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Forecasting Rnancial Markets Using High-FrequencyTrading Data:
Examination with Strongly Typed Genetic Programming

by
Viktor Manahov* and Hanxiong Zhang
Abstract

Market regulators around the world are still debating whether or not high-freginadityg
(HFT) plays a positive or negative role marketquality. We develoanartificial futures
market populated with higlirequency traders (HFTs)nd institutional traders using Strongly
Typed Genetic Programming (STGP) trading algorithm. We simulatdifeedturestrading

at the millisecond timeframe by applying STGP tMii S&P 500 datsstamped at the
millisecond intervalA direct forecastingomparison between HF&sd institutional traders
indicate the superiority of the former. We observe that the negative implicafibigh-
frequency trading in futures markets can be mitigated by introducing a nnmiegiing
trading perid of less than 50 milliseconds. Overatk contribute to the eemmerce
literature by showing that immum resting trading order period of less than 50 milliseconds
could lead to HFTs facing a queuing risk resulting in a less harmful markiy gfifect.

One practical implication of our study is that we demonstrate that market regaladorse-
commece practitioners can apply artificial intelligence tools such as STGP tlucion
trading behaviour-based profiling. This can be used to detect the occurrence of hew HF

strategies and examine their impact on the futures market.
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Introduction

Today’s trading in futures markets is more complex and often involves little human
intervention. The dramatic increase in the variety of trading platforms codnitie
significant technological advancements, makes the process by which trating ame
processed and executed much moramex thant wasten years ago. Significant
technological investments resulted in latency improvements, where computéhaigor
execute trading orders based on electronically received information befora tradexrs.
Speed races itoday’s tradingare occurring eveat nanosecond (billionths of a second)
intervals[6]. High-frequency traders (HFS) are able to anticipate future trading order flows
because they process intraday trading messages fastetlteamarket participantd.6].
Several studiebighlight that suclanticipatoryor frontrunningtrading generates negative
externalities, such as limited liquidity provision, forcing other slower ma®icpants to

abandon trading, or facilitating overinvestngeint technological base8,[18, 21, 34].

However, most studies on the topic are lacking the ability to identify which tradesuates
come from HFT. This research obstacle makes it difficult to investigate hdvwafiécts the
market and othremarket participantsli, 20, 24]. This is due to the fact that no publicly
available dataset, including NASDAQ 120, allows researchersdctlg identify all HFT
[2]. Egginton et al[14] argues thait is hardly possible to identify orders generated by
computer algorithms in the U.S. equities markets and all previous studies used faroxie
measure the level of algorithmic trading and FFTo investigate the implications of HFT
on market efficiencymost of the extant research up to date proceeds after somehow
identifying via proxy measures or a combination of variables such as tradingevolum

cancellationsinventory turnover and ordéo-execution ratios theddes generated by HFTs

1 Frino et al[19] use several proxies to identify algorithmic trading in futuresketa.
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[16]. Moreover, the huge number of variables and very complicated effaserelationships

among these variablesd potential outcomes imposester research obstacles).

In contrast, this study uses a special adaptive form of the Strongly TypeticGene
Programming (STGP) and millisecond data d¥lithi S&P 500 to demonstite how HFTs
front-run other markeparticipants’orders and generate significant trading profitsere are
severakeasos for selectinghe E-Mini S&P 500. On the one hantthjs particular financial
instrument is the world’s most actively traded stock index futures contralctpvet 2.2

million contrads traded per day [17].

In addition,Baronet al.[2] suggest that the EHni S&P 500 is a favourable setting for
examining HFT because this is a highly liquid market with a high number of bifipanies
regularly trading. Moreover, this particular financial instrument is aalyetd on the Chicago
Mercantile Exchange, and there isaumcern about unobserved trading orders executed on

other trading venues.

The STGP (described in Appendiy & an extremely suitable sophisticated trading algorithm
that successfully replicates HFT scalping strateésle, Dunis et al[13] suggesthat

Genetic Programmin@@fP) models perform remarkably well @w in simple trading
exercisesPaddriket al.[38] report that a zermtelligenceagentbased model of the-Hini

S&P 500 futures market enables close examination of the market microgffu@stermark
[37] suggests that genetic algorithms provide a powerful supplement to traditional
econometric techniques, while Chattergeal. [8] notes that many statistical and

mathematical restrictions can be avoided by employing genetic algorltensberget al.

2While Python and Java programming languages are suitable for tradirgrainute timeframe, C++, ASIC
and FPGA languages are appropriate for trading at the very low latencies@ganonds and nanoseconds.
Machine learning languages such as Genetic Programming, Strongly Typed Geogtamming and Genetic
Algorithms are appropriate for trading signal research and statisticgbesnalll of these programming
languages are interconnected in HFT.

4|Page



[29] suggest that GP is extremely powerful financial tool which minimises the amount of a
priory structure associated with traditional functional forms and statisticatisele
proceduresMendes et al.33] employ GP in the foreign exchg@market toachieve positive
forecasting resultdMore recently, Chen and Wang [9] point out that GP has the advantage of
systematt random search and derivative-free optimisaMye.reproduce the HFT scalping
strategies in an artificial futuresarket environment where the impact of these strategies can
be examined and new regulations can be evaluated to maintain the overall health of the
financial system. Using STGP, we replicate the interactions betdl€Esand institutional
tradersand compre their performance under the same underlying trading ordamstrén

other words, we replicatealtlife futurestrading sessions which allow us to avoid the

obstacles in the studies discussed above.

Our empirical findings have important implicatgfor market regulators, academics and the

general public. To summarise, the conttiba of this study is twdold.

First, this is the first study to use an innovative trading algorithnmallidecond data to

provide empirical evidence of how HFT front-running scalpsirategies operate in futures
markets imposing discriminatory disadntages on other market participami&e observe

that HFTsfrequently cancel recently placed orders from around the best quotes leading to a
substantial reduction in tleertainty of execution prices making prices moaasient.

Moreover, the process of placiadarge number dfadingorders in a short time spareates

a false seresof the supply and demand the E-Mini S&P 500 and hencedgersely impacts
market quaty. Secongdwe estimate in precise quantitative terms the daily profits of HFT,
providing an advantage over existent studies, sudea®t Brogaard4] which observed

HFT activities in the aggregate data only, thus preventing them from calcutsiegact

profitability of HFT. We also propose new regoliy measure such asminimum resting
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trading order period of less than 50 millisecotamitigatethe negative consequences of

HFT scalping strategign futures markets

The remainder of this paper is organised in the following way: Section 2 congiribes
literature review, while Section 3 presents the experimental design afiflegaafutures
market and data utilised in this study. Section 4, reports the artificial agedisgteectivity
and profitability, while Section 5 presents the conclusion. Additional clarifgimgtechnical

material @an be found in Appendices A and B.

Related literature

Brunnermeier and Blersen $] show that front-running of trading orders leads to price
‘overshooting and amplifies a large trader’s liquidation cost and default risk. Moreover,
front-running trading strategies maktee market illiquid when liquidity is most needédbre
recently,Baronet al.[2] estimatsthat HFTs collectively accumulate over $23 million in
trading profits in the BMini S&P 500 futures contract during August 20HXschey pR4]

uses a year of the tradewvel data from the NASDAQ to examine return and trade patterns
around periods of aggressive buying and selling by HFTs. The author demonisatakéSTis
earn profits by identifying patterns in trade and order data that actllaythem to front-

run the order flow and trade ahead of other market particidanft30] attempts to model the
front-running HFTs and shothat they effectively levy a speed tax on traditional traders,
making markets less liquid and prices ultimately less informatiwegedVer, when infinitely
front-running HFTscompetetheir negative implications on market quality persist and such
negative implications are more severe when HFTs possess more heterogeneoukispeeds
anothercomputational experiment Leal et 18] build an agenbased model to analyse the
interplaybetween lowand high-frequency trading and its implications on market dynamics.

On the one hand, the authors observe that an increase in wadiEngancellations leads to
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higher volatility levels and moratense flash crashes. On the other hand, they also lead to

faster pricerecoveries which reduce the duration of flash crashes.

Egginton et al[14] examineall trades and quotes for NYSE and NASDAQ listed stocks for
all trading days in 2010 and suggested that order cancellation is a pervasive pithcess
several hundred events occurring during a trading day. dtgesethat during periods of
intense order cancellation financial instruments experience decreasddyjdqugher trading

costs and increased shtetm volatility.

Sunet al.[40] use tick level data of 105 stocks in the US market from January 2008 to
October 2010 to show that HFT can reduceceioncosts when supplying liquidity.
Janecic and Snap&5p] analysehe order submission strategies by HFTs and traditional
traders in the limit order book by using the sample period from April 1, 2009 to June 30,
2009 forFTSE100 stocks and confirm our empirical results. Their evaluations subgeést
HFTs cancel orders of all durations from around the best quotes, thereby reducing the
certainty of execution prices and making trading more difficult for HBi-participants, by
making prices more transient. Similgriyan et al[21] construct a simple model of market
making in which highfrequency market makers rapidly cancel orders after receiving an
adverse signal and observed that low frequency market makers widen the bid-ad&, spre

thus leading to liquidity erosion.

In a recent study, Fislet al.[16] use WTI crude oil futures contract traded on the
CME/Nymex exchange from SeptemberDecember, 2011 to investigate whether there is a
class of market participants who follow strategies that appear to anticipaterice trends.
The authors demonstrate that there are anticipatory traders capaldeasisprg information
prior to theoverall market and systematically act before other partitcsp&umaresan and

Krejic [27] examine the trading trajectories for atomic orders in an environmenttoansis
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several trading venues and carry out an optimization procedure to find theptiost order
placement solution for algorithmic trading orders. Although the authars that this is a
significant computational breakthrough, they implement execution window measured i
minutes, which does not seems to correspond withifea#=T. In contrast to all other
studies on the topic which typically rely on econometric tests only, we use an imaovat
STGP trading algorithm and millisecond data to demonstrate how HFT front-running

scalping strategies operate in practice.

Experimental design

Twenty years ago, the process in which financial instruments were tradeflsiaple nature:
an investor deciding to buy or sell and transmitted this information to a broker, whsetitn
the order to an exchange, where bid and ask orders were matched and executed. All market
participants had access to tlare information about the bid-ask spread.

Today’s brokers use trading algorithms to route different segments of an orderetendiff
exchanges at super human speed of milliseconds, microseconds and even nanoseconds.
We use a special adaptive form of the Strongly Typed Genetic Programming)(Surth
enables us to choose and adjust different parameters to suit our specificatioas sheh
minimum price increment, number of participants and their wealth, the level chdtiams
costs, and differing trading preferences. The exact number of evolutionary pasaimsteve
can specify is listed in Table We create simulated futures rkat, which is a hypothetical
market with realworld market price data. Each market participant in our experiment
represents an artificial trader who is equipped with their own trading rulee wieeselection
of the best performing traders and the production of the new genomes is conductgdttieou

recombination of the parent genomes by crossover and mutation operations, which are furthe
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elaborated in Appendix A. The main idea is that the trader’s trading rulemaitbve by a
natural selection pcess based on the swali of the fittest B1]. Hence, the evolutionary nature
of the trading process and price dynamics enable the artificial traders taizecdgarn and
exploit profit opportunities while continually adapting to the changing madedlitions.
Consequently, STGP trading algorithm evolves the modeltstefep by feeding it with
millisecond quotesthe E-Mini S&P 500, and therefore the forecasting modelshe&vo

mimicking the realife futures market

The process of developingrading rules

Initially, each individual trader has only one trading rule which is created randomly which
enables the whole range of possible trading rules to be studied. To creajeratations, we
apply the crossover recombination technique and mutation operation, where the crossove
recombination technique randomly chooses parts of two trading rules tanggdhaorder to
create two new trading rules, and the mutation operation randomly changes aasnhdllap
trading rule. This process is repeated until at least one trading rule in thetipopadaieves

the desired level of fithess, measured by a trader’s investment retura speecified period. It
should be noted that this initial random nature can result in the creation of messingthg

rules or trading rules which cannot be evaluation thoroughly since they do not retuaiuthe
that function needsNevertheless, as Montand5] notes, these programming issues can be
resolved by the introduction of STGP, where the process requires the definition offia spe
set to fit the problem.

Each trathg rule in our artificial futures market setting take histonmalisecond price®f the

E-Mini S&P 500and generate advice which consists of the desired position which is estimated
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as a percentage of the trader’'s wealth and an order limit price for buying and #edli
financial instrument

The trading rules logic comprises of information on price and volume, minimum, nraximu
and average functions related to millisecond price and trading volume data, amendiff
logical and comparison operatois the conventional Genetic Programming (GP) procedure,
trading rules are evaluated the same fitness function in each generation. In contrasts, the
STGP evaluates the fitness of traders through a dynamic fithessofynetiich enables the
return estimation period to move forward and include the most recent quotes in the markets.
Sermpniset al.[39] notes that having a novel fitness function is crucial in financial modellin
where statistical accuracy daast always correspond to financial profitability of the deriving
forecasts Also, while the GP replaces the entire genptpulation through crossover and
mutation techniques at a time, STGP only replaces a small proportion of thepeptitation
which ensures a gradual change in population and thuegreadel stability 31].

Another important feature of the STGPthsit each trader discovers therimsic value ofthe
E-Mini S&P 500 individually without any communication between traders, ensuring
individuality and that the level of intelligence of each artificial trader is nottafiday other
traders. This allows the development of more meaningful trading rules for Ibatk atd

institutional traders

Structure of the artificial futures market and the differences between HFTsnd

institutional traders.

We examine HFT frontunning scalping strategies within tbertext of artificial futures

market populated by 100,000 boundedly rational traders. All artificial traders irothe are

3 This process is further explained in subsections 3.2 and 3.3.
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not orientated towards a predetermined formation of strategies and thenefdree to
develop and continually evolve new andteetrading rules through timeOur artificial
futuresmarket is populatety 80,000nstitutional tradersind 20,000 HFTE&O0 per cent of

the total population based on the continuous Breeding Fitness Return).

Both HFTsand institutionatraderstrading rulesare created using STGP programming
tedhnique explained in Appendix.Alowever, the main difference between the two trading
groups is that the HFTgroup consists of the traders that momentarily perform best in terms
of the continuous Breeding Fitness Return, and therefore they possess lowgr latenc
Althoughthe institutionatraders and HFTboth observe the samellsiecond dataf the E-
Mini S&P 500and generate trading orders, HFaFs able to access and process the data fi
due to thailow latency featwss. In other words, HFTs are able to foresee the quoths Bf
Mini S&P 500 and submit trading orders before institutidreeders. The Breeding Fitness
Return is a trailing return of a wealth moving average which determines the fithes of
traders. This return is calculated over the fegtiotes of data of an exponential moving
average of traders’ wealth, wherés sé to the minimum breeding age with a maximum of
250. In the case where the age is less thao value is calculated. This particular type of

return is used to measure the fithess criterion for the selection of tratfeesdo

Breeding is, in essence, a process of creating new artificial tradersatwerppor performing
ones based on the values derived from Equation (1) below. Both HFTs and institutional
traders operate in the same market and accumulate wealth by investing iratvegafin
instrumentghat are available in thetdicial stock markettherisky E-Mini S&P 500 and
the riskfree instrument represented by cash. Because our artificial futures market
continuously evolve, traders with trading rules that perform well become vegafibsitvely
influencing the forecasting accuracy of the model. In each period, aniartifader has

wealth given by the following formula:
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Wit = M + Pehiy 1)
wherelV; , is the wealth accumulated by traden periodt; M; , andh; . represents the
money and the amount tife E-Mini S&P 500held by artificial tradet respectively, in

periodt andP; is the price of th&-Mini S&P 500 in period.

The clearing mechanism and order generation for the artificial futures market

Our artificial futures market is simulated double auction markethere all the buy and sell
orders are collected. The artificial traders receive histagwalesof the E-Mini S&P 500

and evaluate their trading rule and subsequematliculate the nunds of contractshey need

to buy or sell. If contracts need to be bought or sold, an order is generated to buther sel
required amount determined by the specified limit price. For exampleaiertholds 1,000
contracts of th&-Mini S&P 500 whichis pricedat $38.50 and has $80,000 in cash, their
wealth is $118,500 and their position in E-Mini S&P 500 is 32.5%. If the trading rule
generates a signal of a position of 50% and a limit price of $38.50, the limit ordbewill
produced to purchase 58&dditional E-Mini S&P 500 contracts with a price of $38.50. The
artificial futures markethen calculate the clearing price and all trading orders are executed at
the clearing price which is where the highest trading volume from limit ordenseca

matched

In cases when the clearing price can be matched at multiple price levels, theating cl
price is the average of the lowest and highest of those prices. The number ofsontract

purchased by traders is always equal to the number sold by other traders and if tireohumbe

450% * (118,500/38.50) 1000 = 539 contracts.
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contractoffered and the number of contracts asked are not equal, the remaining orders will
be partially executed. Therefore the orders at the clearing price will be seteateddution

with priority for market orders ovemiit orders, and then on a finst-first-out (FIFO) basis.

In the unlikely event of no matching limit orders, no market orderex@euted and the

artificial futuresmarket price will be the price d¢ihe previous quote [31RAs inreallife E-

mini market there isno designated markehaker and there are no shedlling constraints.

Description of data and transaction costs.

The dataset used in this study consigeatlife millisecond data othe EMini S&P 500
from February2014 to December, 201We obtained the data from Nanex

(www.nanex.ngt We only select the front-month dataset for each morlie-eontract with

the nearest expiration date. TRéini S&P 500 expirations months are March, 2014; June,
2014; September, 2014; and December, 2014. For empirical investigation we focus on
February, 2014, which has a March, 2014 expiration; May, 2014, which has a June, 2014
expiration; August, 2014, which has a September, 2014 expiration and November, 2014,
which has a December, 2014 expiratidhis allows us to exclude months in which the
leading contact expires in order to eliminate th@lover effect.Althoughthe E-Mini S&P

500 trades virtually round the clock, we only consider millisecond data duringmretarieet
hours when the markets of the underlying equities of the S&P index are open and before the
daily halt in tradingweekdays from 8:30 a.m. to 3:15 p.m. Central Standard Time (CST).
Each contractds a multiplier of $50 times the value of the underlying S&P 500 index, and
therefore a contract with an index value of 1,000 suggest that the futures conaaatdsat
$50,000. The tick size in E-Mini S&P 500 is 0.25 index points. Hence, considering the $50

multiplier, a one tick change is equal to $12.50.
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The STGP trading algorithm processed 18,655t#8ing messages stamped & th
millisecondinterval forthe E-Mini S&P 500 in February, 2014; 22,878,525 trading messages
in May, 2014; 27,368,175 trading messages in August, 2014; and 16,282,009 trading

messages in November, 2014.

Baronet al. P] reportthat the cost of exchange fees per contract is $0/¥8 enploy
transaction costs of $0.20 per contract for our profit calculations. Although slighttigrhi
than the current standards, the level of transaction costs takes into accourtstbé 463
companies. These include software platforms, labour and risk management $ygtdoes
not include cdecation of servicegAitken et al[1] argue that the presence of HFT leads to

the introduction of cdecation services)

Experimental results
Traders’ activity on artificial futures market.

The aimof this sections to investigate artificial traderactivity on our futures market,
which has been designédirun in parallel with redife futures marketAll empirical tests
below are based on data generated by the Sil@@ihg algorithm for HFTand institutional

traders

First, we examine what happewsthe limit aders ofthe E-Mini S&P 500after they are
submitted to the artificial futuresarket. Letr denote the time between order submission and
cancellation. The probability of cancellation in the inte@gt] is represented by the

distribution function:

> The EMini S&P 500 futures market does not involve markésker transaction costs unlike most equity
markets.
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Peancer(t) = Pr(z < t) 2)
We extract all trading activity generated by the STGP trading algofththe E-Mini S&P
500to estimate the disbution functionusing the lifetable method, and taking execution as
the censoring event. In contrast toadher studies we are able ¢bserve and coutite
number of executed and cancelled orders by extracting generated data f®@hGterading

algorithm.

Table 2shows that égarge number of limibrders submitted by HFTege cancelled almost
immediately aftesubmission. Table 2 reports thBt,,,..;(50), the probathty of

cancellation within 50 milliseconds is 0.918. By the t®0® milliseconds havelapsedthis
probabilitydramatically decreases to 0.026 the same time the probabyliof cancellation

for institutional tradersneasured at 50 milliseconds is 0.001 increasing to 0.028 at 500
milliseconds. A comparison of cancelled orders by H&Tkinstitutionaltraders indicates

that HFTs cancel substantialllarger proportion of orders after a very short duration. The
extremelyhigh level of cancelled ordemdicates the high levelf @aggressiveness of HFTs in
exploiting the orders placed by titgtional traders on the artificial futures markehis is
consistehwith Hasbrouck and Saar [22] who suggests that over one third of limit orders are

canelled within two seconds by HFTs.

In addition,Leal et al[28] highlightthat this type of empirical resuksimulates the
occurrence of high bidsk spreads in the markétus increasing the likelihood of a
significant decrease in thiceof any financial instrumen# directcomparison between
cancelled and executed orders indic#it@s execution seems the less probable event for all
time intervals Furthermore,arnecic and Snap@%] reportthat short duration orders
contribute to the difficulty of trading by ndAFT participants by lifting quotes and inhibiting
the certainty of longerm investors when attempting to demand liquidity. This finding

motivates us to examine the exact locatibshmrt duration orders to find out whether HFTs
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operate with those orders inside the spread. This typeadfsas is important due to the fact
thatfrequent removal of orders located within the spread can reduce the certaaty of t

execuion price for nstitutionaltrades trying to demand liquidity.

Table 3reportthat order cancelations are present inside or at the best quotes, and this finding
is substantially more pronounced féFTs measured up to Sfilliseconds. HFTgyenerate

71.2%% of order canellations within the goted prices, and a further 18.49% at the best

guotes. The empirical results in Table 4 revéads for orders that aancelled with greater

than 50millisecond frequency, the percentage for orders cancellétFig decreases to

63.28% inside the best price and a further 15.01% at the best quote. We observe the opposite

trend with institutionatraders.

They increase the amount of cancelled limit oraetkin the best quote from 8.10%

measured up to 50 milliseconds to 126@&ith frequencies greater than 50 milliseconds.
Thesefindings indicatehat HFTsfrequently cancel trading orders of different durations but
more often cancel recently placed orders from around the best quotes. As gheesult,
certainty of execution pricdsgas been substantially reduced making prices more transient and
imposing trading obstacles for nét=T paticipants.Moreover, frequent order cancellation
creates a false sensesnipply and demanaifthe E-Mini S&P 500. By quickly cancelling a
largenumber of orders within the 50 millisecond interval, HE®sId create potentially

exploitable latency arbitrage opportunities.

Budish et al[6] reportthat there are about 800 such arbitrage opportunities per day in the
two largest securities that track the S&P Hfex alone the EMini S&P 500 and the

iShares SPDR S&P 500 exchange traded fund, totalling $75 million per year.
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Traders’ profitability in artificial futures market .

The aim of this section is to measure the level of profitability of artificial tradenatipg in
futures markets. All empirical tests below are based on data generated bGRar&ding

algorithm for H-Tsand institutional traders

One of the most important characteristié$igh frequency millisecond data is the high
presence of no pricghanges in th&-Mini S&P 500 Wetake into accourthis market

inactivity by modifying the Studenttsdistribution associated with tlstandardizedesiduals:

f(Et]a) = two if6, = 1 ®)
Ot
Or
Et|s | = (IoE/on) oo _ (4)
f<0t 5t>_{1—p0 if 8, = 0

whereg, 4, measure the Student’s dendiiymction; €, represents the residuals of the time

seriesyg; is the standard deviation of the time serigsiepresents the probability of a

sequence of two zero returds;measure market inactivity as follows:

6 = {1 if, otherwise ()
0
If 5, = 1, the forecast;,;; = 0 fori = 1,2--- [32].
Given the largamount of millisecond trading messages, an important issue thatiatises
Lindley’s paradox. This phenomenoanpotentiallylead to overstatement of statistical

significance and a tendency to reject the null hypothesis even when theopastds favour

the null.

Connolly [10] proposes the following equatitmnovercome the issue and estimate sample

size adjusted critical values fostatistics:
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t* = [T - (YT - 1)]"" (6)
whereT is the sample siz&k measure the number of estimated parameiérs null
hypothesis is the posterior probability, which is the statistical probability thgi@thesis is
true computed in the light of relevant observations. iffyplement largsample adjustments
to the criticalt-values in order to avoid overstaterhehstatistical significancdf a
calculated test statistic exceeds the appropriate cniadaé from Equation Ghe sample
evidence is said to favor the alternative hypothé&sist, in order to evaluate statistically the
forecasting abilities of HTs and institutional investors, we estim#éte Root Mean Square
Error RMSE), the Mean Absolute ErroMAE) and theMean Absolute Percentage Error
(MAPE). For all three of the error statistics retaingn® lower the output, the better the

forecasting accuracy of the model:

1
RMSE = |~ z (Y, — ¥,)? )

t+n (8)

1 t+n YT . Yt (9)
MAPE = — z
n Y:

T=t+1

whereY; represents the actual values of the price of it S&P 500; Y; is the forecasted
valuesof the price of the E-Mini S&P 500Vhen difference between actual and forecasted
values of the price of the E-mini S&P 500 is far off, RMSE, MAE and MAPE are bigger

values and therefore the forecastslase accuratéd direct forecastingomparison between
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HFTsand institutional traders indicate the superiority of the former. The RMSIE &4
MAPE for HFTsare significantly smaller than the errors produced by institutional traders

(Table 5.

Table 5illustrate that the HFTgresents the best statistical results irfiall months under
investigation fothe E-Mini S&P 500. HFT scalping strategies tradthg E-Mini S&P 500
in August, 2014 outperform the other three months measured by the lowesttiogeeaors.
We compute the modified Diebold-Mariano (MDM) test, which is an extension of the
Diebold and Mariano [12}estto verify the statistical significance of the above analysis.
Under the null hypothesis of the test is the equivalence in forecasting acbataeen

several models:

MDM =T~ Y2[T +1—2k + T k(k — 1)]*/2DM (10)
whereT represerd the numbemillisecond trading messages the E-Mini S&P 500 in
February, 2014; May, 2014; August, 2014; and November,;20t% number of the one-
stepahead forecast®M represertd the Dieboldviariano test which compares the forecast
accuracy of two forecast metths. The null hypothesis under the test is that they have the
same forecast accurady.negative value of the MDM test suggests that the first forecast is
more accurate than the second forecast. We apply the MDM test to measure ttirgredi

abilities ofHFTsvs. institutional traders

The tesimeasures eagteriod with student distribution @1 degrees of freedom (MSE and
MAE are used as loss functionsable 6presentshe statistics for the four monthsder
investigation comparing th@erformance of HFTwith institutional tradersTable 6

indicates that the null hypothesis of the modified Dielddatiano test of equal forecasting

accuracy has been rejected for all comparisons and for both loss functions at évelld8f |
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significance Moreover, the statistical supeiitgrperformance of HFTsStrategies is

confirmed by the negative values of the MDM statistic for both loss functions.

The RMSE, MAE and MAPE are all important error measures, yet they may nespmaomd

to profits. We herefore calculate the daily profits generatedHBy's and institutional traders
for the most traded five days in each month (full trading volume reported in Appendix B).
Daily profits for each market participarif,are estimated for each trading dayhased on
markedto-market accounting, taking into consideratiba fact that every HF&nd

institutionaltrader begins each trading daith a zero inventory position.

Baronet al.[2] suggest thaa markingto-market modelling mechanism is an appropriate

profit measuring tool for market participants who end the trading day wittoareentory.

We estimatehe end of the day profits for both artificial trading groapghe cumulative

cash receiveffom selling short positions minus the cash gained from buying long positions,
plus the value of any outstanding positions at the end of the trading day, marked to the market
price of the E-Mini S&P 500at close of trading:

Nir (11)
Tt = z PnYin t PTYiT

n=1

wheren = 1,---, N; r denotes the trades for traddrom the start of the trading day to the
end of the trading dayj, represents the price of the trage, measures the quantity of the
n-th trade generated by tradigmpry; r is the value of any outstanding positions at the end of
the day. Transaction costs of $0.20 per contract are taken into ackahieZ showshat
HFTsgeneratesignificantlyhigher profitsthan institutional traderf®r the E-Mini S&P 500

in all four months.

We observe thatiFTs profits are higher due to their higher speed frictrotdere highery

means more severe HFTont-running. Li [30] defines the speed friction as:
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j1 (12)

nj

whereq; = is the equilibrium fast trading intensity for @llThe speed friction is not

Njtq

affected by the other parameters and is determined entirely on the fast’ spded profile
{ny,ny, -+, n;}. The profits of HFT€ome from the price impact of institutionmhdesin our
artificial futures marketThis finding is consistent witBaronet al [2], who claim that
tradingthe E-Mini S&P 500 is a zero-sum gain: one trader’s profit comes directly at the
expense of another trad&urthermorel.i [30] argueghat in the presence of more
fundamental uncertainty, the price impact of trades is higher and front-rummardex is
more profitable. At the same time when there is more noise trading on the markeiiting

volume is higher and there are more itmgdbrders available for fromunning.

While HFT scalping strategies are very profitable, they might carry sskemr a dayto-day
basis. The standard deviatiohtlee profits (Table 8) reports a wide variety of different
values, with the lghest vaiation of profits ($391generéed by HFTSn August, 2014We
estimate the probabilitgf default for both groups of traders as an arithmetic Brownian
motion with constant drifie and constant volatility. Considering the fact that the daily
profits for August, 2014are normally distributed with mean= $391, standard deviation

o = $7.50, and the initial wealtl{V,) of all artificial traders is $100,000, we can estimate the
probabilityof HFTS default in Augusby implementing the following formulaased on the

theory of hitting tmes by Karlin and Taylor [26].

—ZaVO) (13)

p(default) = exp( 2

By calibrating Ejuation (13) to the values af 2, andV,, listed in Table 8we find that

HFTSs probability of default is virtually zero.
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Although trading profits reported in Table 7 give us an ideaeofeéhl magnitude of HFTs
profits, riskadjusted performance is of prime importance. The monthly Sharpe ratio for HFTs

and institutional tradensas been calculated as:

Tis — T,
SRy == ! [252/12 (14)

L

wherer; , represents the average daily return estimated from the dafity ptas the

standard deviation of tradés return over the sample periogis the riskfree rate set at the
value of the daily continuously compounded rate converted from the annualised investment
yield on a one-month US Treasury bill (data up t8 B&cember2014 has been downloaded

from the Federal Reserve statistical release website at www.federalreseretegegs/h1)5

Table 9illustrates that HFThave the highest risieturn tradeoff, gnerating a Sharpe ratio
of 1.99 in August2014. Hence, weonclude that while HFTlsear some minimum risk, their
risk-adjusted returns are much highiesin institutional traders within artificial futuresarket

settings.

To examine thérading horizon of HFTs in the most profitable month, we follow Hasbrouck
and Sofianos [23] andedonpose their profits in August, 2014 (based on most tréided
days) over different time frames by applying spectral analysis. The @aimefover which
HFTsgenerate their profits provides more specific details about their tradatggses.
Spectral analyis viewmarkedto-market profits as a function of two different time series

such as prices and the level of inventory, which can vary at different frequencies

Similar to Baron et al2], we implement Fourier analysis to decompose prices and
inventories into groups of different frequencies. In the case when the two ties paces
and inventories ane the same phase (HFbay before the pricef the E-Mini S&P 500

increases) they generate profits. If the two time series are not in a pfasb(ly before the
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price of theE-Mini S&P 500decreases) they experience losses. Mat&adarket profits for
HFTscan be expressed as:

Ty = Z;Oxt(pt —Pe-1) = Z;Oxt ~Ape 13)
wherex; represents the wentory holdings of HFTat timet andp;, is the priceof E-Mini
S&P 500at timet. One of the requirements of the spectral analysis is the stationarjty of
andAp,. This requirement has heeatisfied because HFTiaventories(x;) is a mean
reverting process and the first differende¢he prices process denotedfsis a martingale

difference sequence. We follow Baron ef2].and develop the following two functions:

x(w) ZT xtezmtw/T (16)
t=0

T
An(w) = Z A eZTL’itw/T
p( ) r=0 Pe+1 (17)

wherew represents the frequency of different groujgg)) andAp(w) are the two spectral
densities of the; andp,. We apply Fourier analysis to Equation (17) and olitaen

following:

I 15"
=70, K@ =5), | 2t Real@w)ip(a) 4o

Where Real represents a function that takes a real part in a complex nuknber;
Real(X(w)Ap(w)) is the component of the markemmarket pofits generated by HFTat
frequencyw. The second equality in Equation 18 a result based on the fact that an

imagnary part ofx(w)Ap(w) is equal to zero.

Table 10 shows that in August, 2014 HFTs make the largest profits ofa®36€ veryshort
interval between 0 and 50illisecondsand the smallest profits of $42the longest time

scale between 3,501 and 4,000liseconds.Therefore the HFTsdo not try to infer the long-
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term fundamental value of theMini S&P 500 but emphasize entirely on capturing short-
term price dynamic3/Ve have found thatFTs profits are not determined by the difference
betweenheir entry price and the fundamental value of the three assets, but by trendéfer

between their entry and exit prices.

The results of spectral analysis are consistétht tive notion that HFTgenerate profits by
anticipating andront-running the ordr flow. Narang B6] have estimatethat front-running
generates $1.5 to $3 billion in annual profits for HFTs in the US equity market alone. To
examine the actual persistence of HRarsfits in August 2014, we investigate whether
profits from a previous day’s trading are a good predictor of the current dafits.prhis is
an important robust exercise because persistent profits distributetihoe@éndicate that

HFTswill extend their strong perforamce in the future ahé expense of institutional traders.

Baron et al[2] propose the following OLS regression which we implement in our

examinatiorfor persistence of HFTgrofits:

Profit;y = a + B1Profit;,—, + P, Aggressiveness; s + f3Volume; . (29)
+ pyVolatilityg, + &; ¢

whereProfit; . represents modified log profits suchsagn(profits) = log(1 + |profits|)
to incorporate any negative profitgolume; , is the log of each artificial trader’s trading
volume for dayt; Volume; . denotes the price volatility for daydefined as the volume-
weighted standard deviation of thege process for the same dalyjgressiveness; s
represents the tradés volumeweighted aggressiveness ratio. The univariate resultiéor t
HFTSs profits in August, 2014 (Table )teveal statistical significance indicating that-one
day lagged performance is a good predictor of the current day’s perforrBamdarly, the
statistical significance of the control variablasgume; ,, Volatilitys, and

Aggressiveness; ; demonstratethe persistencef HFTs profitability because the
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specification with control variables maintains the statistical significance frormihariate
regression resultsThis finding indicates that profitability is per®st even after controlling
for time effectsThis is in line with the findings of Baron et §] but opposite to Chaet al.

[7], who point out that algorithmic traders incur losses by trading.

The evetincreasing demand for speed and technologicpiovements creates an arms race
issue and raises questions whether the speed of incorporating information intskbean

the millisecond timeframe has any social valne2010, an American company hamed

Spread Networks invested $300 million in a rfegh-speediber optic cable in order to

reduce roundrip communication time between New York and Chicago from 16 milliseconds
to 13 milliseconds. In 2015, several HFT companies ied@stmicrowaves rater than fiber
optic cable due to the fact thae light travels faster thugh air than glass. The new
microwave technologkielps decreasingansmission time from 13 milliseconds8d
milliseconds. Similar speed races in financial markets occur on a regsilsy dften

measured at microsecofmillionth of a second) and even nanosecond (billionth of a second)
timeframes. A& benchmarko this superhuman speed of trading we would like to highlight
thatthe blink of a human eye lasts approximately 400 millisecddelaney [1] uses

techniques from real options analysis to provide insights into the optimal timestsidelld
invest in high frequency technologies. From a social welfare perspective, inmbse

socially optimaltraders should wait longer when the cost of technology is very high and the
level of and HFT is also high. Furthermore, the author slioatghe level of HFT always

exceeds the socially optimal welfare level.

Biais et al.[3] provide an analysis of thmplications of a Pigovian tafa tax applied to
market activity that is generating negative externalittesliFT and demonstrate that the
socially optimal level of HFT would be reached if the tax imposed is equal totdraakies

generated by HFTOn 6™ of May, 2010 the front-montbf June E-Mini S&P 500

25| Page



experienced dramatic decline of 5.1% within a 13 minute period. A castagecuted
ordersdecreased further the price of taéMini S&P 500 to 6.4%. The next executed order
triggered the CME Globex Stop Logic Functionality, which pauses exeaftadhorders for
5 seconds, if the next transaction were to execute outside the price range of 6 intdex poi
During this pause of 5 seconds (named the ‘Reserve State’) the market is stdhdpe
market participants are allowed to submit, modify or cancel trading otdevngever,

execution of pending trading orders is delayed until actual trading resunres sdtmonds.

To mitigate the negative consequences of HFTs and eliminate front-running, we ghepose
following regulatory measures. First, based on our empirical findings, we proposéray-

off period of less than 50 milliseconds rather than ‘Reserve State’ of 5 secbnegsurrent
regulabry debates include a coolhaff period of 500 milliseconds. To minimize the number
of cancelled orders, market regulators worldwide are currently disgussiecalled

minimum resting trading order period. This would require an order to stay on an order book
for 500 milliseconds eliminating traders who operate at much faster speedsvefiooth

the proposed minimum resting trading order period of 500 milliseconds aodrtbat

‘Reserve State’ practiaef 5 seconds does not seem to be effiordmen comparetb our

empirical findngs

Robustness checks.

To examine the robustness of our empirical findings we modified some of theartific
market parameter®anel A of Table 12 shows the rate of cancellation and executioniof lim
orders by 10,000 HFTs (10% of the total population, genome depth of 10 and genome size of

2,048) and 90,000 institutional investors (90% of the total population, genome depth of 10

& Our policy recommendation sased on trading orders executed at the millisecond interval only. \Withtre
technological improvements in software and hardware trading orders arecelxactite microsecond and even
nanosecond intervals. Therefore our policy recommendation may eéfidient at these timeframes.
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and genome size of 2,048). The probability of cancellation within 50 milliseconds,
Pcance1(50) is 0.702, compared to the probability of cancellation of 0.918 in a market

populated with 20,000 HFTs and 80,000 institutional investors.

Panel B of Table 12 illustrate the rate of cancellation and execution of limisdrg&0,000
HFTs(40% of the total population, genome depth of 40 and genome size of 8,192) and
60,000 institutional investors (60% of the total population, genome depth of 40 and genome
size of 8,192). The probability of cancellation within 50 milliseconds in this case is 0.994,
compared to the probability of cancellation of 0.918 in a market populated with 20,000 HFTs

and 80,000 institutional investors.

Our robustness profitability checks in Table 13 suggest that reduced number gfla%r's

of the total population) operating in the artificial futures market is leading teaksd
profitability in all four front-months of the E-Mini S&P 500 in 2014. We observed increased
profitability in all frontmonths under investigation where intoduced more HFTs to the
market. Our profdbased estimations in Table 14 shows that teatgr the number of HFTs

in the market, the higher the profitshese findings indicate thgteater presence of HF1rs

the market is leading to cancellations afjler proportions of tradingrdersand greater

profitability. This is in line with our initial empirical results.

Conclusions

Rapid improvements in the technological base for generating and executing tratks
dramatically increased the speed and sophistication of the trading toolblavailenarket
participants. Making an accurate bid or ask call in the futures nsaskeb longer a sufficient
condition for generating profits. Determining a fast-moving opportunity in front afttier
market participants seems to have the greatest intuétmvever, the practice of computers

running futuresnarketsraisedconcerns amwng investors and regulators around the world.
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In this study, v simulate realife trading within artificial futuresnarket settings and observe
thatHFTsgenerate a large numbarcancelled orderwithin 50 millisecondsvhich may

make trading mordifficult and costly for institutional tradersholack access to
sophisticated software platfos for HFT We have foundhat HFTsare a major user of very
short duration orders that are frequently cancelled from inside or at the best Ghstes
particular trading behaviour reduces the certainty of execution and imposeg thstiacles
for insttutional traders by making the price of theMini S&P 500 more transienA direct
forecastingcomparison between HFBEsd institutional traders indicate the superiority of the
former. Our spctral analysis confirmthat HFTsgenerate profits bfront-running the order
flow. If one group of market pacipants such as HF Igenerates faster access to the order
flow thaninstitutionaltraders, those participants with their lower latency would have an
unfair advantage in the marketplace. Overall, a high level of cancetleds combined with
scalping strategies could impose severe pickiffigisks for undisclosed trading orders and

may make them very inefficient.

In terms of market regulation, we think that the introgturcof a minimum resting tcing
order period ofess tharb0 milliseconds could imposa obstacldor profit generation of
HFTs Minimum resting trading order period of less than 50 mils&ls could lead to HFTs
facingaqueuing risk resulting ia less harmful market quality effe@ne practical
implication of our study is that we demonstrate thatket regulatorsan apply artificial
intelligence tools such as STGP to conduct trading behaviour-based profiling. This ca
used to detedhe occurrence of new HFT strategies and examine their impace datures

market.
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Appendices

Artificial stock market parameters
Total population size (traders) 100,0000
HFTs’ size(percentage of the tofadpulation) 20%
Initial wealth(equal for all traders) 100,000
Transaction costs $0.20 per contract
Significant Forecasting range 0% to 10%
Number of decimal places to round quotes on 2
importing
Minimum price increment for prices generated by | 0.01
model
Minimum position unit 20%
Maximum genome size 4096*
Maximum genome depth 20**
Minimum initial genome depth 2
Maximum initial genome depth 5
Breeding cycle frequency (quotes) 1
Minimum breeding age (quotes) 80***
Initial selection type random
Parent selection (percentage of initial selection thg 5%****
will breed)
Mutation probability (per offspring) 10%
Total number of millisecond quotes procesded 18,655,490
Mini S&P 500, February, 2014
Total number of millisecond quotes procesded 22,878,525
Mini S&P 500, May, 2014
Total number of millisecond quotes procesded 27,368,175
Mini S&P 500, August, 2014
Total number of millisecond quotes procesged 16,282,009
Mini S&P 500, November,2014
Creation of uniqgue genomes Yes
Offspring will replace the worst performing traders Yes
of the initial selection

* Maximum genome size measure the total number of nodes in a trader’g ti@dirA node is a gene in the
genome such as a function or a value.

** Maximum genome depth measures the highest number of hierarchicalttetabccurs in a trader's genome
(trading rule). The depth of a trading rule can be an indicator of its coityplex

*** This is the minimum age required for agents to qualify formitkparticipation in the initial selection. The
age of a trader is represented by the number of quotes that have been processiee sader was created.

This measure also specifies the period over which agent performahbe wilmpared. Our mininnu breeding
age is set to 80, which means that the trader’s performance over the last&8Owjll be compared.

*+x 5% of the best performing traders of the initial selection that will acan{s in crossover operations for
creating new traders.

Table 1.Artificial futures market parameter settings.
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Time (milliseconds) | Cancellation | Execution
HFTs
0-50 0.918 0.069
51-100 0.824 0.040
101-200 0.667 0.023
201-300 0.211 0.017
301-500 0.056 0.005
Institutional traders
0-50 0.001 0.016
51-100 0.014 0.099
101-200 0.018 0.174
201-300 0.021 0.388
301-500 0.028 0.779

This table presents cumulative probabilities of cancellatioreaadution within the millisecond interval. Data has been generated and
extracted from the STGP trading algorithm for the faminth of the EMini S&P 500 (February, 2014; May, 2014; August, 2015 and
November, 2014). The probabilities are estimatet-as(t), whereS(t) represent the survival function of cancellation and etiec. In
order to calculate the survival function we extracted all tigadictivity for EMini 500 S&P 500 generated by STGP trading algorithm and
used the lifetable method.

Table 2.The rate of ancellation and execution of limit orders by HFTs and institutional traders
generated by STGP trading algorithm for the E-Mini S&P 500’s front-montirgey, 2014; May,
2014; August, 2014 and November, 2014).

Cancellations with durations < 50 milliseconds
HFTs

Order location Percentage of orders

Inside best 71.24*

At best 18.49*

Institutional traders
Inside best 28.31*
At best 8.10*

This table reports the location and percentage of caddathit orders by HFTs and institutional traders fekiibi S&P 500. The
significance of the differences betwddRT s and institutional traders are estimated usisgtistics for comparing two proportions. *
indicates statistical significance at the 1% level.

Table 3.Location of cancelled limit orders60 milliseconds) generated by STGP trading algorithm
for the EMini S&P 500’s front-month (February, 2014; May, 2014; August, 2014 and November,
2014).

Cancellations with durations > 50 milliseconds
HFTs
Order location Percentage of orders
Inside best 63.28*
At best 15.01*
Institutional traders
Inside best 19.18*
At best 12.53*

This table reports the location and percentage of caddathit orders by HFTs and institutiortehders for EMini S&P 500. The
significance of the differences between HFTs and ut&iital traders are estimated usinrgtatistics for comparing two proportions. *
indicates statistical significance at the 1% level.

Table 4.Location of cancelledrit orders (> 50 milliseconds) generated by STGP trading algorithm
for the EMini S&P 500’s front-month (February, 2014; May, 2014; August, 2014 and November,
2014).
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Forecasting error | RMSE | MAE | MAPE
February 2014
HFTs 0.0008 0.0007 14.21%
Institutional traders 0.0029 0.0025 44.17%
May 2014
HFTs 0.0009 0.0006 19.88%
Institutional traders 0.0037 0.0031 38.24%
August 2014
HFTs 0.0005 0.0003 10.06%
Institutional traders 0.0027 0.0022 47.99%
November 2014
HFTs 0.0010 0.0008 20.11%
Institutional traders 0.0039 0.0020 49.57%

Table 5.Summary of HFTs and institutional traders forecasting statisticalrpsafae of the BMini
S&P 500's frorimonth (February, 2014; May, 2014; August, 2014 and November, 2014).

Diebold-Mariano | MDM 1 | MDM »
February 2014

Institutional traders | -9.14* [ -10.07*

May 2014

Institutional traders | -8.63* [ -9.99*
August 2014

Institutional traders | -4.22* | -5.78*
November 2014

Institutional traders | -7.54* | -8.10*

MDM 1 andMDM : are the statistics estimated for the MSE and MAE loss functions. While MEE /AR are used as loss
functions, the modified Dieboliflariano (MDM) test follows the student distribution wikkl degrees of freedom. The
table represents the application of the MDM test to the two forecasting midédls vs. institutional traders. Negative
values of the MDM test suggest that the first forecasting model (HF®)ris accurate than the second model. The lower
the negative value the more accurate are the HFTs' foretastlicates rejection of the MDM null hypothesis of equal

forecasting accuracy.

Table 6. Summary results of modified DieboMariano statistics for the-Klini S&P 500’s front
month (February, 2014; May, 2014; August, 2014 and November, 2014).
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Date | HFTs | Institutional traders
February 2014
05/02/2014 $317 $26
11/02/2014 $303 $47
19/02/2014 $299 $33
21/02/2014 $300 $30
27/02/2014 $289 $29
May 2014
01/05/2014 $287 $22
08/05/2014 $280 $20
09/05/2014 $301 $29
15/05/2014 $293 $34
19/05/2014 $299 $28
August 2014
04/08/2014 $390 $30
12/08/2014 $397 $32
21/08/2014 $386 $23
26/08/2014 $381 $31
28/08/2014 $399 $35
November 2014
06/11/2014 $251 $20
12/11/2014 $247 $19
20/11/2014 $238 $23
24/11/2014 $240 $18
25/11/2014 $233 $25

This table reports the daily profits by HFTs and institutioraalers. All daily profits are estimated as the differencevdsa the prices at
which HFTs and institutional traders bought and sold shared\bhES&P 500. We follow Baroret al.[4]:

Nyt
e = Z PnYin + DrYir

n=1

wheren = 1, ..., N; ; denotes the trades for traddrom the start of the trading day to the end of the tradiggmjarepresent the price of
the tradey; , measure the quantity of tineth trade generated by tradérp;y; r is the value of any outstanding positions at the értldeo
day. Transaction costs $0.20 per contract are taken into account.

Table 7.Daily profits based on the most traded five days in each month by HFTs atudiamsl
traders generated by STGP trading algorithm for it S&P 500s front-month (February, 2014;
May, 2014; August, 2014 and November, 2014).
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Statistics [ HFTs [ Institutional traders
February 2014
Mean $301%** $33xxx
Median $300 $30
Standard Deviation $10.09 $8.21
Skewness 0.44 1.16
Kurtosis 2.46 2.82
May 2014
Mean $292+*+* $27+**
Median $293 $28
Standard Deviation $8.66 $5.64
Skewness -0.33 0.06
Kurtosis 1.68 1.66
August 2014
Mean $391*** $33xxx
Median $390 $32
Standard Deviation $7.50 $1.92
Skewness -0.08 0.39
Kurtosis 1.54 1.99
November 2014
Mean $242*+* $21+**
Median $240 $20
Standard Deviation $7.19 $2.91
Skewness 0.13 0.41
Kurtosis 1.65 1.60

*** indicates that the meamofit value is statistically different from zero.

Table 8. Distribution ofprofits by HFTs and institutional traders generated by STGP trading
algorithm for the E-Mini S&P 500 (based on most traded five days in each month).

Month HFTs Institutional traders
February 2014 1.52 0.61
May 2014 1.43 0.59
August 2014 1.99 0.75
November 2014 1.27 0.57

Table 9.Monthly Sharpe ratios of the Fini S&P 500 generated by STGP trading algorithm for
HFTs and institutional traders (based on most traded five days in eadh) mont

Time length (milliseconds) HFTSs profit for August 2014
0-50 $630
51-100 $409
101-200 $246
201-300 $128
301-500 $90
501-1,000 $79
1,00%1,500 $71
1,50%2,000 $67
2,0012,500 $58
2,5013,000 $55
3,0013,500 $53
3,5014,000 $42

This table examines trading profits over different tinmgyths for the most traded days in August, 2014 fMii S&P 500, implementing
the methods of Hasbrouck and Sofiaft]s

Table 10.Spectral analysis associated with HFTs’ trading profits for the most tfiadedhys in the
most profitable month (August, 2014) for the E-Mini S&P 500.
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Univariate regressions
Variables HFTs’ profits in August 2014
Profit i 0.19*
Control variables
Aggressiveness 1.589*
Volumeit 0.903*
Volatility st 0.409**
R?adj 0.09

This table examirethe consistency of HFTS' profits in August 2014 bydstigating whether HFTS’ profiesterday is a
good predictor for their profits today. We use the following OLS regression:

Profit;, = a + By Profit;,_1 + f,Aggressiveness; ; + f3Volume; . + B, Volatilitys, + &;,

whereProfit; . represent modified log profits suchsign(profits) = log(1 + |profits|) to incorporate any negative
profits; Volume;, is the log of each artificiatader’s trading volume for day Volatility,, denote the price volatility for
dayt defined as the volumeeighted standard deviation of the price process fosahge dayAggressiveness; ; represent
the tradeii’s volume— weighted aggressiveness ratidndicates significance at the 1% lev&;indicates significance at
the 5% level.

Table 11.Consistency of HFTs profits for theMini S&P 500 in the most profitable month (August
2014).

Panel A* Cancellation | Execution
Time (milliseconds) HFTs
0-50 0.702 0.283
51-100 0.688 0.133
101-200 0.619 0.101
201-300 0.322 0.047
301-500 0.099 0.015
Institutional investors
0-50 0.009 0.221
51-100 0.038 0.255
101-200 0.066 0.317
201-300 0.080 0.509
301-500 0.089 0.822
Panel B** HFTs
0-50 0.994 0.011
51-100 0.873 0.010
101-200 0.698 0.007
201-300 0.295 0.004
301-500 0.085 0.001
Institutional investors
0-50 0.001 0.010
51-100 0.006 0.037
101-200 0.015 0.061
201-300 0.020 0.080
301-500 0.026 0.093

* Panel A shows the rate of cancellation and execution of dirdérs by 10,000 HFTs (10% of the total population, genopi& dé 10 and
genome size of 2,048) and 90,000 institutional investors (90Bedbtal population, genome depth of 10 and genome size of) 2048
Panel B shows the rate of cancellation and execution of limitokye40,000 HFTs (40% of the total population, genome depth aofd!0 a
genome size of 8,192) and 60,000 institutional investors (6G#edbtal population, genome depth of 40 and genome size of 8,192).
Millisecond data has been generated and extracted fronTBE 8ading algorithm for the fromhonth of the EMini S&P 500 (February,
2014; May, 2014; August, 20EndNovember 2014). Theprobabilities are estimated &s- S(t), whereS(t) represents the survival
function of cancellation and execution. In order to calculeesurvival function we extracted all trading activity felihi 500 S&P 500
generated by STGP trading algoritiamd used the lif¢gable method.

Table 12.Robustness checks related to the rate of cancellation and execution ofdiens by HFTs
and institutional traders generated by STGP trading algorithm for BigiES&P 500’s frorimonth
(February, 2014; May, 2014; August, 2014 and November, 2014).
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Date | HFTs | Institutional traders
February 2014
05/02/2014 $203 $31
11/02/2014 $184 $55
19/02/2014 $155 $42
21/02/2014 $190 $44
27/02/2014 $172 $37
May 2014
01/05/2014 $124 $35
08/05/2014 $138 $26
09/05/2014 $166 $38
15/05/2014 $199 $42
19/05/2014 $201 $40
August 2014
04/08/2014 $257 $51
12/08/2014 $244 $64
21/08/2014 $218 $43
26/08/2014 $248 $50
28/08/2014 $261 $72
November 2014
06/11/2014 $111 $23
12/11/2014 $122 $27
20/11/2014 $103 $30
24/11/2014 $100 $22
25/11/2014 $119 $41

All daily profits are estimated as the difference betwiberprices at which HFTs and institutional traders boagttsoldshares of BMini

S&P 500. We follow Baroet al.[4]:

e = Z PnYin + DrYir

n=1

where n = 1, ..., N;r denotes the trades for tradérom the start of the trading day to the end of the tradinggayepresent the price of
the tradey; , measure the quantity of tineth trade generated by tradepry; r is the value of any outstanding positions at the erbeof
day. Transaction costs $0.20 per contract are taken into account.

Table 13.Robustness checks for theMini S&P 500front-month’s daily profits based on the most
traded five days in each month by 10,000 HFTs (10% of the total population, genomefdgpand
genome size of 2,048) and 90,000 institutional investors (90% of the total populatiomegéepth
of 10 and genome size of 2,048).
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Date | HFTs | Institutional traders
February 2014
05/02/2014 $421 $11
11/02/2014 $399 $34
19/02/2014 $338 $25
21/02/2014 $404 $19
27/02/2014 $316 $20
May 2014
01/05/2014 $330 $12
08/05/2014 $318 $10
09/05/2014 $396 $18
15/05/2014 $411 $26
19/05/2014 $377 $18
August 2014
04/08/2014 $499 $21
12/08/2014 $495 $15
21/08/2014 $481 $14
26/08/2014 $490 $29
28/08/2014 $503 $33
November 2014
06/11/2014 $314 $10
12/11/2014 $306 $12
20/11/2014 $299 $14
24/11/2014 $322 $11
25/11/2014 $315 $23

All daily profits are estimated as the difference betwtberprices at which HFTs and institutional traders boagttsoldshares of BMini

S&P 500. We follow Baroet al.[4]:

Nir

e = Z PnYin + DrYir

n=1

where n = 1, ..., N;r denotes the trades for tradérom the start of the trading day to the end of the tradinggayepresent the price of
the tradey; , measure the quantity of tieth trade generated by trademp;y; r is the value of any outstandipgsitions at the end dfie
day. Transaction costs $0.20 per contract are taken into account.

Table 14.Robustness checks for theMini S&P 500front-month’s daily profits based on the most
traded five days in each month by 40,000 HFTs (40% of the total population, genomefdipand
genome size of 8,192) and 60,000 institutional investors (60% of the total populatiomegdepth

of 40 and genome size of 8,192).
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Appendix A

Genetic Programming andStrongly Typed Genetic Programming
Although, Schlereth et all}] designed agerttased models that provide a promising link to individual
behaviour, most existing techniques to adeded system desidail to deal with the complexity of
design P]. To address this issue, we implement the Strongly Typed GenetjicaBrming (STGP). The
STGP is a more sophisticated version of Genetic Programming (GP) whagmtion of generic
functions and data types ks it more sophisticated than GP. GP can be considered an extension of
Genetic Algorithms (GAs). GAs are techniques based on evolution andlreslaction 16]. Under
GAs’ approach the economy is seen as evolving complex system in whidhehittifides perform the
activities of the realife economy 9]. The procedure enhances search output by performing different
solutions with genetic operatorkl]. A benefit of GP over traditional GA is that players evolve not just
the values of variables but alshe structure of their modelS]] GP represents a machitearning
method to automate the development of computer programs in terms of nadlutibevj2], which
works by defining a goal in the form of quality criteridl. [If there are inputX and outputy’, a
program p is generated which satisfies = p(X). GP uses variablength tree structures for
representing candidate solutior®]] Opposite to neural networks, decisitvae structures represent
specific rules that can be expresseBiglish [LO]. The leaf nodes of the tree are the terminals whereas
the nonleaf nodes are known as nterminals. Terminals are usually inputs to the program with no
argument and the negerminals are functions often represented with at least one argurhenparse
trees represent the trading rules of 20,000 HFTs and 80,000 institatameais in our experiment. The
typical genetic structure of the trading rule consists of hundreds of aodeis rather unwieldy to
actually write out, however, it can benplified to equivalent algorithmic trading rules, as shown below.

Figure 1. Example of time- dependent trading rule for institutional traders.

Figure 1 illustrates that the trading rule for institutionatlers sends a buy signal if the average futures
price over the past 1 millisecond is greater than the current price. A sell Egsent otherwise.
Institutional traders do not momentarily perform best in terms of théncmus Breeding Fitness
Return, and therefore they possess higher latency in trading operatienstore, they are unable to
foresee the quotes of theNlini S&P 500 and submit trading orders before HFTSs.
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Figure 2. Exampk of timedependent trading rule for HFTs.

Figure 2 indicates that the trading rule of HFTs sends a buy sighelaiverage futures price over the
past 1 millisecond is greater than the current price and the current volume iaheS8QhA sell signa

is sent otherwise. The current volume function protects HFTs from sweegxpekure. Large losses
caused by sweeps (adverse price movements against HFTs’ transieogossn substantially reduce
or even eliminate their profitability, so the management of sweepsrigkgaramount importance for
HFTs. HFTs use the market microstructure to capture and avoid sweep riskisthiechisk related to
trading against large informed toxic orders (for instance, large institdtiorders) positioned at

multiple levels of the order book.

The main steps in developing a genetic program are as follows:

1. Create initial randomly generated population of trading rules (tfEleg)}andom generation of
trees enables the whole range of possible trading rules to bedsflidésonly requirement for
trading rules is that they be well defined and produce outgubppate to the problem of
interest. These trading rules apply the fundamental principle®loigical evolution to create
a new and improved population of trading rules. The creation and development of this new
population is based on a domdmdependensystem governed by the Darwinian theory of
natural selection under the principlesafvival of the fittest.

2. Calculate the fitness of each trading rule in the initial populatith accordance to appropriate
criterion.

3. Create a new population by implementing the following operations:

0] Copy existing traders into the new population (crossover).

(i) Randomly select a pair of existing trading rules and recombine subtrees frotothem
produce a new trading rule (mutation). While crossover mixes subtreds of t
population, mutation replaces subtrees with new subtrees. The operationsmfasross
and mutation are performed with the probability of selection for the operatiods,
skewed towards selecting traders with higher levels of fitness.

Calculate the fitess of each trader in the new population.

Repeat these operations, recording the overall fittest traders.
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In the crossover process, randomly selected subtrees are swapped (exchangespedifarally, a
crossover point in the tree is randomly selected within each parenmdradies are selected on the
basis of their fithess, with the crossover allocating future trials to efé@ssearch space whose trading
rules contain parts from the superior trading rules. The best performifiggtrailes fromthe initial
selection are selected based on the Breeding Fitness Return to act as parerdsossover process.
The Breeding Fitness Return process represents a trailing return of a wealith ax@rage and is an
integral part of the latency of HFTEhis is in fact the return over the lasguotes of an exponential
moving average of a trader’'s wealth, whereould potentially have the maximum breeding value of
250. Each pair of parents generates two offspring trading ruldss somber of parésand the number
of offspring are equal at all times. In this innovative programming probessewly created trading
rules replace those that performed poorly in the initial selection basdtk aeplacement Fitness
Return. This type of return represethe average return of a wealth moving average per millisecond
guote since the creation of the very first trading rule. In other wdridgstthe cumulative return of an

exponential moving average of a trader’s wealth, divided by the tradeeditgevalue.

In the process of mutation a pair of trading rules has been randomly selentdétid population, with
probability weighted in favor of higher fitness trading rules. The sabtof the two parent rules are
then randomly selected. One of the selected subtrees is subsequently discardddcutbrgpnother
subtree to generate the offspring rule. The GP searches areas of tlen spate by evolving a
population of trading rules, with the trading rules in each successive gemézationg to bcome adept
at solving the problem. As full technical explanation of crossover anatiowis beyond the scope of

this paper, the reader may refer to Kok3 for more details.

Strongly Typed Genetic Programming (STGP) is a version of GP whose &ipplafageneric functions
and data types makes it more sophisticated thanrGETGP each node is connected to a particular
return). STGP is specifically suited to optimize structural or funatiform.To create a parse tree, one
needs to take to account important additional programming criteria such as when the roabfrtbde
tree returns a value of the type required by the problem, and when eaciohonde returns a value
of the type required by the parent node as an argun®ht \Vhile GP can be written in any
programming language, the STGP is typically written in a specific progiragrianguage, which is a
combination of Ada3] and Lisp [L8]. The concept of generics as a method of developing strongly
typed data is the critical comporiexdopted from Ada. Additionally, Lisp incorporates the concept of
having programs represented by actual parse ttdgs/§¥hile in conventional GP, one needs to specify
all the programs and variables that can be used as nodes in a parse tree and teatearch space
of the order of 1¥- 10*>. STGP however reduces the searching sigéee size to a greater degree
[13]. On the other hand, the STGP search space composes the set of all legedgmradich means

that all functions have the coatenumber of parameters of the correct type. On most occasions, the
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STGP parse tree is limited to a certain maximum depth (Tdhistrates that 20 is the maximum depth
in the artificial futures markets featured in this study). We set thenmiaxidepttto 20 in order to keep
the search space finite and manageable, while not allowing the treew/tio gio extremely large size.
The critical concepts in STGP are generic functions (a mechanism foygpgeifclass of functions),
and the process of assigning generic data types for these fun8li@BGP has the flexibility to allow
all variables, constraints, arguments and returned values of any typenlyis¢rict requirement is that
the type of data for each element has to be specified in the early stage of theqmiogrprocess. The
resulting initialization process and the various genetic operators agsbwiith it are enabled to create
syntactically correct trees. Those trees on the other hand are benefitial eatire programming

process beause the search space can be significantly redidkted [
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Appendix B

E-Mini S&P 500 daily trading volume generated by STGP trading algorithm.

February 2014

Date E-Mini S&P 500 trading volume
03/02/2014 880,273
04/02/2014 889,011
05/02/2014 984,471
06/02/2014 888,250
07/02/2014 870,369
10/02/2014 880,376
11/02/2014 999,035
12/02/2014 799,937
13/02/2014 820,111
14/02/2014 890,255
15/02/2014 900,004
16/02/2014 856,551
19/02/2014 1,003,578
20/02/2014 868,480
21/02/2014 985,844
22/02/2014 883,999
23/02/2014 858,045
27/02/2014 979,932
28/02/2014 901,808
29/02/2014 845,431
30/02/2014 799,897
May 2014
01/05/2014 1,207,009
02/05/2014 1,090,371
05/06/2014 1,103,484
06/06/2014 1,089,677
07/05/2014 1,110,080
08/05/2014 1,382,644
09/05/2014 1,299,388
12/05/2014 1,080,304
13/05/2014 1,005,989
14/05/2014 1,199,213
15/05/2014 1,463,011
16/05/2014 1,085,888
19/05/2014 1,344,656
20/05/2014 1,090,756
21/05/2014 1,117,353
22/05/2014 1,125,089
23/05/2014 1,006,355
27/05/2014 1,110,748
28/05/2014 1,190,377
29/05/2014 1,004,023
30/05/2014 1,102,378
August 2014
01/08/2014 1,303,087
04/08/2014 1,674,926
05/08/2014 1,299,737
06/08/2014 1,384,211
07/08/2014 1,406,309
08/08/2014 1,337,743
11/08/2014 1,487,008
12/08/2014 1,700,380
13/08/2014 1,307,100
14/08/2014 1,299,878
15/08/2014 1,311,529
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18/08/2014 1,388,141
19/08/2014 1,400,272
20/08/2014 1,294,988
21/08/2014 1,505,020
22/08/2014 1,352,090
25/08/2014 1,381,309
26/08/2014 1,609,999
27/08/2014 1,402,613
28/08/2014 1,524,530
29/08/2014 1,289,830
November 2014
03/11/2014 775,338
04/11/2014 718,474
05/11/2014 800,099
06/11/2014 861,033
07/11/2014 745,940
10/11/2014 788,975
12/11/2014 880,737
13/11/2014 799,954
14/11/2014 767,834
17/11/2014 798,121
18/11/2014 756,110
19/11/2014 766,989
20/11/2014 901,006
21/11/2014 804,828
24/11/2014 890,342
25/11/2014 885,050
26/11/2014 812,736
28/11/2014 777,902

46 |Page




References
1. Archetti, F., Giordani, I., and Vanneschi, L. Genetic programming for anticancgrehéc
response prediction using the N&) datasetComputers and Operations Research, 37, 8
(2010), 1395-1405.
2. Banzhaf, W., Nordin, P., Keller, R. E., and Francone, FG@etic Programming: An
Introduction on the Automatic Evolution of Computer Programs and Its Applications. San
Francisco, CA, USA: Morgan Kaufmann Publishers, 1998.
3. Barnes, J. G. PProgramming in ADA. Reading, MA: Addison-Wesley, 1982.
4. Baron, M., Brogaard, J. and Kirilenko, A. The trading profits of high frequendgriga
SSRN Electronic Journal, (2012).
5. Dworman, G., Kimbrough, S. O. and Laing, J. D. On automated discovery of models using
Genetic Programming: Bargaining in a thasgent coalitions gamdournal of Management
Information Systems, 12, 3 (1995), 97-125.
6. Hasbrouck, J. and Sofianos, G. The trades of market makers: An empirical analysgfof NY
specialistsJournal of Finance, 48, 5 (1993), 1565-1593.
7. Haynes, T., Schoenefeld, D. and Wainwright, R. Type Inheritance in Stronggt Ggnetic
Programming, In Kinnear, K. and Angeline, P. (edglyances in Genetic Programming 2.
MIT Press, 1996.
8. Haynes, T., Wainwright, R., Sen, S. and Schoenefeld, D. Strongly Typedtic
Programming in evolving cooperation strategi€soceedings of the sixth international
conference on Genetic Algorithms, 1995, 271-278.
9. Karageorgos, A., Thompson, S. and Mehandjiev, N. Agas¢d system design for B2B

electronic commerceénternational Journal of Electronic Commerce, 7, 1 (2002), 59-90.

47 |Page



10. Kim, J. W., Lee, B. H., Shaw, M. J., Chang,LHand Nelson, M. Application of decision
tree induction techniques to personalized advertisements on internet storéfiterriational
Journal of Electronic Commerce, 5, 3 (2001), 45-62.

11. Kim, K-J. and Ahn, H. Collaborative filtering with a usem matrix reduction technique.
International Journal of Electronic Commerce, 16, 1 (2011), 107-128.

12. Koza, J. RGenetic Programming: On the Programming of Computers by Means of Natural
SHlection. MIT Press, 1992.

13. Montana, D. J. Strongly Typed Genetic Programming, Technical report 7866. BoleBer
and Newman, Inc, 1994.

14. Montana, D. J. Strongly Typed Genetic Programmiawglutionary Computation, 3, 2
(1995), 199-230.

15. Montana, D. J.Srongly Typed Genetic Programming. 2002, Available at:

http://personal.d.bbn.com/~dmontana/papers/stgimtiessed on: May 01 2015).

16. Oliver, J. R. Artificial agents learn policies for mudisue negotiationlnternational
Journal of Electronic Commerce, 1, 4 (1997), 49-88.

17. Schlereth, C., Barrot, C., Skiera, B. and Takac, C. Optimal predogtling strategies in
social networks: How many and whom to targdt®ernational Journal of Electronic
Commerce, 18, 1 (2013), 45-72.

18. Steele, G. LCommon Lisp: The Language. Burlington, MA: Digital Press, 1984.

19. Wu, D. J. Atrtificial agents for discovering business strategies for rietwdustries.
International Journal of Electronic Commerce, 5, 1 (2000), 9-36.

20. Wyns, B. and Boullart, L. Efficient tree traversal to reduce code growth bdseel

genetic programminglournal of Heuristics, 15, 1 (2009), 77-104.

48 |Page


http://personal.d.bbn.com/%7Edmontana/papers/stgp.pdf

