the descriptive systems and the value sets. International agencies that 

review HTA evidence to inform resource allocation decisions often recommend the use of a particular 

PBM to generate QALYs [17]. For example, the National Institute for Health and Care Excellence 

(NICE) recommend that EQ-5D-3L is used in England [18] and the National Health Care Institute 

(Zorginstituut (ZIN)) recommends the EQ-5D-5L in the Netherlands [19]. Furthermore, many 

international agencies recommend that PBMs are scored using their own country value set, for example 
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the Pharmaceutical Benefits Advisory Committee (PBAC) in Australia recommend that HSUVs are 

generated using Australian general population preference weights [20], and the same requirement is 

also recommended for France [21], the Netherlands [22], Spain [23], England [18] and Canada [24]. 

However, many clinical effectiveness studies that are used to inform HTA either do not include PBMs, 

or do not include the PBM that is preferred by the target reimbursement authority. This has led to a 

rapid increase in the number of mapping papers published in recent years that estimate functions to 

predict HSUVs.  

 

A mapping function is a prediction equation that is generated using the statistical relationship between a 

measure, referred to as the start measure which is used in the study of interest and a target PBM (e.g. 

EQ-5D-3L), estimated using regression analyses [25, 26]. The mapping function is then applied in the 

study of interest to predict the target PBM, where the target PBM has not been administered directly. 

There are a number of considerations when undertaking mapping (see for example Longworth and 

Rowen [25], Wailoo et al [27] and Ara et al [26]).  

 

Conceptual overlap between the start measure and the target PBM is an important consideration before 

mapping can be undertaken [28]. For example, if the target PBM covers generic aspects of HRQoL 

such as physical, mental and social functioning, then the source measure should also have questions 

and/ or dimensions which would be mapped onto these concepts. Regression analysis relies on the 

existence of a relationship between the two measures and where there is little conceptual overlap, 

mapping will not be a suitable solution for generating HSUVs. Beyond this, there are a number of 

methodological choices that can have an impact on the resultant mapping functions. The dataset used 

to undertake mapping is usually a convenient pre-existing dataset that has both the start measure and 

the target PBM such as a trial or observational study. It is important to consider whether the available 

dataset provides what is required to generate mapping functions that are appropriate for the population 

to which it will be applied, for example the range in clinical severity and age.  Depending on the sample 

size, regression analysis can be used to obtain mapping functions to predict either HSUVs or the 

individual health dimensions of the PBM, typically referred to as response mapping. A larger dataset 

covering the full range of severity is usually required for response mapping to enable all the severity 

levels within each dimension of the PBM to be estimated. The benefit of response mapping is that 

individual country value sets can be applied to the predicted dimensions, whereas mapping to the 

HSUVs restricts the predictions to the specific country value set used in the regression analyses.  

 

In addition to the choice of whether to predict HSUVs or responses to the dimensions, analysts also 

have a choice with regards to whether to use overall scores, dimension scores or items from the start 

measure as predictor variables. Age and gender may be considered important and their inclusion has 

been recommended where available [27]. Other variables such as clinical outcomes could also be 

included although the choice is partly determined by what variables are available in both datasets e.g. if 
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only dimension scores, age and gender are available, then the mapping function can only use these 

variables.  

 

There are also options regarding which regression method to use. A previous systematic review [29] 

found the most common approach when mapping to HSUVs was ordinary least squares (OLS) but 

other approaches that reflect the distribution of the HSUVs had also been applied. These included Tobit 

and Censored Least Absolute Deviation (CLAD) to deal with the limited range of the HSUVs as their 

maximum value is 1. More recently, methods have been developed to deal with multi-modal 

distributions such as mixture models, and methods that combine different approaches such as the 

adjusted limited dependent variable mixture models (ALDVMM) [26, 27]. Techniques such as ordered 

logit or probit and multinomial logit or probit have been used for response mapping to PBM dimensions.  

 

Finally, there are different statistics that can be used to assess the predictive abilities of the mapping 

functions. Much of the focus is on how well the mapping functions predict HSUVs compared to the 

observed HSUVs, since this is indicative of the accuracy of the mapping function at predicting utilities in 

another dataset. Errors can be generated that report the difference between observed and predicted 

HSUVs. However, mean errors can mask large differences where both positive and negative 

differences exist as well as masking any bias in errors, for example, larger errors at the extremes of 

HSUVs index. Therefore other measures of error such as mean absolute errors (MAE), mean squared 

errors (MSE) or root mean squared errors (RMSE) are preferred [25, 26]. These provide an assessment 

of the difference between predicted and observed values with smaller values preferred. Assessment of 

performance may be within the dataset used to predict the function or a separate dataset, with the latter 

usually based on a smaller subset of the predicted dataset that is not used in the prediction. The 

statistics on errors can also be presented based on severity either by HSUVs or by a different measure 

of severity such as a clinical measure. This is useful as there is evidence that errors may be associated 

with severity and the analysis can be informative for users of the mapping function. Plots of the 

predicted and observed HSUVs alongside corresponding errors are also informative. Studies may also 

assess results based on the expected sign, statistical significance and consistency of estimated 

coefficients for the explanatory variables. 

 

The previous Brazier et al [29] systematic review found 30 studies reporting functions mapping from 

non-preference-based measures to PBMs in studies published before 2007 [29]. The most common 

technique was ordinary least squares (OLS), with very few studies using any other approaches. Most of 

the studies reported R-squared values, mean errors and overall RMSE or MSE.  This previous review 

recommended that research should be undertaken to test the accuracy of mapping functions, and that a 

framework should be developed for the critical appraisal of mapping studies to enable policy makers to 

critically assess HSUVs generated using mapping studies. Since this time there has been a large 

number of mapping studies published and the methods to estimate mapping functions have increased. 

Several papers that make recommendations around the estimation of mapping functions including data 
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requirements, regression models, performance assessment and reporting standards have also been 

published [25-27, 30]. In addition a database developed by researchers at the Health Economics 

Research Centre (HERC) at Oxford University for studies mapping to EQ-5D measures is available 

[31]. This provides a valuable resource for researchers searching for appropriate mapping functions for 

EQ-5D. However, although the database includes other PBMs where they have been included in 

studies mapping to EQ-5D measures, it does not include studies that only map to other PBMs which 

may be useful for other international agencies beyond the UK.  One aim of this review is to address this 

gap.  

 

The overall objective of this paper was to update the 2010 mapping review [29] to identify studies that 

map to generic adult and child PBMs from other HRQoL measures including other preference-based 

measures. This would provide a resource for researchers searching for studies that estimate mapping 

functions that are appropriate for use in their context in order to meet particular international 

reimbursement agency requirements. 

 

2 METHODS 

2.1 Database and search terms 
The search strategy comprised of 5 different searches: electronic databases, utilities databases, citation 

searching of key publications, targeted journal searching and targeted website searching. The search 

was limited by publication date from January 2007 to October 2018. Three electronic databases were 

searched: MEDLINE, Web of Science and the Cumulative Index to Nursing and Allied Health Literature 

(CINAHL). The search strategy used free-text synonyms for generic preference based measures of 

interest ‘EQ-5D, SF-6D, HUI measures, QWB, AQoL measures, 15D/16D/17D and CHU-9D’. This was 

combined with free-text terms for map*, crosswalk*, cross walk*, cross-walk*, estimat* or predict*, 

transfer, transformation or deriv*. The search strategy used here differs from the original review which 

did not include all the generic preference-based measures in the search terms, but had EQ-5D, HUI 

and QWB. Searches were used across databases and were limited to English language publications. 

The search strategies are presented in Appendix 1.  

 

Two utilities databases were searched: the HERC database of mapping [31] and the ScHARR Health 

State Utilities Database (ScHARRHUD) [32], a searchable database providing published HSUVs. Free-

text terms for map*, crosswalk*, cross walk*, cross-walk*, estimat* or predict*, transfer, transformation 

or deriv* in the title field was applied.  Citation searches were undertaken based on the previously 

published mapping review [29] in the Scopus (Elsevier) database. Citation searches were also 

undertaken in the Web of Science (Clarivate Analytics), Scopus (Elsevier) and Google Scholar for four 

mapping reviews [33-36] and three mapping guidelines [27, 30, 37].  
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Based on the previous review, four journals that have previously published the mapping papers were 

searched in the Web of Science (Thomson Reuter): i) Medical Decision Making ii) Value in Health iii) 

Medical Care and iv) Journal of Health Economics. The search strategy is presented in Appendix 1. 

Relevant websites included the ISPOR website via the ISPOR Scientific Presentations Database [38]  

and EuroQoL (developers of EQ-5D measures) website [39]. The search strategies are presented in 

Appendix 3.  

 

2.1.1 Inclusion criteria 
Studies that undertook statistical mapping between one HRQoL measure and one of the target generic 

PBMs (EQ-5D-3L/EQ-5D-5L/EQ-5D-Y, SF-6D, HUI2/HUI3, QWB-SA, AQoL-4D, AQoL-6D/AQoL-8D, 

15D/16D/17D, CHU-9D) were included. This included mapping between preference-based measures. 

Only English language studies were included. There were no restrictions with regards to the population.  

 

The primary interest was mapping between measures with reported mapping functions that could be 

applied with specific focus on generic PBMs. Conference abstracts, studies mapping to directly elicited 

HSUVs generated using valuation techniques such as visual analogue scale or time trade off (i.e. not to 

utility values generated using a generic preference-based measure), studies not using HRQoL 

measures as the start measure and studies mapping to condition specific PBMs were excluded. Studies 

that undertook factor analysis were also excluded as they are not used to predict utility values. 

Methodology studies were excluded where they did not provide mapping functions. Studies that only 

applied or tested existing functions were also excluded.  

 

2.2 Measures 
The review focuses on mapping studies where the target measure is any one of the following generic 

PBMs: EQ-5D-3L/EQ-5D-5L/EQ-5D-Y, SF-6D, HUI2/HUI3, AQoL-4D/AQoL-6D/AQoL-8D, 

15D/16D/17D, QWB-SA and CHU-9D.  

 

2.2.1 EQ-5D measures 
EQ-5D is the most widely used generic PBM with three-level [3] and five-level [1] versions. Both 

versions have the same five dimensions: mobility, self-care, usual activities, pain/discomfort and 

anxiety/depression, but have different levels (3/5) of severity. The EQ-5D-3L has severity levels:  none, 

moderate and severe; while the EQ-5D-5L has severity levels: none, slight, moderate, severe and 

unable/extreme. Preferences for the EQ-5D-3L have been derived using TTO as well as the visual 

analogue scale (VAS) and more recently for the EQ-5D-5L using discrete choice experiments (DCE). 

Value sets are available for 32 countries for the EQ-5D-3L and for 14 countries for the EQ-5D-5L [39]. 

In addition, there is a cross-walk algorithm that has been used to generate 3L HSUVs from the 5L 

descriptive system while value sets are under development [40]. This mapping algorithm can be used to 

generate utility values for Denmark, France, Germany, Japan, the Netherlands, Spain, Thailand, UK, 
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USA and Zimbabwe.  The mapping algorithm has also been applied to Sri-Lankan [41] and Polish [42] 

EQ-5D-3L utility values as it maps to the health states not utility values. There is also a youth version 

EQ-5D-Y which was developed from the EQ-5D-3L for use in children and adolescents [13]. However, 

there are no HSUVs available for this measure and most studies apply adult HSUVs.  

 

2.2.2 SF-6D 
The SF-6D is a preference-based measure derived from the SF-36 and the SF-12. SF-36 is a non-

preference-based HRQoL measure with 36 questions with eight dimensions and physical and mental 

health summary scores [43]. It is one of the most commonly used health measures. SF-12 is a shorter 

version derived from the SF-36 covering the same dimensions.. The SF-6D has six dimensions: 

physical functioning, role limitation, social functioning, pain, energy, mental health. Each dimension has 

between four and six severity levels [4]. SF-6D can describe 18,000 possible unique health states for 

the version obtained from the SF-36 [4] and 7500 possible unique health states for the version derived 

from the SF-12 [5].  Value sets are available for Australia [44], Brazil [45], China (Hong Kong) [46], 

Japan [47], Portugal [48], Spain [49] and the UK [4, 5], where values were elicited using SG or DCE.  

 

2.2.3 HUI2 and HUI3 
The HUI2 and HUI3 are both derived from the same 15 item self-completed questionnaire. The HUI2 

was originally developed for use in paediatric oncology. HUI2 has six dimensions: sensation, mobility, 

emotion, cognition, self-care and pain (fertility is an extra dimension that is not commonly used), each 

with four or five severity levels resulting in 8000 health states [6 ]. HUI3 has eight dimensions: vision, 

hearing, speech, ambulation, dexterity, emotion, cognition and pain, each with five or six severity levels 

resulting in 972,000 health states [7].  Value sets are available for Canada [6] and UK [50] for HUI2, 

and for Canada [7], France [51] and Spain [52] for HUI3 using values elicited using visual analogue 

scale (VAS) and SG or SG on its own.  

 

2.2.4 15D, 16D and 17D 
The 15D has fifteen dimensions: mobility, vision, hearing, breathing, sleeping, eating, speech, 

excretion, usual activities, mental function, discomfort and symptoms, depression, distress, vitality, 

sexual activity [9]. Each dimension has five severity levels, resulting in 5 x 1015 health states. The value 

set was generated using VAS values elicited in Finland [9] with a recent value set generated using VAS 

for Norway [53].  

 

The 16D (for adolescents aged 12–15 years) [11] and the 17D (for children aged 8–11 years) [12] were 

developed based on the 15D. The value set was generated using VAS with Finnish children aged 12-15 

for the 16D while parents provided VAS values for the 17D.  
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2.2.5 AQoL measures 
The Assessment of Quality of Life has different versions that can be used including the, AQoL-4D, 

AQoL-6D and the AQoL-8D with a different number of dimensions for each version [8, 54, 55]. AQoL-

4D has four dimensions (independent living, senses, relationships and mental health) while AQoL-6D 

has six dimensions (independent living, mental health, coping, relationships, pain, senses). The latest 

version, the AQoL-8D, has eight dimensions: independent living, happiness, mental health, coping, 

relationships, self-worth, pain, senses which are based on a combination of a 35 items questionnaire 

resulting in 2.37*1023 health states [8].  The value set is generated using VAS and TTO values elicited 

in Australia.  

 

AQoL-6D has also been adapted for use with adolescents. Value sets for the adapted AQoL-6D were 

generated using TTO in a sample of adolescents from Australia, Fiji, New Zealand and Tonga [14].  

 

2.2.6 QWB-SA 
The QWB-SA has 68 items in total with dichotomous symptom lists for 19 chronic symptoms, 25 acute 

symptoms and 14 mental health symptoms/behaviours along with 17 items that cover mobility, physical 

and social activity [56, 57]. The original version was developed and tested for use in both adults and 

children [15]. It defines 945 health states and the value set is generated using VAS values elicited in the 

USA.  

 

2.2.7 CHU-9D 
The Child Health Utility Index 9D (CHU-9D) has 9 dimensions: worry, sadness, annoyance, tiredness, 

pain, sleep, daily routine, school, and activities [16]. Each dimension has 5 levels of severity resulting in 

1,953,125 health states. The value set has been generated using SG in the UK using an adult sample 

[58], best worst scaling (BWS) in Australia using an adolescent and adults [59, 60] and BWS with TTO 

in a sample of adolescents in China [61]. 

 

2.3 Study Selection 
Three authors undertook study selection. SH undertook an initial eligibility assessment across all of the 

identified studies, excluding studies that were identified as not mapping studies from titles. CM and DR 

undertook further eligibility assessment based on abstracts and the full-paper review. Queries were 

discussed between the reviewers. 

 

2.4 Data Extraction and Analysis  
An extraction template was created by DR and reviewed by the team. The final template included 

information on the start measure and the target PBM, whether measures were self-completed, the 

country value set used, whether mapping was done to the HSUV index or the dimensions. Details about 

the estimation dataset including the population e.g. patient characteristics, the sample country, and the 
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sample size were extracted. For methods, the regression techniques was extracted and whether 

additional explanatory variables (clinical, age, gender) were recorded. Whether the regression 

coefficients were reported was noted. Information on how studies assessed performance of the 

mapping functions including MAE/MSE/RMSE, including by severity, and plots of predictions was also 

noted. Actual values e.g. regression coefficients or MAE were not extracted.  Independent extraction 

was undertaken by AR, CM, DR and SH. AR, SH and CM did initial extraction and CM and DR double-

checked the extractions. 

 

Analysis was based on the number of studies across the preference-based measures as well as in 

relation to methods used. The Brazier et al [29] review noted that OLS was the most common method 

but they noted the limitation of using OLS for mapping. R-squared was also reported in studies in the 

previous review but this does not provide useful information on whether mapping functions are valid 

and was not extracted for this review. Therefore we considered what type of regression methods were 

used and what information was used in comparison of mapping functions i.e. use of MAE/RMSE or 

plots. No quality assessments were made with regards to the reported mapping functions as 

judgements about the validity of mapping functions depend in part on the context in which they will be 

applied.  

 

3 RESULTS 

3.1 Studies included 
A total of 2967 papers were identified from the different sources after removal of 2444 duplicates 

(Figure 1). The number of relevant papers was reduced to 1278 based on a review of the titles and a 

further 707 were excluded based on review of abstracts. Further review of the remaining full papers 

resulted in a total of 180 papers (Figure 1).  

 

Figure 1 Study Selection Flowchart  

<insert Figure 1> 

 

3.2 General description of studies 
The mapping functions are presented in Appendix 2 ordered by the target PBM then the source 

measure. Some papers reported mapping functions to more than one PBM. Where a study reports a 

mapping to a single PBM, this was counted as a single mapping function even where different 

regression methods were used or different specifications tested. Where papers reported mapping to 

more than one PBM e.g. to EQ-5D-3L and to SF-6D this was counted as two mapping functions. There 

were 233 mapping functions published across the 180 papers. Highlighted rows indicate mapping 

functions reported in papers that estimate mapping functions to more than one PBM.  
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There were 8 different 15D mapping functions, 12 for AQoL measures, 4 for CHU-9D, 147 for EQ-5D 

measures, 13 for HUI measures, 4 for QWB-SA and 45 for SF-6D. For AQoL, 4 were mapping functions 

to AQoL-4D while the rest were to AQoL-8D. EQ-5D mapping functions were mainly to EQ-5D-3L 

(n=124) with 22 mapping functions to EQ-5D-5L and 1 to EQ-5D-Y. There were 2 mapping functions 

that used HUI2 and there were 12 mapping functions using HUI3.  

 

The majority of the mapping functions were between non-preference-based measures and the target 

PBM (Appendix 2). The most common condition-specific non-preference-based start measures were 

the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire 

(EORTC QLQ C30) [240] used in 25 mapping functions, variations of the Functional Assessment of 

Cancer Therapy (FACT) [241] including the general version, breast cancer, melanoma and prostate 

cancer (n=12) and the Health Assessment Questionnaire (HAQ) including HAQ-Disability index [242] 

for rheumatoid arthritis (n=13).  The rest of the start measures included condition-specific HRQoL 

measures for a number of different conditions1.  

 

There were also generic non-preference-based HRQoL measures used as the start measure including 

the SF-12 or SF-36 [43, 243] (n=12), the Nottingham Health Profile [244] (n=2), the Patient Reported 

Outcomes Measure Information Systems (PROMIS) [245] (n=4) and the WHO-QoL BREF [246] (n=4). 

One study used a measure for older people (Older People’s Quality of Life Brief Questionnaire [247]) 

and one used a measure for women (Women’s Health Questionnaire-23 [248]) to generate 2 mapping 

functions. One study used a general health or self-assessed health question [122].  

 

The generic PBMs (15D, AQoL-8D,  HUI3, QWB-SA, SF-6D, EQ-5D-3L/EQ-5D-5L) were also used as 

start measures. Two papers provided mapping functions between these six generic PBMs [62, 63]. Two 

papers mapped between EQ-5D-3L and EQ-5D-5L [40, 203]. 

 

For mapping functions to CHU-9D, there were two generic measures, the KIDSCREEN [249] and the 

Pediatric Quality of Life Inventory (PedsQL) [250], one mental health measure (Strengths and 

Difficulties Questionnaire [251]) and one weight measure (Weight-Specific Adolescent Instrument for 

Economic Evaluation (WAItE) [252]). The PedsQL was also used to map to EQ-5D-Y.  

 

There were 17 (7%) mapping functions that used adult general population samples, 2 used women and 

1 used school children with no specified conditions. The rest of the mapping functions were based on 

patient samples (n=213, 91%). Clinical trials were the most common source of data. Respondents were 

                                                           
1 Mental health, diabetes, fibromyalgia, heart disease, asthma, stroke, osteoarthritis, osteoporosis, vision (e.g. 
cataract, macular degeneration), hearing, Chronic Obstructive Pulmonary Disease (COPD), skin conditions (e.g. 
psoriasis), epilepsy, problems with hips or knees, neck problems, back problems, sleep problems (e.g. insomnia), 
Parkinson’s, overactive bladder, Cushing’s Syndrome, Ankylosing Spondylitis, HIV, headaches, liver disease, 
inflammatory bowel disease, ulcers, constipation, multiple sclerosis, obesity, growth hormone deficiency and 
measures for palliative care. 
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also recruited from populations in the community, hospital and primary care. The two most common 

patient populations were cancer (n=38, 16%) and rheumatoid or osteoarthritis (n=23, 10%).  Some 

populations were mixed, for example, Chen, 2015 [62], Richardson, 2014 [63] used the Multi-instrument 

Comparison (MIC) dataset [253] which has all the generic PBMs and contains both patients (self-

identified) and members of the general population who were healthy. A number of studies relied on the 

MIC dataset to undertake mapping within specified patient populations including asthma [69, 212], 

depression [64], diabetes [65, 202], cancer [205] and heart disease [68].  

 

Sample sizes varied widely. The smallest sample size was 30 respondents [81] while the largest was 

over 130,000 respondents [161] both of which were mapping functions to the EQ-5D-3L. However, very 

few mapping functions used a sample size that was less than 100 (n=10, 4%).  

 

3.3 Estimation 
The majority of functions mapped only to the HSUV index for the respective measures (n=191, 82%). A 

few mapping functions were only to the PBM dimensions (n=4, 2%)  which were all mapping to EQ-5D-

3L/EQ-5D-5L. The rest were mapping functions to both the HSUV index and PBM dimensions (n=38, 

16%) of which 32 were mapping to EQ-5D measures, 4 to SF-6D, 1 to HUI3 and 1 to CHU-9D.  For the 

15D, AQoL-4D/AQoL-8D and QWB-SA, all the mapping functions were only to the HSUV index.  

The specific country value set used was restricted by available value sets for 15D (Finnish2), AQoL 

(Australian) and QWB-SA (USA). One CHU-9D mapping function was to the Australian HSUV index 

[60] while the rest used the UK HSUVs. One HUI3 mapping function was to the Spanish HSUV index 

[133]  while the rest were to the Canadian HSUVs. Three SF-6D mapping functions were to the Hong-

Kong HSUV index [220, 227, 229] while the rest were to UK values. There were 85 mapping functions 

that used the EQ-5D-3L UK country HSUV with 12 of these using these values alongside another 

country HSUVs. Other EQ-5D-3L country HSUVs that were used included the Canadian, USA, 

Chinese, Dutch, European, German, Japanese, Korean, Spanish and Swedish value sets (Appendix 2). 

The English value set was used in 8 mapping functions for the EQ-5D-5L while the UK crosswalk was 

used for 5 mapping functions. EQ-5D-5L mapping functions also used new value sets for Netherland, 

Spain, Canada, Uruguay, China, Japan and Korea as well as crosswalk values for USA and the 

Netherlands.  

Most mapping functions used more than one regression method (n=142, 61%). The most common 

regression method used when mapping to HSUVs was OLS which was used in all the mapping 

functions for CHU-9D and most of the mapping functions (≥75%) for the other PBMs (Table 1). Note 

that this does not necessarily reflect whether or not OLS is the most appropriate method. Other 

methods included those that aimed to take into account the limited range of the utility values such as 

CLAD and Tobit in addition to beta regressions and fractional logistic models. Generalised linear 

                                                           
2 Norwegian value set only recently published 
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models which provide flexibility in the choice of the underlying distribution were also used. Robust 

regressions using the MM-estimator designed to deal with the potential impact of outliers in linear 

regressions were also used [254]. There were also models that allowed even greater flexibility such as 

mixture models which enable a mixture of distributions in the regressions when estimating HSUVs. 

Finally, models combined different regression approaches such as OLS and logit regressions in two or 

three part models specified by the analyst with results combined post-analysis. The different ‘parts’ 

were determined by the distribution of the HSUVs e.g. those who had in full health (HSUV=1) vs. those 

who had decrements in HRQoL (HSUV<1). These two or three part models are similar to mixture 

models in that they attempt to address distribution of HSUVs. Methods such as the ALDVMM combined 

consideration of the distribution of the data and the limited rage of HSUVs [203].  

 

EQ-5D measures and SF-6D had the largest number of regression approaches applied when mapping 

to the HSUVs index (n=19 and n=17 respectively, Table 1) followed by HUI measures (n=11), CHU-9D 

(n=8), 15D and AQoL measures (n=6 each) and QWB-SA (n=5).  For response mapping to PBM 

dimensions, ordered/ multinomial/ multivariate/ generalised/ partial proportional logit or probit 

regressions were undertaken. Response mapping was undertaken for EQ-5D measures (n=32), HUI3 

(n=1), SF-6D (n=3) and CHU-9D (n=1).  

 

Table 1 Regression methods used by PBM 

<insert Table 1> 

3.4 Specification and performance 
In addition to the HRQoL source measures, age was included as a potential predictor in 51% (n=119) of 

the reported mapping functions while gender was included in 55% (n=126). Clinical outcomes such as 

body mass index (BMI) were included 20% (n=46) of the time (Table 2).  

Table 2  Number of mapping functions including additional variables, coefficients and 

performance indicators by preference-based measure 

<Insert Table 2> 

The majority of the mapping functions (n=224, 96%) reported the model coefficients either in the paper 

or provided a way to generate the HSUV via a separate method such as an excel sheet or program.  

Some mapping functions were provided in separate programs to estimate HSUVs e.g. Adams et al, 

2010 [132]. Some papers using Bayesian networks did not report regression coefficients e.g. Borchani 

et al, 2012 [164]. Other papers did not report coefficients because the results because authors judged 

that results were not suitable for use as mapping functions due to poor performance. For example both 

Bafus et al, 2012 [81] and Dzingina et al, 2017 [163] found that there were large differences between 

observed and predicted values. 
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Most of the mapping functions (n=192, 82%) had overall MAE, MSE or RMSE as part of assessment of 

performance (Table 2). Performance across different categories of severity was reported in 92 (39%) 

mapping functions while plots were provided for 120 mapping functions (52%). Plots included scatter or 

linear plots of observed against predicted HSUVs with or without errors and plots of the start measure 

against observed and predicted HSUVs. 

4 DISCUSSION 
This review identified 180 papers that met the inclusion criteria. The studies undertook a range of 

different regression methods, with the HSUV index as the most common dependent variable. Most of 

the start measures were non-preference-based measures with many studies including age and gender 

while a more limited number also included clinical measures such as BMI. Most of the studies assessed 

performance using MAE, RMSE or MSE while some studies also included plots of predicted HSUVs 

against the observed HSUVs or start measures, rather than relying on R-squared statistics as reported 

in the previous review [29].  

 

There were 180 mapping papers with 233 mapping functions identified over the review period (2007 to 

2018) compared to 30 papers which were included in the previous review (1996 to early, 2007) [29]. 

This reflects the growth in mapping studies that has taken place in the last decade. Half (n=15, 50%) of 

the mapping functions included in the previous review were mapping to EQ-5D whereas functions 

mapping to EQ-5D measures are reported in more than half (n= 147, 63%) of the mapping functions in 

this current review. This may reflect the recommendation to use EQ-5D and acceptance by NICE [18] of 

mapped HSUVs in their methods guide for health technology assessment which may have driven 

demand for mapping to EQ-5D. EQ-5D-3L is also the most widely used generic PBM.  

 

Other PBMs had less mapping functions in both the previous review (HUI measures n=8, 27%; SF-6D 

n=5, 17%; AQoL measures n=2, 7%; QWB-SA and 15D n=1, 3%) and this review (HUI measures n=13, 

6%; SF-6D n=45, 19%; AQoL measures n=12, 5%; 15D n=8, 3% and QWB-SA n=4, 2%). There has 

been an increase in the number of mapping functions to the SF-6D in this review compared to the 

previous review. Although there are a number of mapping functions available for 15D, AQoL measures, 

HUI measures and QWB-SA, many of the mapping functions rely on the same dataset, the MIC 

dataset.  In addition, this current review included mapping functions to the CHU-9D which was under 

development during the last review. One EQ-5D mapping function was to the EQ-5D-Y but no other 

mapping functions to child or adolescent generic PBMs were identified.  

 

Patient populations were the main type of datasets used to estimate the mapping functions (n= 213, 

91%), rather than members of the general population which was also the case in the previous review 

where 20 (67%) papers used patient populations. The use of patient populations is potentially better 

suited to address concerns regarding using appropriate populations to generate mapping functions in 

terms of demographic characteristics as well as severity [27]. However, where the source is trial data 
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rather than registry data, this may result in small sample size. Trial data may also reflect very specific 

characteristics such as severity levels due to trial inclusion criteria. This can be useful if a mapping 

function is to be used in a similar population but may be restrictive if mapping functions are being 

applied in trials with different inclusion criteria or real world populations. The growing use of HSUVs and 

generic PBMs has led to growth in the inclusion of these types of measures in routine use e.g. as part 

of routine measures following hip and knee replacements in England [255] or registry data [256] which 

provide larger datasets of individuals who have received care. This offers alternative sources of data 

that can be used to undertake mapping as well as to test performance of mapping functions in the 

future.  

 

The most common regression method to estimate mapping functions mapping to the HSUV index was 

OLS in both reviews. Brazier et al, 2010 [29] noted that OLS shows a systematic pattern in over-

predicting at the lower end and under-predicting at the upper end of HSUVs and that alternative 

approaches should be tested. The previous review had one study that used Tobit and two used CLAD 

to address the bounded nature of HSUVs while less restrictive linear models such as the generalised 

linear model (GLM) were also used [29]. In the current review, most mapping functions were estimated 

using more than one regression method (n=142, 61%).  In addition to CLAD, Tobit and GLM which 

were used in the earlier review, other methods commonly included in this review were two/three part 

models, beta regressions, fractional logistic regressions and mixture models. EQ-5D measures and SF-

6D had the largest number of regression approaches applied when mapping to the HSUVs index which 

reflects where mapping was used. For EQ-5D-3L, methods to address the distribution of the UK values 

which have a multi-modal distribution with a large proportion of values at 1 and a gap between 1 and 

the next value (i.e. 0.883) has also increased the number of approaches used. For example, methods 

such as  ALDVMM have been developed to address the specific nature of the EQ-5D-3L UK value set 

[128]. These are aimed at replicating not only mean predicted HSUVs but also the distribution of the 

HSUVs index.. These regression methods can be extended to mapping to EQ-5D HSUVs from other 

country value sets as well as other measures e.g. Gray et al 2018 [212] uses these approaches for 

HUI3. The appropriateness of methods will depend on the measure and distribution as well as standard 

tests applied to assess these methods. For example, SF-6D UK value set has a limited range but does 

not have the multimodal distribution that is seen in the UK EQ-5D-3L value set, which can impact on 

model selection. 

 

Response mapping was undertaken using ordered or multinomial probit or logit regressions with 5 

(17%) studies reported using this approach in the previous review which was a similar proportion to the 

current review (16%, n=37). All the studies in the previous review used response mapping to map to 

EQ-5D-3L. Response mapping has also mainly been undertaken for the EQ-5D measures (n=32) in the 

current review. An additional 3 mapping functions to SF-6D, one to HUI3 and CHU-9D used response 

mapping in the current review. Application of response mapping across all measures remains relatively 
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low with the exception of EQ-5D measures. This reflects both the number of dimensions in the measure 

and the availability of large samples that cover the range of severity within each dimension.  

 

Most mapping functions (n=192, 82%) in this review reported MAEs or RMSEs to assess the 

performance of mapping functions. These statistics were supported by examining errors by severity to 

assess whether there were systematic patterns in the errors (n=92, 39%) or plots of observed HSUVs 

or predicted HSUVs and errors (n=120, 120%). This is an improvement on the previous review where 

the pattern of errors was only reported in 2 studies (7%) [29].  

 

Regression coefficient values, which are important if mapping functions are to be applied in external 

datasets, were reported for most of the mapping functions (96%). Some mapping functions were 

provided in separate programs to estimate HSUVs which was useful particularly where standard OLS 

techniques were not used therefore coefficient values could not simply be applied directly to the 

external dataset. Some papers did not report coefficients results because the authors judged that 

mapping functions performed poorly based on predictive ability. Although most papers reported 

coefficients alongside assessment of performance of models, validity of mapping functions will depend 

on other information such as the mapping dataset and how it compares to the dataset where mapping 

functions will be applied. For example, Woodcock et al [110] found that there were differences in which 

mapping function was preferred when they were applied to different d.      

 

Although this review provides a useful resource for analysts, there are some limitations. There was no 

quality assessment of the included studies, and no judgement of whether regression methods, model 

specifications or predictive ability were appropriate. Any judgements on quality cannot be generalised 

as the appropriateness of mapping functions relies on assessment of applicability for the context while 

appropriateness of methods relies on the target PBM. Though the aim of this review was not to 

examine whether published studies are in accordance with published recommendations including 

recent ISPOR Taskforce guidelines [27], our extracted data enables a general assessment of whether 

important information is reported. Our findings suggest that since the 2010 review [29], authors have 

increased the number of regression methods that they use as well as their reporting of predictive ability 

of mapping functions across different categories of severity. Despite OLS remaining the most 

commonly used regression method, there has been a wider use of other regression methods that are 

likely to be more appropriate for the distribution of HSUV data. This is a promising development since 

the 2010 review as it suggests that researchers are taking into account the distribution of their data.  

 

Where mapping is required to generate HSUVs to inform HTA, the widespread availability of mapping 

functions estimated using patient populations rather than the general population is likely to mean that 

the datasets used to estimate mapping functions are most similar to the clinical trial or observational 

datasets to which they are applied. This may in turn lead to reduced error in mapped HSUVs. In 

addition, the availability of more published mapping functions may allow their performance to be tested 



18 

 

in separate datasets. For example, a number of mapping functions are available for the EORTC-QLQ-

C30 to EQ-5D-3L which allows them to be tested against each other. For example, Woodcock et al 

2018 [110] tested 5 existing EORTC QLQ-C30 mapping functions.  

 

Acceptability to generate HSUVs using mapping in HTA submissions to international agencies has 

increased since the previous review which is likely to have encouraged the proliferation of mapping 

studies. This acceptability is also reflected in the use of the crosswalk mapping algorithm [40] from EQ-

5D-5L to EQ-5D-3L as an official scoring approach by the EuroQoL group. This crosswalk algorithm 

can potentially be applied to any other studies which already have EQ-5D-3L HSUVs but not EQ-5D-5L 

utility values as has been done for Poland [42] and Sri-Lanka [41]. As there are many more EQ-5D-3L 

country value sets than EQ-5D-5L, this offers an interim alternative to generating EQ-5D-5L values.  

 

New developments in models that take into account the distribution of HSUVs and greater 

understanding of how the use of mapping in economic evaluation impacts on incremental cost 

effectiveness ratios enable the science to both be better undertaken and better understood. However, 

there is still room for improvement and cause to apply caution. Authors are encouraged to follow 

published recommendations around mapping best practice [25-27, 30], including the recent ISPOR 

Taskforce guidelines [27]. It is recommended that error term distributions, variance and covariance are 

reporting in mapping studies to enable better understanding of the accuracy of mapped estimates when 

they are used in cost-effectiveness modelling [26, 27]. It is also recommended that a plot (with values 

reported in a table) is always included of predicted versus observed HSUVs conditional on the start  

measure, to enable researchers using the mapping function to understand the potential accuracy of the 

mapped estimates [27]. It is hoped that the mapping literature will take these recommendations on 

board over the coming decade. 

 

Mapping is not guaranteed to generate accurate mapped HSUVs. Care must be taken to ensure 

overlap between the measures that are mapped from and to as if the generic preference-based 

measure is inappropriate in that patient population mapping to this measure is also inappropriate. 

Mapping should not be used to avoid including a generic preference-based measure in a trial or key 

observational study since mapped estimates increase uncertainty and are not preferable to direct 

administration of the preference-based measure. 

 

This review provides an important resource for researchers enabling the identification of possible 

mapping studies for use to predict HSUVs for a range of different conditions and for a range of different 

preference-based measures.   
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Table 1 Regression methods used by PBM 

Target 

measure 
Estimation methods 

Number 

of 

mapping 

functions 

% within 

each PBM 

15D 

Ordinary Least Squares (OLS) 7 88 

Censored Least Absolute Deviation (CLAD) 2 25 

Generalised Linear Model (GLM) 6 75 

Robust Regression MM-estimator 2 25 

Linear Geometric Mean Square Regression 1 13 

Beta regressions 1 13 

AQoL-4D/ 

AQoL-8D 

OLS 10 83 

CLAD 2 17 

GLM 8 67 

Beta regression  1 8 

Robust Regression MM-estimator 3 25 

Linear Geometric Mean Square Regression 1 8 

CHU-9D 

OLS 4 100 

CLAD 2 50 

GLM 3 75 

Two-part model (TPM) 1 25 

Tobit 2 50 

Beta regression  1 25 

Robust Regression MM-estimator 2 50 

Mixture models 1 25 

Response mapping 1 25 

EQ-5D-3L/ 

EQ-5D-5L/ 

EQ-5D-Y 

OLS  131 89 

CLAD 36 24 

GLM 29 20 

TPM 23 16 

Three-part models 2 1 

Tobit 32 22 

Beta regressions 11 7 

Robust Regression MM-estimator 6 4 

Linear Geometric Mean Square Regression 1 1 

Generalized estimating equation  3 2 

Median/quantile/quadratic / equipercentile regression 8 5 

Splining 3 2 

Mixture models 15 10 

Bayesian approaches (OLS/networks/probabilistic) 8 5 

Fractional logistic regression 5 3 

Linear equating 2 1 

Non-parametric 2 1 

Mean ranking 1 1 

Extended estimating equations 1 1 

Response mapping   32 22 

HUI2/HUI3 

OLS 12 100 

CLAD 2 17 

GLM 5 42 
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Target 

measure 
Estimation methods 

Number 

of 

mapping 

functions 

% within 

each PBM 

Tobit 1 8 

TPM 2 17 

Linear Geometric Mean Square Regression 1 8 

Robust Regression MM-estimator 2 17 

Beta regression finite mixture models 2 17 

Mean Rank 1 8 

Linear equating 1 8 

Mixture models 2 17 

Response mapping 1 8 

QWB-SA 

OLS 3 75 

CLAD 1 25 

GLM 3 75 

Robust MM-estimator 2 50 

Linear Geometric Mean Square Regression 1 25 

SF-6D (SF-

12 and SF-

36) 

OLS 41 91 

CLAD 11 24 

GLM 16 36 

Tobit 8 18 

TPM 1 2 

Robust Regression MM-estimator 3 7 

Beta Regression 4 9 

Mixture models 1 2 

Median and kernel regression 2 4 

Generalised estimating models 1 2 

Linear Geometric Mean Square Regression 1 2 

Bayesian additive regression kernels 1 2 

Fractional logistic 1 2 

Quantile 1 2 

Extended estimating equations 1 2 

Non-parametric 1 2 

Response mapping 3 7 

Not stated and not OLS 1 2 

Note: Proportion (%) add up to more than 100% within each measure as multiple estimation methods were used in most 

studies 

OLS ʹ Ordinary Least Squares; CLAD - Censored Least Absolute Deviation; GLM ʹ Generalised Linear Model; TPM ʹ Two-part 

model; 15D ʹ 15 Dimensions; AQoL-4/8D ʹ Assessment of Quality of Life 4 or 8 Dimensions;  CHU-9D ʹ Child Health Utility ʹ 

9 Dimensions; EQ-5D-3L ʹ EQ-5D three level version; EQ-5D-5L ʹ EQ-5D five level version; EQ-5D-Y ʹ EQ-5D youth version; 

HUI2/3 ʹ Health Utilities Index 2 or 3; QWB ʹ Quality of Wellbeing Scale; SF-6D ʹ Short Form ʹ 6 Dimensions; SF-12 ʹ Short 

Form 12 ; SF-36 ʹ Short Form 36
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Table 2  Number of mapping functions including additional variables, coefficients and performance indicators by preference-based measure (n 

(%)) 

Target 
measure 

Any tested 
model 

includes 
clinical 

measures 

Any tested 
model 

includes 
Age 

Any tested 
model 

includes 
Gender 

Are 
coefficients 
reported? 

Did paper 
assess 

predictive 
ability? Only 
interested in 
MAE, RMSE, 
MSE (not ME) 

Error across 
different categories 
of severity (can be 
subgroup means or 
a plot of predicted 
versus actual, or a 

plot of errors) 

Plot of predictions 
e.g. predicted 

versus actual; plot 
of predictions alone; 

histogram 

15D (n=8) 0 2 (25) 5 (63) 8 (100) 6 (75) 2 (25) 3 (38) 

AQoL (n=12) 0 4 (33) 7 (58) 12 (100) 11 (92) 4 (33) 5 (42) 

CHU-9D (n=4) 0 3 (75) 3 (75) 4 (100) 4 (100) 1 (25) 3 (75) 

EQ-5D (n=147) 31 (21) 81 (55) 75 (51) 139 (95) 121 (82) 59 (40) 75 (51) 

HUI2/HUI3 

(n=13) 

2 (15) 4 (31) 8 (62) 13 (100) 8 (62) 7 (54) 5 (38) 

QWB (n=4) 0 0  3 (75) 4 (100) 3 (75) 1 (25) 1 (25) 

SF-6D (n=45) 13 (29) 25 (56) 27 (60) 44 (98) 39 (87) 18 (40) 28 (62) 

Total (n=233) 46 (20) 119 (51) 128 (55) 224 (96) 192 (82) 92 (39) 120 (52) 

MAE- Mean Absolute Error; RMSE ʹ Root Mean Squared Error; MSE ʹ Mean Squared Error; ME ʹ Mean Error 

15D ʹ 15 Dimensions; AQoL-4/8D ʹ Assessment of Quality of Life 4 or 8 Dimensions;  CHU-9D ʹ Child Health Utility ʹ 9 Dimensions; HUI2/3 ʹ Health Utilities 

Index 2 or 3; QWB ʹ Quality of Wellbeing Scale; SF-6D ʹ Short Form ʹ 6 Dimensions 

EQ-5D ʹ includes EQ-5D three level, five level and youth versions 

 


