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Forecasting Financial Markets Using High-Frequency Trading Data: 
Examination with Strongly Typed Genetic Programming 

                                                     by 

                                    Viktor Manahov* and Hanxiong Zhang               

                                                  Abstract  

Market regulators around the world are still debating whether or not high-frequency trading 

(HFT) plays a positive or negative role in market quality. We develop an artificial futures 

market populated with high-frequency traders (HFTs) and institutional traders using Strongly 

Typed Genetic Programming (STGP) trading algorithm. We simulate real-life futures trading 

at the millisecond timeframe by applying STGP to E-Mini S&P 500 data stamped at the 

millisecond interval. A direct forecasting comparison between HFTs and institutional traders 

indicate the superiority of the former. We observe that the negative implications of high-

frequency trading in futures markets can be mitigated by introducing a minimum resting 

trading period of less than 50 milliseconds. Overall, we contribute to the e-commerce 

literature by showing that minimum resting trading order period of less than 50 milliseconds 

could lead to HFTs facing a queuing risk resulting in a less harmful market quality effect. 

One practical implication of our study is that we demonstrate that market regulators and/or e-

commerce practitioners can apply artificial intelligence tools such as STGP to conduct 

trading behaviour-based profiling. This can be used to detect the occurrence of new HFT 

strategies and examine their impact on the futures market. 
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Introduction  

Today’s trading in futures markets is more complex and often involves little human 

intervention. The dramatic increase in the variety of trading platforms combined with 

significant technological advancements, makes the process by which trading orders are 

processed and executed much more complex than it was ten years ago. Significant 

technological investments resulted in latency improvements, where computer algorithms 

execute trading orders based on electronically received information before human traders. 

Speed races in today’s trading are occurring even at nanosecond (billionths of a second) 

intervals [6]. High-frequency traders (HFTs) are able to anticipate future trading order flows 

because they process intraday trading messages faster than other market participants [16]. 

Several studies highlight that such anticipatory or front-running trading generates negative 

externalities, such as limited liquidity provision, forcing other slower market participants to 

abandon trading, or facilitating overinvestments in technological bases [3, 18, 21, 34].  

However, most studies on the topic are lacking the ability to identify which trades and quotes 

come from HFT. This research obstacle makes it difficult to investigate how HFT affects the 

market and other market participants [14, 20, 24]. This is due to the fact that no publicly 

available dataset, including NASDAQ 120, allows researchers to directly identify all HFT 

[2]. Egginton et al. [14] argues that it is hardly possible to identify orders generated by 

computer algorithms in the U.S. equities markets and all previous studies used proxies to 

measure the level of algorithmic trading and HFT1.  To investigate the implications of HFT 

on market efficiency, most of the extant research up to date proceeds after somehow 

identifying via proxy measures or a combination of variables such as trading volume, 

cancellations, inventory turnover and order-to-execution ratios the trades generated by HFTs 

                                                           
1 Frino et al. [19] use several proxies to identify algorithmic trading in futures markets.   
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[16]. Moreover, the huge number of variables and very complicated cause-effect relationships 

among these variables and potential outcomes imposes another research obstacle [15].  

In contrast, this study uses a special adaptive form of the Strongly Typed Genetic 

Programming (STGP) and millisecond data of E-Mini S&P 500 to demonstrate how HFTs 

front-run other market participants’ orders and generate significant trading profits. There are 

several reasons for selecting the E-Mini S&P 500. On the one hand, this particular financial 

instrument is the world’s most actively traded stock index futures contract, with over 2.2 

million contracts traded per day [17].  

In addition, Baron et al. [2] suggest that the E-Mini S&P 500 is a favourable setting for 

examining HFT because this is a highly liquid market with a high number of HFT companies 

regularly trading. Moreover, this particular financial instrument is only traded on the Chicago 

Mercantile Exchange, and there is no concern about unobserved trading orders executed on 

other trading venues.  

The STGP (described in Appendix A) is an extremely suitable sophisticated trading algorithm 

that successfully replicates HFT scalping strategies. While, Dunis et al. [13] suggest that 

Genetic Programming (GP) models perform remarkably well even in simple trading 

exercises, Paddrik et al. [38] report that a zero-intelligence agent-based model of the E-Mini 

S&P 500 futures market enables close examination of the market microstructure2.  Östermark 

[37] suggests that genetic algorithms provide a powerful supplement to traditional 

econometric techniques, while Chatterjee et al. [8] notes that many statistical and 

mathematical restrictions can be avoided by employing genetic algorithms. Lensberg et al. 

                                                           
2 While Python and Java programming languages are suitable for trading at the minute timeframe, C++, ASIC 
and FPGA languages are appropriate for trading at the very low latencies of microseconds and nanoseconds. 
Machine learning languages such as Genetic Programming, Strongly Typed Genetic Programming and Genetic 
Algorithms are appropriate for trading signal research and statistical analysis. All of these programming 
languages are interconnected in HFT.   
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[29] suggest that GP is extremely powerful financial tool which minimises the amount of a 

priory structure associated with traditional functional forms and statistical selection 

procedures. Mendes et al. [33] employ GP in the foreign exchange market to achieve positive 

forecasting results. More recently, Chen and Wang [9] point out that GP has the advantage of 

systematic random search and derivative-free optimisation. We reproduce the HFT scalping 

strategies in an artificial futures market environment where the impact of these strategies can 

be examined and new regulations can be evaluated to maintain the overall health of the 

financial system.  Using STGP, we replicate the interactions between HFTs and institutional 

traders and compare their performance under the same underlying trading order streams. In 

other words, we replicate real-life futures trading sessions which allow us to avoid the 

obstacles in the studies discussed above.   

Our empirical findings have important implications for market regulators, academics and the 

general public. To summarise, the contribution of this study is two-fold.  

First, this is the first study to use an innovative trading algorithm and millisecond data to 

provide empirical evidence of how HFT front-running scalping strategies operate in futures 

markets, imposing discriminatory disadvantages on other market participants. We observe 

that HFTs frequently cancel recently placed orders from around the best quotes leading to a 

substantial reduction in the certainty of execution prices making prices more transient. 

Moreover, the process of placing a large number of trading orders in a short time span creates 

a false sense of the supply and demand for the E-Mini S&P 500 and hence adversely impacts 

market quality.  Second, we estimate in precise quantitative terms the daily profits of HFT, 

providing an advantage over existent studies, such as that of Brogaard [4] which observed 

HFT activities in the aggregate data only, thus preventing them from calculating the exact 

profitability of HFT. We also propose new regulatory measure such as a minimum resting 
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trading order period of less than 50 milliseconds to mitigate the negative consequences of 

HFT scalping strategies in futures markets.  

The remainder of this paper is organised in the following way: Section 2 comprises of the 

literature review, while Section 3 presents the experimental design of the artificial futures 

market and data utilised in this study. Section 4, reports the artificial agents’ trading activity 

and profitability, while Section 5 presents the conclusion. Additional clarifying and technical 

material can be found in Appendices A and B.  

Related literature 

Brunnermeier and Pedersen [5] show that front-running of trading orders leads to price 

‘overshooting’ and amplifies a large trader’s liquidation cost and default risk. Moreover, 

front-running trading strategies make the market illiquid when liquidity is most needed. More 

recently, Baron et al. [2] estimates that HFTs collectively accumulate over $23 million in 

trading profits in the E-Mini S&P 500 futures contract during August 2010. Hirschey [24] 

uses a year of the trader-level data from the NASDAQ to examine return and trade patterns 

around periods of aggressive buying and selling by HFTs. The author demonstrates that HFTs 

earn profits by identifying patterns in trade and order data that actually allow them to front-

run the order flow and trade ahead of other market participants. Li [ 30] attempts to model the 

front-running HFTs and show that they effectively levy a speed tax on traditional traders, 

making markets less liquid and prices ultimately less informative. Moreover, when infinitely 

front-running HFTs compete, their negative implications on market quality persist and such 

negative implications are more severe when HFTs possess more heterogeneous speeds. In 

another computational experiment Leal et al. [28] build an agent-based model to analyse the 

interplay between low-and high-frequency trading and its implications on market dynamics. 

On the one hand, the authors observe that an increase in trading order cancellations leads to 
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higher volatility levels and more intense flash crashes. On the other hand, they also lead to 

faster price-recoveries which reduce the duration of flash crashes.  

Egginton et al. [14] examine all trades and quotes for NYSE and NASDAQ listed stocks for 

all trading days in 2010 and suggested that order cancellation is a pervasive process with 

several hundred events occurring during a trading day. They argue that during periods of 

intense order cancellation financial instruments experience decreased liquidity, higher trading 

costs and increased short-term volatility.  

Sun et al. [40] use tick level data of 105 stocks in the US market from January 2008 to 

October 2010 to show that HFT can reduce execution costs when supplying liquidity. 

Jarnecic and Snape [25] analyse the order submission strategies by HFTs and traditional 

traders in the limit order book by using the sample period from April 1, 2009 to June 30, 

2009 for FTSE-100 stocks and confirm our empirical results.  Their evaluations suggest that 

HFTs cancel orders of all durations from around the best quotes, thereby reducing the 

certainty of execution prices and making trading more difficult for non-HFT participants, by 

making prices more transient. Similarly, Han et al. [21] construct a simple model of market 

making in which high-frequency market makers rapidly cancel orders after receiving an 

adverse signal and observed that low frequency market makers widen the bid-ask spreads, 

thus leading to liquidity erosion.  

In a recent study, Fishe et al. [16] use WTI crude oil futures contract traded on the 

CME/Nymex exchange from September to December, 2011 to investigate whether there is a 

class of market participants who follow strategies that appear to anticipate local price trends. 

The authors demonstrate that there are anticipatory traders capable of processing information 

prior to the overall market and systematically act before other participants. Kumaresan and 

Krejic [27] examine the trading trajectories for atomic orders in an environment consisting of 
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several trading venues and carry out an optimization procedure to find the most optimal order 

placement solution for algorithmic trading orders. Although the authors claim that this is a 

significant computational breakthrough, they implement execution window measured in 

minutes, which does not seems to correspond with real-life HFT. In contrast to all other 

studies on the topic which typically rely on econometric tests only, we use an innovative 

STGP trading algorithm and millisecond data to demonstrate how HFT front-running 

scalping strategies operate in practice.  

 

Experimental design. 

Twenty years ago, the process in which financial instruments were traded was of simple nature: 

an investor deciding to buy or sell and transmitted this information to a broker, who then sends 

the order to an exchange, where bid and ask orders were matched and executed. All market 

participants had access to the same information about the bid-ask spread.  

Today’s brokers use trading algorithms to route different segments of an order to different 

exchanges at super human speed of milliseconds, microseconds and even nanoseconds. 

We use a special adaptive form of the Strongly Typed Genetic Programming (STGP), which 

enables us to choose and adjust different parameters to suit our specification, such as the 

minimum price increment, number of participants and their wealth, the level of transaction 

costs, and differing trading preferences. The exact number of evolutionary parameters that we 

can specify is listed in Table 1. We create simulated futures market, which is a hypothetical 

market with real-world market price data.    Each market participant in our experiment 

represents an artificial trader who is equipped with their own trading rule, where the selection 

of the best performing traders and the production of the new genomes is conducted through the 

recombination of the parent genomes by crossover and mutation operations, which are further 
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elaborated in Appendix A. The main idea is that the trader’s trading rule will improve by a 

natural selection process based on the survival of the fittest [31]. Hence, the evolutionary nature 

of the trading process and price dynamics enable the artificial traders to recognize, learn and 

exploit profit opportunities while continually adapting to the changing market conditions.  

Consequently, STGP trading algorithm evolves the model step-by-step by feeding it with 

millisecond quotes the E-Mini S&P 500, and therefore the forecasting models evolve 

mimicking the real-life futures market.  

 

The process of developing trading rules 

Initially, each individual trader has only one trading rule which is created randomly which 

enables the whole range of possible trading rules to be studied. To create later generations, we 

apply the crossover recombination technique and mutation operation, where the crossover 

recombination technique randomly chooses parts of two trading rules to exchange in order to 

create two new trading rules, and the mutation operation randomly changes a small part of a 

trading rule.  This process is repeated until at least one trading rule in the population achieves 

the desired level of fitness, measured by a trader’s investment return over a specified period. It 

should be noted that this initial random nature can result in the creation of meaningless trading 

rules or trading rules which cannot be evaluation thoroughly since they do not return the value 

that function needs.  Nevertheless, as Montana [35] notes, these programming issues can be 

resolved by the introduction of STGP, where the process requires the definition of a specific 

set to fit the problem. 

Each trading rule in our artificial futures market setting take historical millisecond prices of the 

E-Mini S&P 500 and generate advice which consists of the desired position which is estimated 
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as a percentage of the trader’s wealth and an order limit price for buying  and selling the 

financial instrument3.   

The trading rules logic comprises of information on price and volume, minimum, maximum 

and average functions related to millisecond price and trading volume data, and different 

logical and comparison operators.  In the conventional Genetic Programming (GP) procedure, 

trading rules are evaluated by the same fitness function in each generation.  In contrasts, the 

STGP evaluates the fitness of traders through a dynamic fitness function, which enables the 

return estimation period to move forward and include the most recent quotes in the markets.  

Sermpinis et al. [39] notes that having a novel fitness function is crucial in financial modelling, 

where statistical accuracy does not always correspond to financial profitability of the deriving 

forecasts. Also, while the GP replaces the entire genetic population through crossover and 

mutation techniques at a time, STGP only replaces a small proportion of the entire population 

which ensures a gradual change in population and thus greater model stability [31].   

Another important feature of the STGP is that each trader discovers the intrinsic value of the 

E-Mini S&P 500 individually without any communication between traders, ensuring 

individuality and that the level of intelligence of each artificial trader is not affected by other 

traders. This allows the development of more meaningful trading rules for both HFTs and 

institutional traders.  

  

Structure of the artificial futures  market and the differences between HFTs and 

institutional traders .  

We examine HFT front-running scalping strategies within the context of artificial futures 

market populated by 100,000 boundedly rational traders. All artificial traders in the model are 

                                                           
3 This process is further explained in subsections 3.2 and 3.3. 
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not orientated towards a predetermined formation of strategies and therefore are free to 

develop and continually evolve new and better trading rules through time.  Our artificial 

futures market is populated by 80,000 institutional traders and 20,000 HFTs (20 per cent of 

the total population based on the continuous Breeding Fitness Return).  

Both HFTs and institutional traders trading rules are created using STGP programming 

technique explained in Appendix A. However, the main difference between the two trading 

groups is that the HFTs’ group consists of the traders that momentarily perform best in terms 

of the continuous Breeding Fitness Return, and therefore they possess lower latency. 

Although the institutional traders and HFTs both observe the same millisecond data of the E-

Mini S&P 500 and generate trading orders, HFTs are able to access and process the data first 

due to their low latency features. In other words, HFTs are able to foresee the quotes of the E-

Mini S&P 500 and submit trading orders before institutional traders. The Breeding Fitness 

Return is a trailing return of a wealth moving average which determines the fitness rules of 

traders. This return is calculated over the last n quotes of data of an exponential moving 

average of traders’ wealth, where n is set to the minimum breeding age with a maximum of 

250. In the case where the age is less than n, no value is calculated. This particular type of 

return is used to measure the fitness criterion for the selection of traders to breed.  

Breeding is, in essence, a process of creating new artificial traders to replace poor performing 

ones based on the values derived from Equation (1) below. Both HFTs and institutional 

traders operate in the same market and accumulate wealth by investing in two financial 

instruments that are available in the artificial stock market – the risky E-Mini S&P 500 and 

the risk-free instrument represented by cash. Because our artificial futures market 

continuously evolve, traders with trading rules that perform well become wealthier, positively 

influencing the forecasting accuracy of the model. In each period, an artificial trader has 

wealth given by the following formula: 
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ܹ,௧ = ,௧ܯ + ௧݄ܲ,௧ (1) 

where ܹ ,௧ is the wealth accumulated by trader ݅ in period ܯ ;ݐ,௧ and ݄ ,௧ represents the 

money and the amount of the E-Mini S&P 500 held by artificial trader ݅ respectively, in 

period ݐ, and ௧ܲ is the price of the E-Mini S&P 500 in period ݐ. 
 

 

The clearing mechanism and order generation for the artificial futures market.  

Our artificial futures market is a simulated double auction market, where all the buy and sell 

orders are collected.  The artificial traders receive historical quotes of the E-Mini S&P 500 

and evaluate their trading rule and subsequently calculate the number of contracts they need 

to buy or sell. If contracts need to be bought or sold, an order is generated to buy or sell the 

required amount determined by the specified limit price.  For example, if a trader holds 1,000 

contracts of the E-Mini S&P 500 which is priced at $38.50 and has $80,000 in cash, their 

wealth is $118,500 and their position in E-Mini S&P 500 is 32.5%. If the trading rule 

generates a signal of a position of 50% and a limit price of $38.50, the limit order will be 

produced to purchase 5394 additional E-Mini S&P 500 contracts with a price of $38.50. The 

artificial futures market then calculate the clearing price and all trading orders are executed at 

the clearing price which is where the highest trading volume from limit orders can be 

matched.   

In cases when the clearing price can be matched at multiple price levels, then the clearing 

price is the average of the lowest and highest of those prices.  The number of contracts 

purchased by traders is always equal to the number sold by other traders and if the number of 

                                                           
4 50% * (118,500/38.50) – 1000 = 539 contracts. 
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contracts offered and the number of contracts asked are not equal, the remaining orders will 

be partially executed.  Therefore the orders at the clearing price will be selected for execution 

with priority for market orders over limit orders, and then on a first-in-first-out (FIFO) basis.  

In the unlikely event of no matching limit orders, no market orders are executed and the 

artificial futures market price will be the price of the previous quote [31]. As in real-life E-

mini market, there is no designated market maker and there are no short-selling constraints.  

 

Description of data and transaction costs.  

The dataset used in this study consist of real-life millisecond data of the E-Mini S&P 500 

from February, 2014 to December, 2014. We obtained the data from Nanex 

(www.nanex.net). We only select the front-month dataset for each month – the contract with 

the nearest expiration date. The E-Mini S&P 500 expirations months are March, 2014; June, 

2014; September, 2014; and December, 2014. For empirical investigation we focus on 

February, 2014, which has a March, 2014 expiration; May, 2014, which has a June, 2014 

expiration; August, 2014, which has a September, 2014 expiration and November, 2014, 

which has a December, 2014 expiration. This allows us to exclude months in which the 

leading contract expires in order to eliminate the rollover effect. Although the E-Mini S&P 

500 trades virtually round the clock, we only consider millisecond data during regular market 

hours when the markets of the underlying equities of the S&P index are open and before the 

daily halt in trading: weekdays from 8:30 a.m. to 3:15 p.m. Central Standard Time (CST). 

Each contract has a multiplier of $50 times the value of the underlying S&P 500 index, and 

therefore a contract with an index value of 1,000 suggest that the futures contract is valued at 

$50,000. The tick size in E-Mini S&P 500 is 0.25 index points. Hence, considering the $50 

multiplier, a one tick change is equal to $12.50.  

http://www.nanex.net/


14 | P a g e  

 

The STGP trading algorithm processed 18,655,490 trading messages stamped at the 

millisecond interval for the E-Mini S&P 500 in February, 2014; 22,878,525 trading messages 

in May, 2014; 27,368,175 trading messages in August, 2014; and 16,282,009 trading 

messages in November, 2014.   

Baron et al. [2] report that the cost of exchange fees per contract is $0.155. We employ 

transaction costs of $0.20 per contract for our profit calculations. Although slightly higher 

than the current standards, the level of transaction costs takes into account the costs of HFT 

companies. These include software platforms, labour and risk management systems but does 

not include co-location of services (Aitken et al.[1] argue that the presence of HFT leads to 

the introduction of co-location services).  

 

Experimental results 

Traders’ activity on artificial futures market.   

The aim of this section is to investigate artificial traders’ activity on our futures market, 

which has been designed to run in parallel with real-life futures market. All empirical tests 

below are based on data generated by the STGP trading algorithm for HFTs and institutional 

traders. 

First, we examine what happens to the limit orders of the E-Mini S&P 500 after they are 

submitted to the artificial futures market. Let ߬ denote the time between order submission and 

cancellation. The probability of cancellation in the interval (0,  is represented by the [ݐ

distribution function: 

                                                           
5 The E-Mini S&P 500 futures market does not involve marker – taker transaction costs unlike most equity 
markets.  
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ܲ(ݐ) = Pr (߬   (2) (ݐ

We extract all trading activity generated by the STGP trading algorithm for the E-Mini S&P 

500 to estimate the distribution function using the life-table method, and taking execution as 

the censoring event. In contrast to all other studies we are able to observe and count the 

number of executed and cancelled orders by extracting generated data from the STGP trading 

algorithm.  

Table 2 shows that a large number of limit orders submitted by HFTs are cancelled almost 

immediately after submission. Table 2 reports that, ܲ(50), the probability of 

cancellation within 50 milliseconds is 0.918. By the time 500 milliseconds have elapsed, this 

probability dramatically decreases to 0.056. At the same time the probability of cancellation 

for institutional traders measured at 50 milliseconds is 0.001 increasing to 0.028 at 500 

milliseconds. A comparison of cancelled orders by HFTs and institutional traders indicates 

that HFTs cancel substantially larger proportion of orders after a very short duration. The 

extremely high level of cancelled orders indicates the high level of aggressiveness of HFTs in 

exploiting the orders placed by institutional traders on the artificial futures market. This is 

consistent with Hasbrouck and Saar [22] who suggests that over one third of limit orders are 

cancelled within two seconds by HFTs.  

In addition, Leal et al. [28] highlight that this type of empirical results stimulates the 

occurrence of high bid-ask spreads in the market, thus increasing the likelihood of a 

significant decrease in the price of any financial instrument. A direct comparison between 

cancelled and executed orders indicates that execution seems the less probable event for all 

time intervals. Furthermore, Jarnecic and Snape [25] report that short duration orders 

contribute to the difficulty of trading by non-HFT participants by lifting quotes and inhibiting 

the certainty of long-term investors when attempting to demand liquidity. This finding 

motivates us to examine the exact location of short duration orders to find out whether HFTs 



16 | P a g e  

 

operate with those orders inside the spread. This type of analysis is important due to the fact 

that frequent removal of orders located within the spread can reduce the certainty of the 

execution price for institutional traders trying to demand liquidity.  

Table 3 report that order cancelations are present inside or at the best quotes, and this finding 

is substantially more pronounced for HFTs measured up to 50 milliseconds. HFTs generate 

71.24% of order cancellations within the quoted prices, and a further 18.49% at the best 

quotes. The empirical results in Table 4 reveals that for orders that are cancelled with greater 

than 50 millisecond frequency, the percentage for orders cancelled by HFTs decreases to 

63.28% inside the best price and a further 15.01% at the best quote. We observe the opposite 

trend with institutional traders.  

They increase the amount of cancelled limit orders within the best quote from 8.10% 

measured up to 50 milliseconds to 12.53% with frequencies greater than 50 milliseconds. 

These findings indicate that HFTs frequently cancel trading orders of different durations but 

more often cancel recently placed orders from around the best quotes. As a result, the 

certainty of execution prices has been substantially reduced making prices more transient and 

imposing trading obstacles for non-HFT participants. Moreover, frequent order cancellation 

creates a false sense of supply and demand for the E-Mini S&P 500. By quickly cancelling a 

large number of orders within the 50 millisecond interval, HFTs could create potentially 

exploitable latency arbitrage opportunities.  

Budish et al. [6] report that there are about 800 such arbitrage opportunities per day in the 

two largest securities that track the S&P 500 index alone – the E-Mini S&P 500 and the 

iShares SPDR S&P 500 exchange traded fund, totalling $75 million per year.  
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Traders’ profitability  in artificial futures market .   

The aim of this section is to measure the level of profitability of artificial traders operating in 

futures markets. All empirical tests below are based on data generated by the STGP trading 

algorithm for HFTs and institutional traders. 

One of the most important characteristics of high frequency millisecond data is the high 

presence of no price changes in the E-Mini S&P 500. We take into account this market 

inactivity by modifying the Student’s t distribution associated with the standardized residuals: 

݂ ർא௧ߪ௧ ቚߜ௧ = ௧ߜ   if} = 1 (3) 

                                                                            Or 

݂ ർא௧ߪ௧ ቚߜ௧ = ൜݃௩(א/ఙ)

1 െ   if ߜ௧ = 0 (4) 

where ݃ ௩() measure the Student’s density function; א௧ represents the residuals of the time 

series; ߪ௧ is the standard deviation of the time series;  represents the probability of a 

sequence of two zero returns; ߜ௧ measure market inactivity as follows: 

௧ߜ = ቄ1
0

  if, otherwise (5) 

If ௧ߜ  = 1, the forecast ݔ௧ା|௧ = 0 for ݅ =  .[32] ڮ1,2

Given the large amount of millisecond trading messages, an important issue that arises is the 

Lindley’s paradox. This phenomenon can potentially lead to overstatement of statistical 

significance and a tendency to reject the null hypothesis even when the posterior odds favour 

the null.  

Connolly [10] proposes the following equation to overcome the issue and estimate sample 

size adjusted critical values for t statistics: 
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כݐ = ൣ(ܶ െ ݇)൫ܶଵ/் െ 1൯൧ଵ/ଶ
 (6) 

where T is the sample size; k measure the number of estimated parameters. The null 

hypothesis is the posterior probability, which is the statistical probability that a hypothesis is 

true computed in the light of relevant observations. We implement large-sample adjustments 

to the critical t-values in order to avoid overstatement of statistical significance. If a 

calculated test statistic exceeds the appropriate critical value from Equation 6, the sample 

evidence is said to favor the alternative hypothesis. First, in order to evaluate statistically the 

forecasting abilities of HFTs and institutional investors, we estimate the Root Mean Square 

Error (RMSE), the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error 

(MAPE). For all three of the error statistics retained, the lower the output, the better the 

forecasting accuracy of the model: 

ܧܵܯܴ = ඩ1݊  ( ఛܻ െ ௧ܻ)ଶ௧ା
ఛୀ௧ାଵ  

 

(7) 

 

ܧܣܯ = ൬1݊൰  | ఛܻ െ ௧ܻ|௧ା
ఛୀ௧ାଵ  

(8) 

 

ܧܲܣܯ =
1݊  ฬ ఛܻ െ ௧ܻ௧ܻ ฬ௧ା
ఛୀ௧ାଵ  

(9) 

where ܻ ௧ represents the actual values of the price of the E-Mini S&P 500;  ܻ ఛ is the forecasted 

values of the price of  the E-Mini S&P 500. When difference between actual and forecasted 

values of the price of the E-mini S&P 500 is far off, RMSE, MAE and MAPE are bigger 

values and therefore the forecasts are less accurate. A direct forecasting comparison between 
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HFTs and institutional traders indicate the superiority of the former. The RMSE, MAE and 

MAPE for HFTs are significantly smaller than the errors produced by institutional traders 

(Table 5).  

Table 5 illustrate that the HFTs presents the best statistical results in all four months under 

investigation for the E-Mini S&P 500.  HFT scalping strategies trading the E-Mini S&P 500 

in August, 2014 outperform the other three months measured by the lowest forecasting errors. 

We compute the modified Diebold-Mariano (MDM) test, which is an extension of the 

Diebold and Mariano [12], test to verify the statistical significance of the above analysis. 

Under the null hypothesis of the test is the equivalence in forecasting accuracy between 

several models: 

ܯܦܯ = ܶିଵ/ଶ[ܶ + 1െ 2݇ + ܶିଵ݇(݇ െ 1)]ଵ/ଶ(10) ܯܦ 

where ܶ  represents the number millisecond trading messages for the E-Mini S&P 500 in 

February, 2014; May, 2014; August, 2014; and November, 2014; ݇ the number of the one-

step-ahead forecasts; DM represents the Diebold-Mariano test which compares the forecast 

accuracy of two forecast methods. The null hypothesis under the test is that they have the 

same forecast accuracy. A negative value of the MDM test suggests that the first forecast is 

more accurate than the second forecast. We apply the MDM test to measure the predictive 

abilities of HFTs vs. institutional traders.  

The test measures each period with student distribution of T-1 degrees of freedom (MSE and 

MAE are used as loss functions). Table 6 presents the statistics for the four months under 

investigation, comparing the performance of HFTs with institutional traders. Table 6 

indicates that the null hypothesis of the modified Diebold-Mariano test of equal forecasting 

accuracy has been rejected for all comparisons and for both loss functions at the 1% level of 
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significance. Moreover, the statistical superiority performance of HFTs’ strategies is 

confirmed by the negative values of the MDM statistic for both loss functions.  

The RMSE, MAE and MAPE are all important error measures, yet they may not correspond 

to profits. We therefore calculate the daily profits generated by HFTs and institutional traders 

for the most traded five days in each month (full trading volume reported in Appendix B).  

Daily profits for each market participant, ݅, are estimated for each trading day, ݐ, based on 

marked-to-market accounting, taking into consideration the fact that every HFT and 

institutional trader begins each trading day with a zero inventory position.  

Baron et al. [2] suggest that a marking-to-market modelling mechanism is an appropriate 

profit measuring tool for market participants who end the trading day with a zero inventory. 

We estimate the end of the day profits for both artificial trading groups as the cumulative 

cash received from selling short positions minus the cash gained from buying long positions, 

plus the value of any outstanding positions at the end of the trading day, marked to the market 

price of the E-Mini S&P 500 at close of trading:  

,௧ߨ = ݕ,ே,
ୀଵ +  ்,ݕ்

(11) 

where ݊ = ڮ,1 , ܰ,் denotes the trades for trader ݅ from the start of the trading day to the 

end of the trading day;  represents the price of the trade; ݕ, measures the quantity of the 

n-th trade generated by trader ݅; ݕ்,் is the value of any outstanding positions at the end of 

the day. Transaction costs of $0.20 per contract are taken into account. Table 7 shows that 

HFTs generate significantly higher profits than institutional traders for the E-Mini S&P 500 

in all four months.  

We observe that HFTs’ profits are higher due to their higher speed friction ߛ. Here, higher ߛ 

means more severe HFTs’ front-running. Li [30] defines the speed friction as: 
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ߛ = ቌȽ൫1 െ Ƚ൯ෑ(1െ ଵ)ଶିଵߙ
ୀ ቍ

ୀଵ  
(12) 

where Ƚ =
ೕೕశభ is the equilibrium fast trading intensity for all ݆. The speed friction is not 

affected by the other parameters and is determined entirely on the fast traders’ speed profile ൛݊ଵ,݊ଶ,ڮ , ݊ൟ. The profits of HFTs come from the price impact of institutional trades in our 

artificial futures market. This finding is consistent with Baron et al. [2], who claim that 

trading the E-Mini S&P 500 is a zero-sum gain: one trader’s profit comes directly at the 

expense of another trader. Furthermore, Li [30] argues that in the presence of more 

fundamental uncertainty, the price impact of trades is higher and front-running an order is 

more profitable. At the same time when there is more noise trading on the market, the trading 

volume is higher and there are more trading orders available for front-running.    

While HFT scalping strategies are very profitable, they might carry some risk on a day-to-day 

basis. The standard deviation of the profits (Table 8) reports a wide variety of different 

values, with the highest variation of profits ($391) generated by HFTs in August, 2014. We 

estimate the probability of default for both groups of traders as an arithmetic Brownian 

motion with constant drift ߙ and constant volatility ߪ. Considering the fact that the daily 

profits for August, 2014 are normally distributed with mean ߙ = $391, standard deviation ߪ = $7.50, and the initial wealth
 
( ܸ) of all artificial traders is $100,000, we can estimate the 

probability of HFTs’ default in August by implementing the following formula based on the 

theory of hitting times by Karlin and Taylor [26].   

(ݐ݈ݑ݂ܽ݁݀) = exp ൬െ2ߙ ܸߪଶ ൰ (13) 

By calibrating Equation (13) to the values of ߪ ,ߙଶ, and ܸ  listed in Table 8, we find that 

HFTs’ probability of default is virtually zero.  
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Although trading profits reported in Table 7 give us an idea of the real magnitude of HFTs’ 

profits, risk-adjusted performance is of prime importance. The monthly Sharpe ratio for HFTs 

and institutional traders has been calculated as: 

ܴܵ,௧ =
,௧ݎ െ ߪݎ כ ඥ252/12 (14) 

where ݎ,௧ represents the average daily return estimated from the daily profit;   is theߪ 

standard deviation of trader ݅Ԣݏ return over the sample period; ݎ is the risk-free rate set at the 

value of the daily continuously compounded rate converted from the annualised investment 

yield on a one-month US Treasury bill (data up to 31st December, 2014 has been downloaded 

from the Federal Reserve statistical release website at www.federalreserve.gov/releases/h15). 

Table 9 illustrates that HFTs have the highest risk-return tradeoff, generating a Sharpe ratio 

of 1.99 in August, 2014. Hence, we conclude that while HFTs bear some minimum risk, their 

risk-adjusted returns are much higher than institutional traders within artificial futures market 

settings.  

To examine the trading horizon of HFTs in the most profitable month, we follow Hasbrouck 

and Sofianos [23] and decompose their profits in August, 2014 (based on most traded five 

days) over different time frames by applying spectral analysis. The timeframe over which 

HFTs generate their profits provides more specific details about their trading strategies. 

Spectral analysis view marked-to-market profits as a function of two different time series 

such as prices and the level of inventory, which can vary at different frequencies.  

Similar to Baron et al. [2], we implement Fourier analysis to decompose prices and 

inventories into groups of different frequencies. In the case when the two time series, prices 

and inventories are in the same phase (HFTs buy before the price of the E-Mini S&P 500 

increases) they generate profits. If the two time series are not in a phase (HFTs buy before the 

http://www.federalreserve.gov/releases/h15
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price of the E-Mini S&P 500 decreases) they experience losses. Marked-to-market profits for 

HFTs can be expressed as:   

ఛߨ =  ௧)௧ݔ െ (௧ିଵ =  ௧ݔ ή ο௧ఛ௧ୀఛ௧ୀ  
(15) 

where ݔ௧ represents the inventory holdings of HFTs at time ݐ and ௧ is the price of E-Mini 

S&P 500 at time ݐ. One of the requirements of the spectral analysis is the stationarity of ݔ௧ 
and ο௧. This requirement has been satisfied because HFTs’ inventories (ݔ௧) is a mean-

reverting process and the first difference of the prices process denoted as ο is a martingale 

difference sequence. We follow Baron et al. [2] and develop the following two functions: 

(߱)ݔ ௧݁ଶగ௧ఠ/்௧்ୀݔ  
(16) 

ο(߱) =  ο௧ାଵ݁ଶగ௧ఠ/்௧்ୀ  

 

(17) 

where ߱  represents the frequency of different groups; ݔො(߱) and ο(߱)
 
are the two spectral 

densities of the ݔ௧ and ௧. We apply Fourier analysis to Equation (17) and obtain the 

following: 

்ߨ =
1ܶ (߱)ොݔ

ஶఠୀଵ ο(߱) =
1ܶ 2 כ ((߱)ො(߱)οݔ)݈ܴܽ݁

ஶఠୀଵ  
(18) 

Where, Real represents a function that takes a real part in a complex number; 2  is the component of the marked-to-market profits generated by HFTs at ((߱)ො(߱)οݔ)݈ܴܽ݁כ

frequency ߱ . The second equality in Equation (18) is a result based on the fact that an 

imaginary part of ݔො(߱)ο(߱) is equal to zero.   

Table 10 shows that in August, 2014 HFTs make the largest profits of $630 at the very short 

interval between 0 and 50 milliseconds and the smallest profits of $42 at the longest time 

scale between 3,501 and 4,000 milliseconds. Therefore, the HFTs do not try to infer the long-



24 | P a g e  

 

term fundamental value of the E-Mini S&P 500 but emphasize entirely on capturing short-

term price dynamics. We have found that HFTs’ profits are not determined by the difference 

between their entry price and the fundamental value of the three assets, but by the difference 

between their entry and exit prices.  

The results of spectral analysis are consistent with the notion that HFTs generate profits by 

anticipating and front-running the order flow. Narang [36] have estimated that front-running 

generates $1.5 to $3 billion in annual profits for HFTs in the US equity market alone. To 

examine the actual persistence of HFTs’ profits in August 2014, we investigate whether 

profits from a previous day’s trading are a good predictor of the current day’s profits. This is 

an important robust exercise because persistent profits distributed over time indicate that 

HFTs will extend their strong performance in the future at the expense of institutional traders.  

Baron et al. [2] propose the following OLS regression which we implement in our 

examination for persistence of HFTs’ profits: 

,௧ݐ݂݅ݎܲ = ߙ + ,௧ିଵݐ݂݅ݎଵܲߚ + ,௦ݏݏ݁݊݁ݒ݅ݏݏ݁ݎ݃݃ܣଶߚ + ,௧݁݉ݑ݈ଷܸߚ
+ ௦,௧ݕݐ݈݅݅ݐ݈ܽସܸߚ +  ,௧ (19)ߝ

where ܲ (ݏݐ݂݅ݎ)݊݃݅ݏ ,௧ represents modified log profits such asݐ݂݅ݎ כ log (1 +  (|ݏݐ݂݅ݎ|

to incorporate any negative profits;  ܸ݁݉ݑ݈,௧ is the log of each artificial trader’s trading 

volume for day ݁݉ݑ݈ܸ ;ݐ,௧ denotes the price volatility for day ݐ defined as the volume-

weighted standard deviation of the price process for the same day; ݏݏ݁݊݁ݒ݅ݏݏ݁ݎ݃݃ܣ,௦ 
represents the trader ݅Ԣݏ volume-weighted aggressiveness ratio. The univariate results for the 

HFTs’ profits in August, 2014 (Table 11) reveal statistical significance indicating that one-

day lagged performance is a good predictor of the current day’s performance. Similarly, the 

statistical significance of the control variables ܸ݁݉ݑ݈,௧, ܸ  ,௦ demonstrates the persistence of HFTs’ profitability because theݏݏ݁݊݁ݒ݅ݏݏ݁ݎ݃݃ܣ ௦,௧ andݕݐ݈݅݅ݐ݈ܽ
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specification with control variables maintains the statistical significance from the univariate 

regression results.  This finding indicates that profitability is persistent even after controlling 

for time effects. This is in line with the findings of Baron et al. [2] but opposite to Chae et al. 

[7], who point out that algorithmic traders incur losses by trading.  

The ever-increasing demand for speed and technological improvements creates an arms race 

issue and raises questions whether the speed of incorporating information into the market at 

the millisecond timeframe has any social value. In 2010, an American company named 

Spread Networks invested $300 million in a new high-speed fiber optic cable in order to 

reduce round-trip communication time between New York and Chicago from 16 milliseconds 

to 13 milliseconds. In 2015, several HFT companies invested in microwaves rather than fiber 

optic cable due to the fact that the light travels faster through air than glass. The new 

microwave technology helps decreasing transmission time from 13 milliseconds to 8.1 

milliseconds. Similar speed races in financial markets occur on a regular basis, often 

measured at microsecond (millionth of a second) and even nanosecond (billionth of a second) 

timeframes. As a benchmark to this superhuman speed of trading we would like to highlight 

that the blink of a human eye lasts approximately 400 milliseconds. Delaney [11] uses 

techniques from real options analysis to provide insights into the optimal time traders should 

invest in high frequency technologies. From a social welfare perspective, in order to be 

socially optimal, traders should wait longer when the cost of technology is very high and the 

level of and HFT is also high. Furthermore, the author shows that the level of HFT always 

exceeds the socially optimal welfare level.  

Biais et al. [3] provide an analysis of the implications of a Pigovian tax (a tax applied to 

market activity that is generating negative externalities) on HFT and demonstrate that the 

socially optimal level of HFT would be reached if the tax imposed is equal to the externalities 

generated by HFT. On 6th of May, 2010 the front-month of June E-Mini S&P 500 
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experienced dramatic decline of 5.1% within a 13 minute period. A cascade of executed 

orders decreased further the price of the E-Mini S&P 500 to 6.4%. The next executed order 

triggered the CME Globex Stop Logic Functionality, which pauses execution of all orders for 

5 seconds, if the next transaction were to execute outside the price range of 6 index points. 

During this pause of 5 seconds (named the ‘Reserve State’) the market is still open and 

market participants are allowed to submit, modify or cancel trading orders. However, 

execution of pending trading orders is delayed until actual trading resumes after 5 seconds.   

To mitigate the negative consequences of HFTs and eliminate front-running, we propose the 

following regulatory measures. First, based on our empirical findings, we propose a cooling-

off period of less than 50 milliseconds rather than ‘Reserve State’ of 5 seconds6. The current 

regulatory debates include a cooling-off period of 500 milliseconds. To minimize the number 

of cancelled orders, market regulators worldwide are currently discussing a so-called 

minimum resting trading order period. This would require an order to stay on an order book 

for 500 milliseconds eliminating traders who operate at much faster speeds.  However, both 

the proposed minimum resting trading order period of 500 milliseconds and the current 

‘Reserve State’ practice of 5 seconds does not seem to be efficient when compared to our 

empirical findings.  

Robustness checks.   

To examine the robustness of our empirical findings we modified some of the artificial 

market parameters. Panel A of Table 12 shows the rate of cancellation and execution of limit 

orders by 10,000 HFTs (10% of the total population, genome depth of 10 and genome size of 

2,048) and 90,000 institutional investors (90% of the total population, genome depth of 10 

                                                           
6 Our policy recommendation is based on trading orders executed at the millisecond interval only. With recent 
technological improvements in software and hardware trading orders are executed at the microsecond and even 
nanosecond intervals. Therefore our policy recommendation may not be efficient at these timeframes.  
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and genome size of 2,048). The probability of cancellation within 50 milliseconds, 

ܲ(50) is 0.702, compared to the probability of cancellation of 0.918 in a market 

populated with 20,000 HFTs and 80,000 institutional investors.  

Panel B of Table 12 illustrate the rate of cancellation and execution of limit orders by 40,000 

HFTs (40% of the total population, genome depth of 40 and genome size of 8,192) and 

60,000 institutional investors (60% of the total population, genome depth of 40 and genome 

size of 8,192). The probability of cancellation within 50 milliseconds in this case is 0.994, 

compared to the probability of cancellation of 0.918 in a market populated with 20,000 HFTs 

and 80,000 institutional investors. 

Our robustness profitability checks in Table 13 suggest that reduced number of HFTs (10% 

of the total population) operating in the artificial futures market is leading to decreased 

profitability in all four front-months of the E-Mini S&P 500 in 2014. We observed increased 

profitability in all front-months under investigation when we introduced more HFTs to the 

market. Our profit-based estimations in Table 14 shows that the greater the number of HFTs 

in the market, the higher the profits.  These findings indicate that greater presence of HFTs in 

the market is leading to cancellations of larger proportions of trading orders and greater 

profitability. This is in line with our initial empirical results.  

Conclusions 

Rapid improvements in the technological base for generating and executing trading orders 

dramatically increased the speed and sophistication of the trading tools available to market 

participants. Making an accurate bid or ask call in the futures markets is no longer a sufficient 

condition for generating profits. Determining a fast-moving opportunity in front of the other 

market participants seems to have the greatest influence. However, the practice of computers 

running futures markets raised concerns among investors and regulators around the world.  
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In this study, we simulate real-life trading within artificial futures market settings and observe 

that HFTs generate a large number of cancelled orders within 50 milliseconds which may 

make trading more difficult and costly for institutional traders who lack access to 

sophisticated software platforms for HFT. We have found that HFTs are a major user of very 

short duration orders that are frequently cancelled from inside or at the best quotes. This 

particular trading behaviour reduces the certainty of execution and imposes trading obstacles 

for institutional traders by making the price of the E-Mini S&P 500 more transient. A direct 

forecasting comparison between HFTs and institutional traders indicate the superiority of the 

former. Our spectral analysis confirms that HFTs generate profits by front-running the order 

flow. If one group of market participants such as HFTs generates faster access to the order 

flow than institutional traders, those participants with their lower latency would have an 

unfair advantage in the marketplace. Overall, a high level of cancelled orders combined with 

scalping strategies could impose severe picking-off risks for undisclosed trading orders and 

may make them very inefficient.  

In terms of market regulation, we think that the introduction of a minimum resting trading 

order period of less than 50 milliseconds could impose an obstacle for profit generation of 

HFTs. Minimum resting trading order period of less than 50 milliseconds could lead to HFTs 

facing a queuing risk resulting in a less harmful market quality effect. One practical 

implication of our study is that we demonstrate that market regulators can apply artificial 

intelligence tools such as STGP to conduct trading behaviour-based profiling. This can be 

used to detect the occurrence of new HFT strategies and examine their impact on the futures 

market. 
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                                                               Appendices 

                                                             Artificial stock market parameters 

Total population size (traders)  100,0000 
HFTs’ size(percentage of the total population) 20% 
Initial wealth(equal for all traders) 100,000 
Transaction costs $0.20 per contract 
Significant Forecasting range 0% to 10% 
Number of decimal places to round quotes on 
importing 

2 

Minimum price increment for prices generated by 
model 

0.01 

Minimum position unit 20% 
Maximum genome size 4096* 
Maximum genome depth 20**  
Minimum initial genome depth 2 
Maximum initial genome depth 5 
Breeding cycle frequency (quotes) 1 
Minimum breeding age (quotes) 80***  
Initial selection type random 
Parent selection (percentage of initial selection that 
will breed)  

5%****  

Mutation probability (per offspring)  10% 
Total number of millisecond quotes processed- E-
Mini S&P 500, February, 2014 

18,655,490 

Total number of millisecond quotes processed- E-
Mini S&P 500, May, 2014 

22,878,525 

Total number of millisecond quotes processed- E-
Mini S&P 500, August, 2014 

27,368,175 

Total number of millisecond quotes processed-E-
Mini S&P 500, November,2014 

16,282,009 

Creation of unique genomes Yes 
Offspring will replace the worst performing traders 
of the initial selection   

Yes 

 
* Maximum genome size measure the total number of nodes in a trader’s trading rule. A node is a gene in the 
genome such as a function or a value.  

**  Maximum genome depth measures the highest number of hierarchical levels that occurs in a trader’s genome 
(trading rule). The depth of a trading rule can be an indicator of its complexity.  

***  This is the minimum age required for agents to qualify for potential participation in the initial selection. The 
age of a trader is represented by the number of quotes that have been processed since the trader was created. 
This measure also specifies the period over which agent performance will be compared. Our minimum breeding 
age is set to 80, which means that the trader’s performance over the last 80 quotes will be compared.   
 
****  5% of the best performing traders of the initial selection that will act as parents in crossover operations for 
creating new traders.  
 

 Table 1. Artificial futures market parameter settings. 
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Time (milliseconds) Cancellation Execution 
                                                                                                          HFTs 
                  0-50 0.918 0.069 
                51-100 0.824 0.040 
                101-200 0.667 0.023 
                201-300 0.211 0.017 
                301-500 0.056 0.005 
                                                                                            Institutional traders  
                   0-50 0.001 0.016 
                 51-100 0.014 0.099 
                101-200 0.018 0.174 
                201-300 0.021 0.388 
                301-500 0.028 0.779 

This table presents cumulative probabilities of cancellation and execution within the millisecond interval. Data has been generated and 
extracted from the STGP trading algorithm for the front-month of the E-Mini S&P 500 (February, 2014; May, 2014; August, 2015 and 
November, 2014). The probabilities are estimated as 1 െ ܵ where ,(ݐ)ܵ  represent the survival function of cancellation and execution. In (ݐ)
order to calculate the survival function we extracted all trading activity for E-Mini 500 S&P 500 generated by STGP trading algorithm and 
used the life-table method.   

Table 2. The rate of cancellation and execution of limit orders by HFTs and institutional traders 
generated by STGP trading algorithm for the E-Mini S&P 500’s front-month (February, 2014; May, 
2014; August, 2014 and November, 2014).   

 

 

 

                                                                                 Cancellations with durations ≤ 50 milliseconds  
                                                                                                            HFTs  
Order location Percentage of orders 
Inside best 71.24* 
At best 18.49* 
                                                                                                Institutional traders  
Inside best 28.31* 
At best 8.10* 

This table reports the location and percentage of cancelled limit orders by HFTs and institutional traders for E-Mini S&P 500. The 
significance of the differences between HFT s and institutional traders are estimated using z-statistics for comparing two proportions. * 
indicates statistical significance at the 1% level.   

Table 3. Location of cancelled limit orders (≤50 milliseconds) generated by STGP trading algorithm 
for the E-Mini S&P 500’s front-month (February, 2014; May, 2014; August, 2014 and November, 
2014).  

 

                                                                              Cancellations with durations  > 50 milliseconds  
                                                                                                           HFTs 
Order location Percentage of orders 
Inside best 63.28* 
At best 15.01* 
                                                                                                   Institutional traders  
Inside best 19.18* 
At best 12.53* 

This table reports the location and percentage of cancelled limit orders by HFTs and institutional traders for E-Mini S&P 500. The 
significance of the differences between HFTs and institutional traders are estimated using z-statistics for comparing two proportions. * 
indicates statistical significance at the 1% level.   

Table 4. Location of cancelled limit orders (> 50 milliseconds) generated by STGP trading algorithm 
for the E-Mini S&P 500’s front-month (February, 2014; May, 2014; August, 2014 and November, 
2014).  
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Forecasting error RMSE MAE  MAPE 
                                                                                        February 2014 
HFTs 0.0008 0.0007 14.21% 

Institutional traders  0.0029 0.0025 44.17% 

                                                                                           May 2014 
HFTs 0.0009 0.0006 19.88% 

Institutional traders  0.0037 0.0031 38.24% 

                                                                                          August 2014 
HFTs 0.0005 0.0003 10.06% 

Institutional traders  0.0027 0.0022 47.99% 

                                                                                        November 2014 
HFTs 0.0010 0.0008 20.11% 

Institutional traders  0.0039 0.0020 49.57% 

 

Table 5. Summary of HFTs and institutional traders forecasting statistical performance of the E-Mini 
S&P 500’s front-month (February, 2014; May, 2014; August, 2014 and November, 2014).  

 

 

 

 

Diebold-Mariano MDM 1 MDM 2 
                                                                                   February 2014 
Institutional traders  -9.14* -10.07* 
                                                                                       May 2014 
Institutional traders  -8.63* -9.99* 
                                                                                     August 2014 
Institutional traders  -4.22* -5.78* 
                                                                                   November 2014 
Institutional traders  -7.54* -8.10* 

MDM 1 and MDM 2 are the statistics estimated for the MSE and MAE loss functions. While MSE and MAE are used as loss 
functions, the modified Diebold-Mariano (MDM) test follows the student distribution with T-1 degrees of freedom. The 
table represents the application of the MDM test to the two forecasting models: HFTs vs. institutional traders. Negative 
values of the MDM test suggest that the first forecasting model (HFTs) is more accurate than the second model. The lower 
the negative value the more accurate are the HFTs’ forecasts. * indicates rejection of the MDM null hypothesis of equal 
forecasting accuracy.    

Table 6. Summary results of modified Diebold-Mariano statistics for the E-Mini S&P 500’s front-
month (February, 2014; May, 2014; August, 2014 and November, 2014). 
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Date HFTs Institutional traders  
                                                                                                         February 2014 
05/02/2014 $317 $26 
11/02/2014 $303 $47 
19/02/2014 $299 $33 
21/02/2014 $300 $30 
27/02/2014 $289 $29 
                                                                                                              May 2014 
01/05/2014 $287 $22 
08/05/2014 $280 $20 
09/05/2014 $301 $29 
15/05/2014 $293 $34 
19/05/2014 $299 $28 
                                                                                                             August 2014 
04/08/2014 $390 $30 
12/08/2014 $397 $32 
21/08/2014 $386 $23 
26/08/2014 $381 $31 
28/08/2014 $399 $35 
                                                                                                            November 2014 
06/11/2014 $251 $20 
12/11/2014 $247 $19 
20/11/2014 $238 $23 
24/11/2014 $240 $18 
25/11/2014 $233 $25 

This table reports the daily profits by HFTs and institutional traders. All daily profits are estimated as the difference between the prices at 
which HFTs and institutional traders bought and sold shares of E-Mini S&P 500. We follow Baron et al. [4]: 

,௧ߨ = ݕ, + ,்ே,ݕ்
ୀଵ  

where ݊ = 1, � , ܰ,் denotes the trades for trader ݅ from the start of the trading day  to the end of the trading day;  represent the price of 
the trade; ݕ, measure the quantity of the n-th trade generated by trader  ݅; ݕ்,் is the value of any outstanding positions at the end of the 
day. Transaction costs of $0.20 per contract are taken into account.   

 

Table 7. Daily profits based on the most traded five days in each month by HFTs and institutional 
traders generated by STGP trading algorithm for the E-Mini S&P 500’s front-month (February, 2014; 
May, 2014; August, 2014 and November, 2014). 
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Statistics HFTs Institutional traders  
                                                                                                       February 2014 
Mean $301*** $33***  
Median $300 $30 
Standard Deviation $10.09 $8.21 
Skewness 0.44 1.16 
Kurtosis 2.46 2.82 
                                                                                                          May 2014 
Mean $292*** $27***  
Median $293 $28 
Standard Deviation $8.66 $5.64 
Skewness -0.33 0.06 
Kurtosis 1.68 1.66 
                                                                                                       August 2014 
Mean $391*** $33***  
Median $390 $32 
Standard Deviation $7.50 $1.92 
Skewness -0.08 0.39 
Kurtosis 1.54 1.99 
                                                                                                      November 2014 
Mean $242*** $21***  
Median $240 $20 
Standard Deviation $7.19 $2.91 
Skewness 0.13 0.41 
Kurtosis 1.65 1.60 

***  indicates that the mean profit value is statistically different from zero. 

Table 8. Distribution of profits by HFTs and institutional traders generated by STGP trading 
algorithm for the E-Mini S&P 500 (based on most traded five days in each month).  

 

 

Month HFTs Institutional traders 
February 2014 1.52 0.61 
May 2014 1.43 0.59 
August 2014 1.99 0.75 
November 2014 1.27 0.57 

 

Table 9. Monthly Sharpe ratios of the E-Mini S&P 500 generated by STGP trading algorithm for 
HFTs and institutional traders (based on most traded five days in each month).  

  

Time length (milliseconds)  HFTs profit for August 2014 
0-50 $630 
51-100 $409 
101-200 $246 
201-300 $128 
301-500 $90 
501-1,000 $79 
1,001-1,500 $71 
1,501-2,000 $67 
2,001-2,500 $58 
2,501-3,000 $55 
3,001-3,500 $53 
3,501-4,000 $42 

This table examines trading profits over different time lengths for the most traded days in August, 2014 for E-Mini S&P 500, implementing 
the methods of Hasbrouck and Sofianos [6].   

Table 10. Spectral analysis associated with HFTs’ trading profits for the most traded five days in the 
most profitable month (August, 2014) for the E-Mini S&P 500.   
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                                                                                   Univariate regressions  
Variables HFTs’ profits in August 2014 
Profit i,t 0.19* 
                                                                                    Control variables  
Aggressivenessi,s 1.589* 
Volumei,t  0.903* 
Volatility s,t 0.409** 
R2adj 0.09 

This table examines the consistency of HFTs’ profits in August 2014 by investigating whether HFTs’ profit yesterday is a 
good predictor for their profits today. We use the following OLS regression: ܲݐ݂݅ݎ,௧ = ߙ + ,௧ିଵݐ݂݅ݎଵܲߚ + ,௦ݏݏ݁݊݁ݒ݅ݏݏ݁ݎ݃݃ܣଶߚ + ,௧݁݉ݑ݈ଷܸߚ + ௦,௧ݕݐ݈݅݅ݐ݈ܽସܸߚ +  ,௧ߝ
where ܲ (ݏݐ݂݅ݎ)݊݃݅ݏ ,௧ represent modified log profits such asݐ݂݅ݎ כ log (1 +  to incorporate any negative (|ݏݐ݂݅ݎ|
profits;  ܸ  ௦,௧ denote the price volatility forݕݐ݈݅݅ݐ݈ܸܽ ;ݐ ,௧ is the log of each artificial trader’s trading volume for day݁݉ݑ݈
day ݐ defined as the volume-weighted standard deviation of the price process for the same day; ݏݏ݁݊݁ݒ݅ݏݏ݁ݎ݃݃ܣ,௦ represent 
the trader ݅Ԣݏ volume – weighted aggressiveness ratio. * indicates significance at the 1% level; **  indicates significance at 
the 5% level.  

Table 11. Consistency of HFTs profits for the E-Mini S&P 500 in the most profitable month (August 
2014).    

 

 

 

Panel A* Cancellation Execution 
Time (milliseconds)                                                                       HFTs 
                  0-50 0.702 0.283 
                51-100 0.688 0.133 
               101-200 0.619 0.101 
               201-300 0.322 0.047 
               301-500 0.099 0.015 
                                                      Institutional investors 
                 0-50 0.009 0.221 
               51-100 0.038 0.255 
              101-200 0.066 0.317 
              201-300 0.080 0.509 
              301-500 0.089 0.822 
Panel B**                                                                      HFTs 
                0-50 0.994 0.011 
              51-100 0.873 0.010 
             101-200 0.698 0.007 
             201-300 0.295 0.004 
             301-500 0.085 0.001 
                                                     Institutional investors  
               0-50 0.001 0.010 
             51-100 0.006 0.037 
            101-200 0.015 0.061 
            201-300 0.020 0.080 
            301-500 0.026 0.093 

* Panel A shows the rate of cancellation and execution of limit orders by 10,000 HFTs (10% of the total population, genome depth of 10 and 
genome size of 2,048) and 90,000 institutional investors (90% of the total population, genome depth of 10 and genome size of 2,048). ** 
Panel B shows the rate of cancellation and execution of limit orders by 40,000 HFTs (40% of the total population, genome depth of 40 and 
genome size of 8,192) and  60,000 institutional investors (60% of the total population, genome depth of 40 and genome size of 8,192). 
Millisecond data has been generated and extracted from the STGP trading algorithm for the front-month of the E-Mini S&P 500 (February, 
2014; May, 2014; August, 2015 and November, 2014). The probabilities are estimated as 1െ ܵ where ,(ݐ)ܵ  represents the survival (ݐ)
function of cancellation and execution. In order to calculate the survival function we extracted all trading activity for E-Mini 500 S&P 500 
generated by STGP trading algorithm and used the life-table method.   

Table 12. Robustness checks related to the rate of cancellation and execution of limit orders by HFTs 
and institutional traders generated by STGP trading algorithm for the E-Mini S&P 500’s front-month 
(February, 2014; May, 2014; August, 2014 and November, 2014).   
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Date HFTs Institutional traders  
                                                                                                         February 2014 
05/02/2014 $203 $31 
11/02/2014 $184 $55 
19/02/2014 $155 $42 
21/02/2014 $190 $44 
27/02/2014 $172 $37 
                                                                                                              May 2014 
01/05/2014 $124 $35 
08/05/2014 $138 $26 
09/05/2014 $166 $38 
15/05/2014 $199 $42 
19/05/2014 $201 $40 
                                                                                                             August 2014 
04/08/2014 $257 $51 
12/08/2014 $244 $64 
21/08/2014 $218 $43 
26/08/2014 $248 $50 
28/08/2014 $261 $72 
                                                                                                            November 2014 
06/11/2014 $111 $23 
12/11/2014 $122 $27 
20/11/2014 $103 $30 
24/11/2014 $100 $22 
25/11/2014 $119 $41 

All daily profits are estimated as the difference between the prices at which HFTs and institutional traders bought and sold shares of E-Mini 
S&P 500. We follow Baron et al. [4]: 

,௧ߨ = ݕ, + ,்ே,ݕ்
ୀଵ  

where  ݊ = 1, � , ܰ,் denotes the trades for trader ݅ from the start of the trading day  to the end of the trading day;  represent the price of 
the trade; ݕ, measure the quantity of the n-th trade generated by trader ݅; ݕ்,் is the value of any outstanding positions at the end of the 
day. Transaction costs of $0.20 per contract are taken into account.   

Table 13. Robustness checks for the E-Mini S&P 500 front-month’s daily profits based on the most 
traded five days in each month by 10,000 HFTs (10% of the total population, genome depth of 10 and 
genome size of 2,048) and 90,000 institutional investors (90% of the total population, genome depth 
of 10 and genome size of 2,048).   
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Date HFTs Institutional traders  
                                                                                                         February 2014 
05/02/2014 $421 $11 
11/02/2014 $399 $34 
19/02/2014 $338 $25 
21/02/2014 $404 $19 
27/02/2014 $316 $20 
                                                                                                              May 2014 
01/05/2014 $330 $12 
08/05/2014 $318 $10 
09/05/2014 $396 $18 
15/05/2014 $411 $26 
19/05/2014 $377 $18 
                                                                                                             August 2014 
04/08/2014 $499 $21 
12/08/2014 $495 $15 
21/08/2014 $481 $14 
26/08/2014 $490 $29 
28/08/2014 $503 $33 
                                                                                                            November 2014 
06/11/2014 $314 $10 
12/11/2014 $306 $12 
20/11/2014 $299 $14 
24/11/2014 $322 $11 
25/11/2014 $315 $23 

All daily profits are estimated as the difference between the prices at which HFTs and institutional traders bought and sold shares of E-Mini 
S&P 500. We follow Baron et al. [4]: 

,௧ߨ = ݕ, + ,்ே,ݕ்
ୀଵ  

where  ݊ = 1, � , ܰ,் denotes the trades for trader ݅ from the start of the trading day  to the end of the trading day;  represent the price of 
the trade; ݕ, measure the quantity of the n-th trade generated by trader ݅; ݕ்,் is the value of any outstanding positions at the end of the 
day. Transaction costs of $0.20 per contract are taken into account.   

Table 14. Robustness checks for the E-Mini S&P 500 front-month’s daily profits based on the most 
traded five days in each month by 40,000 HFTs (40% of the total population, genome depth of 40 and 
genome size of 8,192) and  60,000 institutional investors (60% of the total population, genome depth 
of 40 and genome size of 8,192).  
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                                                            Appendix A 

                           Genetic Programming and Strongly Typed Genetic Programming  

Although, Schlereth et al. [17] designed agent-based models that provide a promising link to individual 

behaviour, most existing techniques to agent-based system design fail to deal with the complexity of 

design [9]. To address this issue, we implement the Strongly Typed Genetic Programming (STGP). The 

STGP is a more sophisticated version of Genetic Programming (GP) whose application of generic 

functions and data types makes it more sophisticated than GP. GP can be considered an extension of 

Genetic Algorithms (GAs). GAs are techniques based on evolution and natural selection [16]. Under 

GAs’ approach the economy is seen as evolving complex system in which artificial traders perform the 

activities of the real-life economy [19]. The procedure enhances search output by performing different 

solutions with genetic operators [11]. A benefit of GP over traditional GA is that players evolve not just 

the values of variables but also the structure of their models [5]. GP represents a machine-learning 

method to automate the development of computer programs in terms of natural evolution [2], which 

works by defining a goal in the form of quality criterion [1]. If there are inputs ܺ and outputs ܻ, a 

program  is generated which satisfies ܻ =  GP uses variable-length tree structures for .(ܺ)

representing candidate solutions [20]. Opposite to neural networks, decision-tree structures represent 

specific rules that can be expressed in English [10]. The leaf nodes of the tree are the terminals whereas 

the non-leaf nodes are known as non-terminals. Terminals are usually inputs to the program with no 

argument and the non-terminals are functions often represented with at least one argument. The parse 

trees represent the trading rules of 20,000 HFTs and 80,000 institutional traders in our experiment. The 

typical genetic structure of the trading rule consists of hundreds of nodes and is rather unwieldy to 

actually write out, however, it can be simplified to equivalent algorithmic trading rules, as shown below. 

 

 

 

 

 

 

 

Figure 1. Example of time – dependent trading rule for institutional traders.  

 

Figure 1 illustrates that the trading rule for institutional traders sends a buy signal if the average futures 

price over the past 1 millisecond is greater than the current price. A sell signal is sent otherwise. 

Institutional traders do not momentarily perform best in terms of the continuous Breeding Fitness 

Return, and therefore they possess higher latency in trading operations. Therefore, they are unable to 

foresee the quotes of the E-Mini S&P 500 and submit trading orders before HFTs. 
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Figure 2. Example of time-dependent trading rule for HFTs. 

 

Figure 2 indicates that the trading rule of HFTs sends a buy signal if the average futures price over the 

past 1 millisecond is greater than the current price and the current volume is less than 500. A sell signal 

is sent otherwise. The current volume function protects HFTs from sweep risk exposure. Large losses 

caused by sweeps (adverse price movements against HFTs’ transient positions) can substantially reduce 

or even eliminate their profitability, so the management of sweep risk is of paramount importance for 

HFTs. HFTs use the market microstructure to capture and avoid sweep risk, which is the risk related to 

trading against large informed toxic orders (for instance, large institutional orders) positioned at 

multiple levels of the order book.  

 

The main steps in developing a genetic program are as follows: 

1. Create initial randomly generated population of trading rules (trees). The random generation of 

trees enables the whole range of possible trading rules to be studied. The only requirement for 

trading rules is that they be well defined and produce output appropriate to the problem of 

interest. These trading rules apply the fundamental principles of biological evolution to create 

a new and improved population of trading rules. The creation and development of this new 

population is based on a domain-independent system governed by the Darwinian theory of 

natural selection under the principle of survival of the fittest.   

2. Calculate the fitness of each trading rule in the initial population with accordance to appropriate 

criterion.  

3.  Create a new population by implementing the following operations: 

(i) Copy existing traders into the new population (crossover).  

(ii)  Randomly select a pair of existing trading rules and recombine subtrees from them to 

produce a new trading rule (mutation). While crossover mixes subtrees of the 

population, mutation replaces subtrees with new subtrees. The operations of crossover 

and mutation are performed with the probability of selection for the operations, and 

skewed towards selecting traders with higher levels of fitness.   

4. Calculate the fitness of each trader in the new population.  

5. Repeat these operations, recording the overall fittest traders. 
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In the crossover process, randomly selected subtrees are swapped (exchanged). More specifically, a 

crossover point in the tree is randomly selected within each parent. Trading rules are selected on the 

basis of their fitness, with the crossover allocating future trials to areas of the search space whose trading 

rules contain parts from the superior trading rules. The best performing trading rules from the initial 

selection are selected based on the Breeding Fitness Return to act as parents in the crossover process. 

The Breeding Fitness Return process represents a trailing return of a wealth moving average and is an 

integral part of the latency of HFTs. This is in fact the return over the last ݊ quotes of an exponential 

moving average of a trader’s wealth, where ݊ could potentially have the maximum breeding value of 

250. Each pair of parents generates two offspring trading rules, so the number of parents and the number 

of offspring are equal at all times. In this innovative programming process the newly created trading 

rules replace those that performed poorly in the initial selection based on the replacement Fitness 

Return. This type of return represents the average return of a wealth moving average per millisecond 

quote since the creation of the very first trading rule. In other words, this is the cumulative return of an 

exponential moving average of a trader’s wealth, divided by the trader’s breeding value.  

 

In the process of mutation a pair of trading rules has been randomly selected from the population, with 

probability weighted in favor of higher fitness trading rules. The subtrees of the two parent rules are 

then randomly selected. One of the selected subtrees is subsequently discarded and replaced by another 

subtree to generate the offspring rule. The GP searches areas of the solution space by evolving a 

population of trading rules, with the trading rules in each successive generation tending to become adept 

at solving the problem. As full technical explanation of crossover and mutation is beyond the scope of 

this paper, the reader may refer to Koza [12] for more details.    

 

Strongly Typed Genetic Programming (STGP) is a version of GP whose application of generic functions 

and data types makes it more sophisticated than GP (in STGP each node is connected to a particular 

return). STGP is specifically suited to optimize structural or functional form. To create a parse tree, one 

needs to take into account important additional programming criteria such as when the root node of the 

tree returns a value of the type required by the problem, and when each non-root node returns a value 

of the type required by the parent node as an argument [15]. While GP can be written in any 

programming language, the STGP is typically written in a specific programming language, which is a 

combination of Ada [3] and Lisp [18]. The concept of generics as a method of developing strongly 

typed data is the critical component adopted from Ada.  Additionally, Lisp incorporates the concept of 

having programs represented by actual parse trees [14]. While in conventional GP, one needs to specify 

all the programs and variables that can be used as nodes in a parse tree and deal with the search space 

of the order of 1030 - 1040.  STGP however reduces the searching state-space size to a greater degree 

[13]. On the other hand, the STGP search space composes the set of all legal parse trees, which means 

that all functions have the correct number of parameters of the correct type. On most occasions, the 
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STGP parse tree is limited to a certain maximum depth (Table I illustrates that 20 is the maximum depth 

in the artificial futures markets featured in this study). We set the maximum depth to 20 in order to keep 

the search space finite and manageable, while not allowing the trees to grow to an extremely large size. 

The critical concepts in STGP are generic functions (a mechanism for specifying a class of functions), 

and the process of assigning generic data types for these functions [8]. STGP has the flexibility to allow 

all variables, constraints, arguments and returned values of any type. The only strict requirement is that 

the type of data for each element has to be specified in the early stage of the programming process. The 

resulting initialization process and the various genetic operators associated with it are enabled to create 

syntactically correct trees. Those trees on the other hand are beneficial to the entire programming 

process because the search space can be significantly reduced [7].  
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                                                          Appendix B 

                            E-Mini S&P 500 daily trading volume generated by STGP trading algorithm. 

                                                                                        February 2014 
Date E-Mini S&P 500 trading volume 
03/02/2014 880,273 
04/02/2014 889,011 
05/02/2014 984,471 
06/02/2014 888,250 
07/02/2014 870,369 
10/02/2014 880,376 
11/02/2014 999,035 
12/02/2014 799,937 
13/02/2014 820,111 
14/02/2014 890,255 
15/02/2014 900,004 
16/02/2014 856,551 
19/02/2014 1,003,578 
20/02/2014 868,480 
21/02/2014 985,844 
22/02/2014 883,999 
23/02/2014 858,045 
27/02/2014 979,932 
28/02/2014 901,808 
29/02/2014 845,431 
30/02/2014 799,897 
                                                                                             May 2014 
01/05/2014 1,207,009 
02/05/2014 1,090,371 
05/06/2014 1,103,484 
06/06/2014 1,089,677 
07/05/2014 1,110,080 
08/05/2014 1,382,644 
09/05/2014 1,299,388 
12/05/2014 1,080,304 
13/05/2014 1,005,989 
14/05/2014 1,199,213 
15/05/2014 1,463,011 
16/05/2014 1,085,888 
19/05/2014 1,344,656 
20/05/2014 1,090,756 
21/05/2014 1,117,353 
22/05/2014 1,125,089 
23/05/2014 1,006,355 
27/05/2014 1,110,748 
28/05/2014 1,190,377 
29/05/2014 1,004,023 
30/05/2014 1,102,378 
                                                                                            August 2014 
01/08/2014 1,303,087 
04/08/2014 1,674,926 
05/08/2014 1,299,737 
06/08/2014 1,384,211 
07/08/2014 1,406,309 
08/08/2014 1,337,743 
11/08/2014 1,487,008 
12/08/2014 1,700,380 
13/08/2014 1,307,100 
14/08/2014 1,299,878 
15/08/2014 1,311,529 
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18/08/2014 1,388,141 
19/08/2014 1,400,272 
20/08/2014 1,294,988 
21/08/2014 1,505,020 
22/08/2014 1,352,090 
25/08/2014 1,381,309 
26/08/2014 1,609,999 
27/08/2014 1,402,613 
28/08/2014 1,524,530 
29/08/2014 1,289,830 
                                                                                        November 2014 
03/11/2014 775,338 
04/11/2014 718,474 
05/11/2014 800,099 
06/11/2014 861,033 
07/11/2014 745,940 
10/11/2014 788,975 
12/11/2014 880,737 
13/11/2014 799,954 
14/11/2014 767,834 
17/11/2014 798,121 
18/11/2014 756,110 
19/11/2014 766,989 
20/11/2014 901,006 
21/11/2014 804,828 
24/11/2014 890,342 
25/11/2014 885,050 
26/11/2014 812,736 
28/11/2014 777,902 
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