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1. Introduction

A neoclassical tearing mode (NTM) is an example of a resis­

tive magnetohydrodynamic (MHD) instability present in a 

tokamak plasma. NTMs are characterized by the evolution 

of a magnetic island chain, which arises from a filamentation 

of the component of the plasma current density parallel to 

the magnetic field lines on a rational surface. The change in 

magn etic topology enhances the transport of particles and heat 

across the island width, as they stream along the perturbed 

magnetic field lines. Consequently, in the absence of particle/

heat sources and particle drifts, the radial pressure gradient is 

flattened across the island width. This not only degrades the 

plasma confinement by lowering the pressure in the core of 

the plasma, but a large NTM can trigger a disruption. Major 

disruptions can do significant damage in future larger toka­

maks such as ITER; it is therefore crucial to control or avoid 

NTMs.

The evolution of a magnetic island can be described by the 

modified Rutherford theory. According to the original theory 

[1], the stability of an island depends on the tearing param­

eter, ∆′, which is a measure of the free energy available in 

the current density for magnetic reconnection. In the modified 

theory incorporating toroidal geometry, a localized perturba­

tion in the parallel current profile is also considered. One such 

contribution comes from the bootstrap current, which tends 
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to be removed from the island region where the pressure gra­

dient is flattened. This perturbation in the bootstrap current 

typically reinforces the original filamentation in the current 

density profile, which enhances the island growth [2, 3]. This 

enhanced island growth mechanism, provided by the per­

turbed bootstrap current, is what characterizes a neoclassical 

tearing mode. Because this bootstrap current contribution 

(which we label ∆bs) scales as 1/w, where w is the island half­

width, this theory predicts that all seed islands, however small, 

would grow to a large saturated island (assuming a negative 

∆′). If this were the only contribution to the island evolution, 

then it would pose significant challenges for achieving fusion 

in a tokamak, as all plasma discharges would suffer from 

such tearing instabilities. However, experimental observations 

point to the existence of a threshold effect [4, 5], whereby a 

sufficiently small seed island heals itself and shrinks away. 

One of the possible origins of this threshold is the finite radial 

transport effect [6–8]. This effect partially restores the pres­

sure gradient that is flattened across the island width, which 

reduces the bootstrap current drive for the island growth. 

Then, the growth of an island with a width comparable to or 

smaller than wχ/r = (ǫnLq/r)−1/2(χ⊥/χ‖)
1/4  is suppressed, 

and can be stabilised for negative ∆′. Here, ǫ = r/R is the 

inverse aspect ratio, r and R are minor and major radii of  

the torus respectively, n is the toroidal mode number, Lq is the 

magnetic shear length scale and χ⊥,‖ are perpendicular and 

parallel thermal conductivities, respectively.

Another candidate for producing a threshold is the polari­

zation current, which is induced when the island chain prop­

agates through the plasma with a characteristic frequency, ω . 

In slab geometry, the finite Larmor radius (FLR) effect sets the 

length scale where the polarisation current becomes relevant. 

When w is comparable to the ion Larmor radius, ρLi, the dif­

ference in the responses of ions and electrons to the rotating 

island gives rise to an electrostatic potential. The difference in 

the gyro­averaged E × B drifts then leads to the polarization 

current, which in turn generates a parallel return current, δJ‖, 

to ensure ∇ · J = 0. This δJ‖ then contributes to the magnetic 

island evolution through the modified Rutherford equation. 

Previous works [9–12] have shown that there exists a narrow 

boundary layer current in the vicinity of the island separatrix, 

whose contribution to the island evolution is opposite but com­

parable in magnitude to that from outside the boundary layer. 

Whether or not the polarization current contribution is stabi­

lizing depends on the relative sizes of the two contributions.

In toroidal geometry, the combination of grad­B and curva­

ture drifts causes orbits of passing particles (those completing 

full poloidal orbits) to stray from a reference flux surface by 

a distance of O(ǫρθ), where ρθ is the poloidal Larmor radius. 

In addition, because of the variation in the magnetic field 

strength, a fraction of particles are trapped on the outboard 

side of the tokamak. They execute closed banana­shaped 

orbits, whose width is given by ρb ∼
√
ǫρθ. The trapped 

ions experience a different orbit­averaged E × B drift to the 

trapped electrons, which results in a net current: the neoclas­

sical polarization current [13–16]. Its contribution to the island 

evolution (which we label ∆pol) can be substantial when w 

is comparable to the ion banana width, ρbi. Previous works  

[14, 17] based on drift kinetic theory in toroidal geometry 

have shown that ∆pol ∝ 1/w3, when ρbi ≪ w. If this contrib­

ution is stabilizing, then it could heal small seed islands, thus 

providing the threshold.

One way of controlling NTMs is to use electron­cyclotron 

current drive (ECCD) [18, 19]. An ECCD system can suppress 

the NTM growth by driving a plasma current in the vicinity 

of the island, effectively replacing the missing bootstrap cur­

rent in the region. If the island width can be reduced to below 

the threshold width, then the island will shrink away and the 

NTM will be successfully suppressed. The effectiveness of 

the ECCD has been demonstrated in a number of tokamaks 

[20–23], and it is currently the favoured method of control­

ling NTMs in ITER [24]. However, the power consumption of 

the ECCD system is rather high. It is therefore crucial to use 

it as efficiently as possible, if we are to achieve a high fusion 

Q­factor in future experiments [25]. Here, Q is the ratio of 

fusion power to the heating power injected into the plasma. 

This is why the understanding of the NTM threshold physics, 

including the predictive capability for the threshold island 

width, is so crucial.

Taking into account these contributions, the modified 

Rutherford equation  describing the island evolution can be 

represented in the following form:

τR

r2

dw

dt
= ∆′(w) + a1ǫ

1/2 Lq

Lp

βθ

w

w2

(w2 + w2
χ)

+ a2g(ǫ, νii)

(

Lq

Lp

)2
βθ

w

(ρbi

w

)2

+∆ECCD,

 

(1)

where τR is the resistive time scale, βθ = 2µ0p/B2
θ, p  is the  

plasma pressure, Bθ is the poloidal component of the 

magnetic field, Lq = q(dq/dr)−1, q is the safety factor, 

Lp = −p(dp/dr)−1, g(ǫ, νii) describes the collision frequency 

dependence [17], and a1,2 are numerical constants. The terms 

in a1 and a2 correspond to the bootstrap current (∆bs) and 

polarization current (∆pol) contributions, respectively, while 

∆ECCD describes the impact the ECCD system has on the 

island evolution. As mentioned above, an efficient deployment 

of the control system requires a better understanding of the 

threshold physics. In particular, the ability to quantitatively 

predict the threshold island width wc (for which dw/dt = 0), 

below which the island shrinks away, is essential. Existing 

theory relies on the assumption ρbi ≪ w, i.e. valid in the limit 

of large island widths compared to the ion banana width. 

However, observations [26] show that the threshold island 

width is often comparable in size to the ion banana width; 

precisely the regime where this assumption breaks down. A 

new theory is therefore required to accurately determine the 

relative sizes of the ∆bs, ∆pol  and ∆′ contrib utions, including 

their dependence on the curvature and finite particle orbit 

width effects. This will allow us to quantitatively predict the 

threshold width for ITER.

This paper focuses on the effect of finite ion orbit width on 

the bootstrap current contribution to the magnetic island evo­

lution, by considering a stationary island relative to the plasma. 

We extend the existing drift kinetic theory [14] to describe the 
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ion response to the island perturbation. Crucially we relax 

the small banana­width assumption, and consider magnetic 

islands whose widths are comparable to the ion banana width: 

w ∼ ρbi. We consider a small magnetic island w ≪ r  (valid for 

an island with a width close the threshold width), which allows 

us to treat the plasma as toroidally symmetric to leading order. 

Then, because of the finite orbit width effect the ion distribu­

tion function is no longer a function of poloidal magnetic flux 

ψ, but of toroidal canonical angular momentum:

pφ = (ψ − ψs)−
Iv‖

ωci

, (2)

which is conserved along the orbits in an axisymmetric 

plasma. Here, ψs  is the poloidal flux at the rational surface 

where the island is located, I = RBφ, Bφ is the toroidal 

component of the magnetic field, v‖ is the component of 

the particle velocity along the field lines and ωci  is the ion 

gyrofrequency. For electrons, the assumption ρbe ≪ w is still 

valid, which allows us to use the existing analytic solutions 

for the electron distribution function of [14]. However, in the 

regime ρbe ≪ w ∼ ρbi , we anticipate a notable difference 

in the electron and ion distribution functions, if we neglect 

the electrostatic potential, Φ. It is therefore important to cal­

culate Φ self­consistently from quasi­neutrality, which we 

incorporate into our analysis. From the particle responses, 

we determine the full contribution of the localized current 

perturbation (which includes the perturbed bootstrap current) 

to the island evolution, including those from inside the island 

and the separatrix layer (previously assumed to be zero, with 

perfectly flat pressure gradient inside the island separatrix). 

Earlier works considered the limit w ∼ ρbi by employing a 

particle­in­cell (PIC) simulation to solve the drift kinetic 

equation  [27], or approached the problem analytically by 

focusing on the contribution from the passing particles only 

[28]. They found that an ion density gradient is supported 

across the island, but did not address the consequences this 

has for quasi­neutrality and the electron response. Our ana­

lytic approach reveals the physics explanation for the density 

gradient, and provides a new threshold physics effect that 

results from the electron response.

This paper is organized as follows. In section 2, we intro­

duce the perturbed magnetic geometry and drift kinetic equa­

tion, followed by section  3 outlining the analytic electron 

response, as derived in [14]. Electron flow depends on the 

ion counterpart through the model collision operator, and 

hence is worthwhile revisiting here. In section 4, we derive 

the orbit­averaged equation describing the ion response and 

first consider the solution in the collisionless limit, where we 

introduce the concept of ‘drift islands’ in shifted flux space 

(section 4.1). This aids the understanding of solutions of 

the full equations, including the collisional effects. This is 

followed by section  4.2, describing the analysis of the full 

solution for the ion distribution function, perturbed density 

and parallel flow profile. Finally, in section 5 we determine 

the layer current contribution to the island evolution, ∆′
loc, 

for a range of values of ρθi  and w. Conclusions are drawn in 

section 6.

2. Magnetic island geometry and drift kinetic 

equation

We consider a large aspect ratio, circular cross­section 

tokamak, neglecting the Shafranov shift. Then, in the orthog­

onal coordinate system ∇φ×∇ψ = rBθ∇θ, where ψ is the 

poloidal magnetic flux, θ is the poloidal angle and φ is the 

toroidal angle, the equilibrium magnetic field is given by:

B0 = I(ψ)∇φ+∇φ×∇ψ. (3)

Here, I(ψ) = RBφ and Bθ and Bφ are the poloidal and toroidal 

components of the magnetic field respectively. A magnetic 

perturbation of the form satisfying Maxwell’s equation  is 

introduced:

B1 = ∇× (A‖b0), (4)

where b0 = B0/B0 is the unit vector in the direction of the 

equilibrium field lines, and the parallel vector potential takes 

the form:

A‖ = −

ψ̃

R
cos ξ, (5)

assuming a single dominant helicity perturbation. Here, ξ is 

the helical angle in the island rest frame:

ξ = m

(

θ −
φ

qs

)

, (6)

where m is the poloidal mode number, qs = m/n is the safety 

factor at the rational surface where the island is located (all 

quantities with subscript s are those evaluated at the rational 

surface, unless otherwise indicated), and n is the toroidal 

mode number. ψ̃ = (w2
ψ/4)(qs/q′

s) describes the perturbation 

amplitude (the prime denoting a differential with respect to 

ψ), and wψ is the island half­width in ψ­space. It is also con­

venient to introduce a perturbed flux function Ω that describes 

the magnetic island geometry, which satisfies: B ·∇Ω = 0. 

That is, the perturbed magnetic field lines lie in surfaces of 

constant Ω. The form of Ω is then given by:

Ω =
2(ψ − ψs)

2

w2
ψ

− cos ξ, (7)

with Ω = 1 defining the island separatrix.

Working in the island rest frame, we consider a steady state 

ion response to the magnetic island perturbation, using the 

drift kinetic equation:

v‖∇‖fj + vE ·∇fj + vb ·∇fj

−
ej

mjv

(

v‖∇‖Φ+ vb ·∇Φ
) ∂fj

∂v

= Cj( fj)
 (8)

for a particle species j . Here, ‖ denotes a comp­

onent parallel to the magnetic field lines, 

∇‖ = b ·∇, b = B/B, vE = (B ×∇Φ)/B2 is the E × B 

drift, vb = −v‖b ×∇(v‖/ωcj) is the combination of grad­B 

and curvature drifts, ωcj = ejB/mj  and ej  and mj  are the par­

ticle charge and mass respectively. Φ is the perturbed electro­

static potential to be determined from quasi­neutrality, and Cj  

Nucl. Fusion 59 (2019) 046016
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is the momentum­conserving model collision operator [29]. 

Like­like particle and electron–ion collision operators are 

respectively given by:

Cjj( f ) = 2νjj(v)

[
√

1 − λB

B

∂

∂λ

(

λ
√

1 − λB
∂f

∂λ

)

+
v‖ū‖j

v
2
thj

FMj

]

,

 
(9)

Cei( f ) = 2νei(v)

[
√

1 − λB

B

∂

∂λ

(

λ
√

1 − λB
∂f

∂λ

)

+
v‖u‖i

v
2
the

FMe

]

,

 

(10)

where the λ differentials are taken at fixed ψ,

νjj(v) = ν̃jj

φ(v̂)− G(v̂)

v̂
3

 (11)

is the deflection frequency, v̂ = v/vthj, v
2
thj = 2Tj/mj  and ν̃jj is 

the Coulomb collision frequency. Here,

φ(X) ≡
2
√
π

∫ X

0

e−t2

dt,

G(X) ≡
φ(X)− Xφ′(X)

2X2
, φ′ =

dφ

dX
.

In equation (9), we have also introduced:

ū‖j( f ) =
1

n 〈νjj〉
v

∫

dv
3
νjjv‖f , (12)

which is required for momentum conservation, and

〈νjj(v)〉
v
=

8

3
√
π

∫ ∞

0

dv̂ v̂
4e−v̂

2

νjj(v̂).

In equation  (8), spatial derivatives are taken at constant 

kinetic energy, E = v
2/2, and magnetic moment, µ = v

2
⊥/2B, 

where ⊥ denotes a component perpendicular to magnetic field 

lines. Working in (v,λ) velocity coordinates, where λ = µ/E 

is the pitch angle, the velocity space integral is:

∫

d3
v = πB

∑

σ

∫ ∞

0

v
2 dv

∫ B−1

0

dλ
√

1 − λB
, (13)

where σ is the sign of parallel velocity, v‖ = σv

√

1 − λB.

3. Electron response

In order to calculate the perturbed bootstrap current and its 

contribution to the magnetic island, we require both the ion 

and electron parallel flows. For electrons, we can exploit the 

fact that the electron poloidal Larmor radius is usually small 

compared to the magnetic island width, even when the ion 

poloidal Larmor radius is comparable to the island width (i.e. 

ρθe ≪ ρθi ∼ w). Then, we are justified in using the analytic 

results for the electron response, derived in [14]. As can be 

seen from equation (10), the electron parallel flow is depen­

dent on the ion counterpart through momentum conservation, 

so the two species are coupled.

We seek a Maxwellian solution for the electrons, expanding 

the distribution function about the rational surface in the limit 

of a small island w ≪ r :

fe =

(

1 +
eΦ

Te

)

FMes + (ψ − ψs)F
′
Mes + ge, (14)

where  −e is the electron charge, ge describes the perturbation 

in the electron distribution function,

FMj =
n0(ψ)

π3/2
v

3
thj

e−v
2/v

2
thj (15)

is the Maxwellian for species j  and n0 is the equilibrium den­

sity. Introducing two small parameters δe = ρθe/w and ∆/r , 

we expand the perturbation term:

ge =
∑

l,k

δl
e∆

kg(l,k)
e (16)

and determine the leading­order response of electrons to the 

island. Then, considering relevant order contributions to the 

drift kinetic equation (8), the solution for the electron distribu­

tion function retaining O(∆) and O(δe∆) (N.B. ge/FMe ∼ ∆), 

is [14]

fe =

(

1 −

eeΦ

Te

)

FMes + h(Ω)F′
Mes −

Iv‖

ωce

F′
Mes

∂h

∂ψ
+ h̄e,

 

(17)

where

h(Ω) = Θ(Ω− 1)
wψ

2
√

2

∫ Ω

1

dΩ′

Q(Ω)
,

Q(Ω) =
1

2π

∮

√

Ω+ cos ξ dξ

 

(18)

h(Ω) describes the perturbed radial density profile in the 

vicinity of the magnetic island. In the absence of the drift 

effects, the gradient would be completely flat inside the 

island separatrix, Ω < 1 (note the Heaviside function in 

equation (18)).

h̄e in equation (17) is determined from a constraint equa­

tion derived from the O(δe∆) contribution to the drift kinetic 

equation, which takes the form:

Rqk‖

[

4

w2
ψ

dh

dΩ

∂ψ

∂ξ

∣

∣

∣

∣

Ω

F′
MesI

〈

v‖

ωce

〉

θ

+
∂h̄e

∂ξ

∣

∣

∣

∣

Ω

]

+
4

w2
ψ

dh

dΩ

∂ψ

∂ξ

∣

∣

∣

∣

Ω

F′
MesI

∂

∂ψ

〈

v‖

ωce

〉

θ

qs

q′s

−

〈

Rq

v‖
Ce(g

(1,0)
e

〉

θ

= 0,

 

(19)

where g
(1,0)
e  is the last two terms of equation (17):

g(1,0)
e = −

Iv‖

ωce

F′
Mes

∂h

∂ψ
+ h̄e.

Equation (19) can be solved analytically in the collisionless 

limit, when the term in the collision operator is negligible. 

Solving (19) for h̄e yields:

Nucl. Fusion 59 (2019) 046016
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h̄e =−
4

w2
ψ

dh

dΩ
F′

MesI

[〈

v‖

ωce

〉

θ

+
qs

q′s

∂

∂ψ

〈

v‖

ωce

〉

θ

]

× (ψ − 〈ψ〉
Ω
) + He(Ω),

 

(20)

where 〈· · · 〉θ denotes an integral over a period in θ for passing 

particles and between the bounce points, multiplying the 

result by σ and summing over σ for trapped particles. 〈· · · 〉Ω 

denotes a flux surface­average:

〈· · · 〉Ω =

∮

· · · [Ω + cos ξ]−1/2 dξ
∮

[Ω + cos ξ]−1/2 dξ
. (21)

He(Ω) is a free function satisfying:
〈

〈

Rq

v‖
Ce(g

(1,0)
e

〉

θ

〉

Ω

= 0.

Solving for He using the result for h̄e from equation (20), and 

integrating over velocity space, the result for the flux surface­

averaged electron parallel flow is:
〈〈

Bu‖e

〉

θ

〉

Ω

B0vthe

= −

ft

(1 + ft)

Ivthe

ωce

n′

n

(

1 + ηe +
1

2
kfcηe

)〈

∂h

∂ψ

〉

Ω

+
fc

(1 + ft)

〈〈

Bu‖i

〉

θ

〉

Ω

B0vthe

,

 

(22)

where f t and f c are trapped and passing particle fractions 

respectively and k ≃ −1.173 [30]. (Hydrogenic, quasi­neutral 

plasma is assumed for simplicity.) We interpret the flux sur­

face­averaged parallel flow as the component of the flow that 

gives rise to the bootstrap current (see equation  (35) later). 

This result for the electron parallel flow will be used in sec­

tion 5 to calculate the perturbed bootstrap current, as well as 

its contribution to the island evolution.

4. Ion response

For ions, we relax the assumption of small ion poloidal 

Larmor radius relative to the island width and consider an 

arbitrary ratio ρθi/w, which is the critical difference from the 

treatment of electrons in the previous section and past analytic 

works [14, 17]. Taylor­expanding the Maxwellian about the 

rational surface where the island is located (ψ = ψs) in the 

small island limit w ≪ r , we seek a solution to the ion distri­

bution function in the vicinity of the magnetic island:

fi =

(

1 −

ZeΦ

Ti

)

FMis + (ψ − ψs)F
′
Mis + gi. (23)

Using the parameter ∆ = w/r ≪ 1, this time we expand the 

perturbation in the ion distribution function in terms of ∆ 

only, retaining the ordering ρθi ∼ w:

gi =
∑

k

∆kgk.
 (24)

When ρθi ∼ w, both parallel streaming and magnetic drift 

dominate the ion response. Then, the leading order contrib­

utions to the drift kinetic equation (8) are:

v‖

Rq

[

∂g0

∂θ

∣

∣

∣

∣

ψ

+ I
∂

∂θ

(

v‖

ωci

)

∂g0

∂ψ

]

= −

Iv‖

Rq

∂

∂θ

(

v‖

ωci

)

ωT
∗i

ω∗i

n′

n
FMi,

 

(25)

where ω∗i = mcTin
′/Zeqn is the ion diamagnetic frequency, 

ωT
∗i/ω∗i = 1 + (v2/v

2
thi − 3/2)ηi and ηi = (T ′

i /Ti)/(n
′/n).

In the limit of a small island perturbation, the toroidal 

symmetry is approximately conserved to the leading order in 

∆. Then the toroidal canonical momentum (2) is a conserved 

quantity along particle orbits, which we can utilize as a radial 

coordinate in place of ψ. As we shall see, this allows us to 

eliminate one of the spatial coordinates, θ. Thus, transforming 

from radial variable ψ to pφ, equation (25) simplifies to:

v‖

Rq

∂g0

∂θ

∣

∣

∣

∣

pφ

= −

Iv‖

Rq

∂

∂θ

(

v‖

ωci

)∣

∣

∣

∣

pφ

ωT
∗i

ω∗i

n′

n
FMi, (26)

which can straightforwardly be integrated to yield:

g0 = −

Iv‖

ωci

ωT
∗i

ω∗i

n′

n
FMi + h̄0(pφ, ξ, v), (27)

where the free function, h̄0, is determined from the next order 

equation. This allows us to write the total distribution function 

as a function of pφ instead of ψ:

fi =

(

1 −

eiΦ

Ti

)

FMis + Ḡ0(pφ, ξ, v), (28)

where

Ḡ0 = pφ
ωT
∗i

ω∗i

n′

n
FMi + h̄0. (29)

The physical meaning of this is that the distribution function is 

a constant on the orbits the particles free­stream along, rather 

than being a flux surface quantity. These orbits are described 

by pφ = constant (i.e. the standard neoclassical orbits for a 

toroidally symmetric system). h̄0 then describes the modifi­

cation to the equilibrium profile of the distribution function, 

when the island perturbation is introduced. We see later that 

the finite orbit width effect has a profound impact on the per­

turbed density profile in the vicinity of a magnetic island.

We now proceed to the O(∆) contribution to the drift 

kinetic equation (8):

v‖

Rq

∂g1

∂θ

∣

∣

∣

∣

pφ

−

mv‖

Rq
I
∂

∂ψ

(

v‖

ωci

)

∂Ḡ0

∂ξ

+
mv‖

Rq

[(

1 −

q

qs

)

∂Ḡ0

∂ξ
+ ψ̃ sin ξ

∂Ḡ0

∂pφ

]

+
1

q

∂Φ

∂θ

∣

∣

∣

∣

pφ

∂Ḡ0

∂pφ

+
m

q

[

∂Φ

∂ψ

∂Ḡ0

∂ξ
−

∂Φ

∂ξ

∂Ḡ0

∂pφ

]

= Cii(Ḡ0),

 

(30)

where Cii is given by equation (9). To eliminate the term in 

g1, we take the average of equation (30) along particle orbits,  
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at fixed pφ. For passing particles, this is achieved by multi­

plying equation (30) by Rq/v‖ and integrating over a period in 

θ at fixed pφ, making use of the periodicity in g1. For trapped 

particles, the distribution functions at the bounce points  

satisfy: g1(σ = +1, θb = ±1) = g1(σ = −1, θb = ±1), by 

conservation of particles. Thus, the term in g1 for trapped 

particles can be eliminated by multiplying equation  (30) by 

Rq/|v‖|, summing over σ and then integrating with respect 

to θ between the bounce points. The result is a particle orbit­

averaged equation for h̄0 (through Ḡ0):

m

[

〈

1 −

q

qs

〉

θ

−

〈

I
∂

∂ψ

(

v‖

ωci

)〉

θ

+

〈

R

v‖

∂Φ

∂ψ

〉

θ

]

∂Ḡ0

∂ξ

+ m

[

ψ̃ sin ξ −

〈

R

v‖

∂Φ

∂ξ

〉

θ

]

∂Ḡ0

∂pφ

=

〈

Rq

v‖
Cii(Ḡ0)

〉

θ

,

 

(31)

where

〈f (ψ)〉θ =

{

1
2π

∮

f (ψ̂) dθ ( passing particles),
1

2π

∑

σ σ
∫ +θb

−θb
f (ψ̂) dθ (trapped particles),

where ψ̂ = pφ + Iv‖(θ)/ωc. Note that these θ integrations on 

the ion equation  are performed at fixed pφ, while those for 

electrons were at fixed ψ.

Since we are concerned with a Maxwellian solution in the 

vicinity of the island (the equilibrium profile is assumed far 

away from the island), we consider, for simplicity, a large 

aspect tokamak with B = 1 − ǫ cos θ. The first line of equa­

tion  (31) can then be expanded about the rational surface. 

Then, introducing normalized quantities:

x =
ψ − ψs

ψs

, y = λBmax, v̂ =
v

vthi

, p̂ =
pφ

ψs

,

b =
B(θ)

Bmax

=
1 − ǫ cos θ

1 + ǫ
, L̂−1

q =
ψs

qs

dq

dψ

∣

∣

∣

∣

s

,

L̂−1
n =

ψs

n

dn

dψ
, L̂−1

B =
ψs

B

∂B

∂ψ
, ŵ =

w

rs

, ρ̂θi =
ρθi

rs

,

Φ̂ =
eiΦ

Ti

, ν̂ii =
Rq

vthi

νii,

ω̂D =
σv̂

(1 + ǫ)

[

1

L̂q

〈√
1 − yb

b

〉

θ

−

1

2

〈

1

L̂B

(2 − yb)

b
√

1 − yb

〉

θ

]

,

we obtain the dimensionless equation for Ḡ0:

− m

[

p̂

L̂q

Θ(yc − y) + ρ̂θiω̂D −

ρ̂θi

2

〈

1

v̂‖

∂Φ̂

∂x

〉

θ

]

∂Ḡ0

∂ξ

∣

∣

∣

∣

p

+ m

[

ŵ2

4L̂q

sin ξ Θ(yc − y)−
ρ̂θi

2

〈

1

v̂‖

∂Φ̂

∂ξ

〉

θ

]

∂Ḡ0

∂p̂

=

〈

1

v̂‖
Ĉii(Ḡ0)

〉

θ

.

 

(32)

Here, Ĉii = (Rq/vthi)Cii and y c  =  1 corresponds to the 

trapped/passing boundary in the pitch angle space. Before 

solving equation (32) in full, in the next section we consider 

the form of the solution in the collisionless limit.

4.1. Collisionless limit

In section  2 we introduced the perturbed flux function Ω 

describing the magnetic island geometry (see equation  (7)). 

The perturbed magnetic field lines lie in the surfaces of con­

stant Ω. In our present analysis, we introduce a new set of 

surfaces defined by S:

S =
ŵ2

4L̂q







2
(

p̂ − ρ̂θiω̂DL̂q

)2

ŵ2
− cos ξ






Θ(yc − y)

− p̂ρ̂θiω̂DΘ(y − yc)−
1

2

〈

ρ̂θi

v̂‖
Φ̂

〉

θ

.

 

(33)

Note that, for Φ̂ = 0 and y   <  y c (passing particles) the con­

stant S surfaces are identical to the constant Ω surfaces, but 

shifted radially by an amount proportional to ρθi . This shift 

can be attributed to the term in ρ̂θiω̂D in equation (33) and the 

second term of pφ (see equation (2)). Working with S as the 

new ‘radial’ coordinate, we can further simplify equation (32) 

for Ḡ0, which now takes the form:

− m

[

p̂

L̂q

Θ(yc − y) + ρ̂θiω̂D −

ρ̂θi

2

〈

1

v̂‖

∂Φ̂

∂x

〉

θ

]

∂Ḡ0

∂ξ

∣

∣

∣

∣

S

=

〈

1

v̂‖
Ĉii(Ḡ0)

〉

θ

,

 

(34)

where it should be noted that the differential with respect to ξ 

is now taken at fixed S. This illustrates that the streamlines lie 

in surfaces of constant S, not constant Ω. They differ because 

of the particle orbits—the radial shift of the ‘drift island’ of 

the constant S contours relative to the magnetic island is due 

to the grad­B and curvature drifts, while the term in Φ arises 

from E × B drifts. A similar radially shifted structure has 

been found for the ion flux, which originates from the addi­

tional guiding centre drift caused by the electrostatic potential 

perturbation in the vicinity of the magnetic island [31].

In figure  1 we show the contour plot of the S profile in 

the x − ξ  plane, for ŵ = ρ̂θi = 0.02, L̂q = 1.0, λ/λc = 0.1, 

v̂ = 1.0, ǫ = 0.1, and v‖ > 0 (likewise for all subsequent fig­

ures, unless otherwise indicated). The magnetic island itself 

is centred about x  =  0. It is clear that the constant S surfaces 

have the same structure as that of the magnetic island geom­

etry (i.e. constant Ω surfaces), but are radially shifted by O(ρθi). 
In the absence of the electrostatic potential term, this shift is 

equal and opposite for the v‖ < 0 case. We call this shifted 

island structure in S the ‘drift island’, whose physical conse­

quence is paramount. In the low collision frequency limit, 

where we may assume that the term on the right hand side of 

equation  (34) becomes O(νiiRq/vthi),≪ 1 smaller, it can be 
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shown straightforwardly that the solution for Ḡ0 is a function S: 

Ḡ0 = Ḡ0(S, v). That is, the constant S surfaces are also constant 

Ḡ0 surfaces, meaning the region over which the radial gradient 

of the distribution function is flattened is also shifted to coincide 

with the drift islands rather than the magnetic island. Because 

the shifts in the distribution function are in opposite directions 

for σ = +1 and σ = −1, when the perturbed density is con­

structed by a velocity integral summing over σ, a substantial 

radial gradient is supported inside the island when w ∼ ρθi. 

For a large island, w ≫ ρθi, the shifts are relatively small and 

the density moment is then approximately flattened across the 

island, as expected. This is what we call the finite orbit width 

effect, which is distinct from the well known radial transport 

effect [6]. It lies at the heart of the restored density gradient 

found in the PIC simulations of [27]. In the next section, we 

demonstrate this effect with the full solution to equation (32), 

as well as discuss the consequences for the parallel flow profile 

and hence the impact on the current and island evolution.

4.2. Full solution for ion response

In figure 2, we present the colour contour plot of the full per­

turbed ion distribution function f i in the x − ξ  plane obtained 

by solving equation  (34) numerically for ν∗ = 0.01. The 

Boltzmann factor with the perturbed electrostatic potential 

is included in the plot. This has been determined via quasi­

neutrality, using the electron response derived in the previous 

section. The solid lines are contours of constant S, while the 

dashed line indicates the location of the magnetic island sepa­

ratrix. The plot clearly shows that the colour contours of f i are 

well­aligned with the contour lines of S, and they are radially 

shifted relative to the island separatrix. This indicates that f i is 

indeed a function of S to leading order, and the radial shift of 

the profile is O(ρθi), as expected. As described in the previous 

subsection, the equal and opposite shifts for σ = ±1 have 

a significant consequence for the radial density profile. As 

shown in figure 3, flattening of the density gradient inside the 

magnetic island is well­preserved for ρθi ≪ w but is almost 

absent for ρθi ∼ w. The restoration of the density gradient 

across the magnetic island is precisely the result of the shift in 

the drift islands; because the flat spots in the shifted distribu­

tion functions for σ = ±1 no longer align when w ∼ ρθi, the 

summation over σ causes the gradient to be maintained across 

the island. Specifically, the σ = +1 solution for f i has a gra­

dient where the σ = −1 solution is flattened, and vice versa 

(see figure  4). On the other hand, if ρθi ≪ w, then the flat 

regions for σ = ±1 do align to a large extent and the density 

gradient is flattened inside the magnetic island, as expected.

Figure 1. Colour contour plot of S structure in the x − ξ  plane, 
in the absence of perturbed electrostatic potential. Dashed line 
indicates the position of the magnetic island separatrix.

Figure 2. Colour contour plot of the full ion distribution function 
f i in the x − ξ  plane, with magnetic island separatrix (dashed) 
and contours of constant S (solid lines). The Boltzmann factor in 
the distribution and the electrostatic potential term in S are both 
included. There is a good agreement between the profiles of f i and 
S, confirming the collisionless limit prediction of fi(pφ, ξ) = fi(S).

Figure 4. Schematic drawing depicting the radial shifts of the 
ion distribution function resulting in the restoration of the density 
gradient. When the distribution functions with σ = ±1 are summed 
over σ, the radial gradient of the density moment is sustained, when 
w ∼ ρθi.

Figure 3. Ion density profile for w/r  =  0.02, ρθi/w = 0.1 (blue) and 
ρθi/w = 1.0 (red) across the island O­point (ξ = 0). Even for small 
ρθi  there is a partial restoration of the flattened density gradient, and 
the flattening is almost entirely gone for ρθi ∼ w.
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For electrons, the strong parallel flow tends to keep the 

density flattened across the magnetic island width, even for 

small islands (i.e. ρθi ∼ w, but ρθe ≪ w). However, the elec­

tron distribution function depends on the electrostatic poten­

tial as well, in such a way as to satisfy quasi­neutrality. This 

self­consistent potential influences both the electrons and ions. 

Therefore the full density, including the Boltzmann factor, 

takes the form given in figure 3 for both ions and electrons. 

This physics has consequences for the structure of the electro­

static potential (figures 5 and 6). When ρθi ≪ w, the potential 

is constant on the perturbed flux surfaces, as expected from 

previous theories. However, when ρθi ∼ w, this is no longer 

the case. Furthermore, the region inside the island retains a 

substantial potential gradient, consistent with the picture 

described above. The same is true for the ion parallel flow 

profile, as shown in figure 7. For large islands, the flow is a 

perturbed flux quantity, with a well defined boundary layer 

flow in the vicinity of the island separatrix. Conversely, for a 

small island the flow is no longer constant on the flux surfaces, 

and the boundary layer structure is completely lost.

5. Contributions to island evolution

We now have all the elements to consider the contribution to 

the island evolution originating from the perturbed current, 

localized in the vicinity of the rational surface, ∆′
loc. We dis­

tinguish the bootstrap current contribution from other sources 

such as the neoclassical polarization current by defining it as 

the component of the total current that is constant on the per­

turbed flux surfaces. The bootstrap current can then be pro­

jected out by:

〈

J‖
〉

Ω
=

1

B0

∑

j

njej

〈〈

Bu‖j

〉

θ

〉

Ω
, (35)

where 〈...〉Ω is given by equation  (21). In previous analytic 

works [14, 17], this 
〈

J‖
〉

Ω
 is interpreted as solely consisting 

of the flux surface average of the perturbed bootstrap current. 

Here, however, when the island is small (i.e. w � ρθi) there is 

an additional contribution that cannot be explained purely in 

terms of the standard bootstrap current picture, as described 

later. Therefore we refer to it as the localized current perturba­

tion, with its contribution to the island evolution labelled as 

∆′
loc. It is calculated from the dispersion relation derived from 

Ampère’s law:

∫ ∞

−∞

dx

∮

dξ
〈

J‖
〉

Ω
cos ξ =

c

32

w2

Lq

B

Rq
∆

′
loc. (36)

Figure 8 shows the results for ∆′
loc normalised to 

βθ = 2µ0p/B2
θ as a function of w for a range of values of 

ρθi . For large w ≫ ρθi, ∆
′
loc tends to the asymptotic value 

(lim ρθi/w → 0) expected from previous analytic theories 

for the bootstrap drive [2, 14], which is represented by the 

dashed line. However, for small island widths approaching the 

size of ρθi , we see that the impact of the shifted drift islands is 

to reduce the bootstrap drive. For even smaller island widths, 

∆′
loc becomes negative. This is a rather remarkable result, as 

Figure 5. Colour contour plot of the normalised electrostatic potential Φ̂ in the x − ξ  plane, for ρθi/w = 0.1 (left) and ρθi/w = 1.0 (right). 
Solid lines indicate the position of the island separatrix.

Figure 6. Plot of the electrostatic potential radial gradient against 
x across the island O­point. A substantial potential gradient is 
maintained across the island width.
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it means that the effect of the current perturbation is to heal 

the island and therefore represents new threshold physics 

that cannot be explained by a reduced bootstrap drive alone. 

For larger ρθi , the peak value in ∆′
loc decreases substantially, 

hence suppressing the bootstrap drive for the island growth. 

The critical island width, wc, where ∆′
loc passes through zero, 

increases linearly with ρθi : it can be fitted by wc ≃ 2.76ρθi 

(see figure 9). Experimental observations support this linear 

relationship [26], though the coefficient we derive is some­

what larger than the result obtained from experiments.

We now consider the physics underpinning the stabiliza­

tion of small islands, w � ρθi. Figure  10 shows the plots of 

ρθi ×∆′
loc/βθ versus w/ρθi, with separate ion and electron 

contributions. It is clear that all cases with different ρθi/r values 

condense onto a universal set of curves for both the ion and elec­

tron contributions. This is a consequence of the parallel flows 

being proportional to ρθi,e, as predicted by analytic neoclassical 

theory. An important point to address is that, as w → 0, the ion 

contribution to ∆′
loc tends to zero. This is consistent with the 

density gradient (and therefore bootstrap current) being unper­

turbed in this limit (as found in the PIC simulations of [27]). 

Indeed, we expect that when the island width is much less than 

the ion banana width, the ions will average over the perturbed 

electromagnetic fields associated with the island. Electrons still 

respond to the perturbed fields, and we see from figure 10 that 

Figure 7. Colour contour plot of the ion parallel flow u‖i on x − ξ  plane, for ρθi/w = 0.1 (left) and ρθi/w = 1.0 (right). Solid lines indicate 
the position of the island separatrix.

Figure 8. The contribution to the island evolution, ∆′
loc, normalised 

to βθ, as a function of of ŵ, for different values of ρθi . The black 
dotted line is the analytic result of [14] for the bootstrap current 
contribution, for which ∆bs ∝ 1/w.

Figure 9. Plot of wc versus ρθi . A straight line wc = 2.76ρθi is fitted 
to the data points, with an excellent agreement.

Figure 10. Plot of ρθi∆
′
loc/βθ, as a function of w/ρθi, for different 

values of ρθi . Red solid curves represent the total contribution, 
while green dash and blue dotted curves correspond to ion and 
electron contributions respectively.
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it is their response that provides the stabilizing contribution. We 

postulate that it is the response of the electrons to the electro­

static potential, required for quasi­neutrality, that creates the 

stabilizing contribution to the current density.

6. Conclusion

We have presented a new drift kinetic theory for the response 

of ions to small, stationary magnetic island perturbations in 

a tokamak plasma, as well as the implications for the NTM 

threshold physics. The effect of finite particle orbit width is 

substantial. The radial profile of the perturbed ion distribu­

tion function is shifted radially relative to the magnetic island. 

This implies that the distribution is no longer flattened across 

the magnetic island, but instead across a radially shifted drift 

island. This shift is important for small islands comparable 

to the ion banana width, in which case a pressure gradient 

is maintained inside the magnetic island, even if cross­field 

transport is neglected. The bootstrap current drive for the NTM 

is then suppressed, with the flows dominated by the electron 

physics. The response of the electrons to the perturbed elec­

trostatic potential is such that it tends to heal islands of width 

w below a critical width wc, thus providing a threshold for 

NTM growth. We find that, in the absence of other effects, 

the critical island width scales linearly with ρθi : wc ∼ 2.76ρθi.

The new physics of the finite ion orbit width effect is impor­

tant for a complete theory of the neoclassical tearing mode 

threshold and, in particular, for designing the NTM control 

system for ITER. For our theory to fully quantify the NTM 

theory, we need to address additional physics including the 

accuracy of the analytic electron response employed here, the 

finite ion Larmor radius effect, particularly in the vicinity of 

the island separatrix, as well as the impact of the island rota­

tion that leads to the ion polarization current. Nevertheless, 

this work gives a new insight into the physics of small magn­

etic islands and the NTM threshold.
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Appendix

In this appendix we describe in more detail the numerical 

solution method for the ion drift kinetic equation. The equa­

tion for Ḡi , and hence h̄i, is given by equation (32). This is a 

3D integro­differential equation in p̂ (normalised pφ), ξ and 

y  (normalised λ). v and σ are parameters of the equation. 

Writing out the terms in the collision operator (9) explicitly, 

the equation to be solved for h̄i is:

− m

[

p̂

L̂q

Θ(yc − y) + ω̂D −

ρ̂θi

2

〈

1

v̂‖

∂Φ̂

∂x

〉

θ

]

∂h̄i

∂ξ

∣

∣

∣

∣

p

+ m

[

ŵ2

4L̂q

sin ξ Θ(yc − y)−
ρ̂θi

2

〈

1

v̂‖

∂Φ̂

∂ξ

〉

θ

]

∂h̄0

∂p̂

− ν̂iiρ̂θΘ(yc − y)
∂h̄0

∂p̂
−

σv̂

2

ν̂ii

(1 + ǫ)

〈

y
√

1 − yb

〉

θ

∂2h̄i

∂p̂2

− 2ν̂iiρ̂θy
∂2h̄i

∂p̂∂y
−

ν̂ii

σv̂

(1 + ǫ)

〈

(2 − 3yb)
√

1 − yb

〉

θ

∂h̄i

∂y

− 2
ν̂ii

σv̂

(1 + ǫ)y
〈

√

1 − yb
〉

θ

∂2h̄i

∂y2
− 2ν̂iiŪ‖(Ḡ0)FMi

= −

[

ŵ2

4L̂q

sin ξ Θ(yc − y)−
ρ̂θi

2

〈

1

v̂‖

∂Φ̂

∂ξ

〉

θ

]

ωT
∗i

ω∗i

n′

n
FMi,

 (A.1)

where differentials in y  are taken at constant p̂. The boundary 

conditions on h̄i are that its radial gradient ( p̂­derivative) is 

zero away from the island (i.e. the perturbation is localized; 

only the equilibrium radial gradient is present away from the 

island), and that it is periodic in ξ. In y ­space, the requirements 

are that h̄i and its derivatives are finite in the deeply passing 

and trapped limits (y → 0 and y → ymax, respectively). In 

order to solve equation (A.1), we employ a ‘shooting’ method 

in y ­space, solving a 2D differential equation in p̂ and ξ for 

the solution vector h at each of the y  grid points.

Equation (A.1) can be linearised in y , and after introducing 

the finite differencing scheme for the y ­differentials, we can 

write the matrix equation for the solution vector hl at each of 

the y  grid point, y l:

Pl · hl+1 + Ql · hl + Rl · hl−1 = Dl, (A.2)

where Pl , Ql and Rl  are banded (largely tridiagonal) square 

matrices of order Nξ × Np describing equation (A.1), and Dl  is 

the right hand side vector (Nξ and Np  are the number of ξ and 

p̂ mesh points, respectively). The elements of these matrices 

consist of the appropriate coefficients of equation (A.1) and 

grid spacings ∆y, ∆p and ∆ξ (for y , p̂ and ξ grids respec­

tively). For passing particles, the solution of equation  (A.2) 

can be written as a recursion relation:

h
p

l = α
p

l · h
p

l+1 + β
p

l , (A.3)

where α
p

l  is a square matrix and β
p

l  is a vector of the same 

dimension as h
p

l . Then, the recurrence relations for α
p
l  and 

β
p

l  can be derived by combining equations (A.2) and (A.3):

α
p

l = −M
( p)−1

l · Pl,

β
p

l = −M
( p)−1

l ·
(

Dl − Rl · β
p

l−1

)

,
 

(A.4)

where

M
( p)
l = Ql + Rl ·α

p

l−1.

Likewise, for trapped particles:

ht
l = αt

l · ht
l−1 + βt

l, (A.5)
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where, as for the passing particles, αt
l is a square matrix and 

βt
l is a vector. The recurrence relations in the trapped region 

are then:

αt
l = −M

(t)−1

l · Pl,

βt
l = −M

(t)−1

l ·
(

Dl − Pl · β
t
l−1

)

,
 

(A.6)

where

M
(t)
l = Ql + Pl ·α

t
l+1.

Applying the y  boundary conditions at the grid edges allows us 

to determine α
p

l=1 and β
p

l=1 at the deeply passing end (y 1  =  0), 

and αt
l=Ny

 and βt
l=Ny

 at the deeply trapped end (yNy
= ymax, 

Ny  is the number of y  grid points). Using the recurrence rela­

tions (A.4) and (A.6), we can determine all the αl and βl, up 

to the trapped/passing boundary.

In principle, the solution vectors h
p,t
l  can then be deter­

mined using equations (A.3) and (A.5), given the solution at 

the boundary, hl=lc. This can be obtained using the matching 

conditions [14]:
∑

σ

σh̄
p
i = 0,

 (A.7)

∑

σ

h̄
p
i = 2h̄t

i, (A.8)

∑

σ

∂h̄
p
i

∂y
= 2

∂h̄t
i

∂y
. (A.9)

These conditions originate from the fact that h̄i must be 

continuous across the trapped/passing boundary while h̄t
i  

is independent of σ (equations (A.7) and (A.8), as well as 

matching the rates of scattering from passing to trapped 

orbits and vice versa (described by equation  (A.9)). 

Employing a quadratic fitting in the vicinity on each side 

of the trapped/passing boundary, the application of these 

matching conditions gives us the equation for the solution 

at this boundary, hc:

Mc · hc = Dc, (A.10)

with subscript c corresponding to the grid point at the 

boundary, and:

Mc =

(

A+
p + A−

p

)

2
− 2

(

α+

c−1 +α−

c−1

)

+ At −αc+1 + 3I,

Dc = −

(

B+
p + B−

p

)

2
+ 2

(

β+

c−1 + β−

c−1

)

− Bt + βc+1,

A±

p = α±

c−2 ·α
±

c−1, B±

p = α±

c−2 · β
±

c−1 + β±

c−2,

At = αc+2 ·αc+1, Bt = αc+2 · βc+1 + βc+2.

Here, subscript c  +  1 corresponds to the first barely trapped 

particle grid point (yc +∆y), c  −  1 the first barely passing 

grid point (yc −∆y), and so to.

Once hc is determined, then the complete set of solutions in 

passing and trapped regions can be calculated using the recur­

rence relations (A.3) and (A.5).

A.1. Momentum conservation and quasi-neutrality

In order to determine the ion response accurately, it is crucial 

to ensure that the momentum conservation and quasi­neu­

trality are imposed self­consistently. The former is introduced 

as an additional term in the model collision operator (9): the 

term in ū‖(Ḡi). This is effectively a weighted parallel velocity 

moment of the ion distribution function, which adds a degree 

of non­linearity. The term in ū‖i is determined by iterating 

over the calculation of h̄i, updating ū‖i each time until the 

solution is converged.

Quasi­neutrality is imposed by determining the perturbed 

electrostatic potential from ion and electron densities. Given 

the analytic solution for the electrons [14] summarized in sec­

tion 3 and the form of the ion distribution function (23), the 

quasi­neutrality condition: ni ≃ ne implies that:

eiΦ

Ti

=
δni/n0 + x − ĥ(Ω)

2Ln0

 (A.11)

Figure A1. Calculation flow chart outlining the essential steps. 
Numbers on the left point to the relevant equations in each step.
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assuming Ti = Te. Here, Ln0 is the equilibrium density gra­

dient length scale, δni is the perturbation in the ion density 

calculated from h̄i, and

ĥ(Ω) = Θ(Ω− 1)
ŵ

2
√

2

∫

∞

1

dΩ

Q(Ω)
,

Q(Ω) =
1

2π

∮

√

Ω+ cos ξ dξ.

The calculation for h̄i is iterated over until convergence is 

achieved for Φ, as well as ū‖i. The converged ion flow is then 

employed in the electron flow (22). More precisely, the itera­

tion loop for converging ū‖i is nested inside the iteration loop 

for converging Φ. All the steps and flow of the calculations are 

outlined in the flow chart (figure A1).
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