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humidity profile during fog formation can 
result in the fog remaining optically thin 
(Price et  al., 2018).

Although research into radiation fog spans 
the last 100 years (e.g. Taylor, 1917; Roach et 
al., 1976), the greater recognition of the role 
of aerosols has been studied only in recent 
decades. Bott (1991) discussed the impor-
tance of aerosol–fog interactions, where 
they fundamentally control the optical thick-
ness of nocturnal fog. Additional studies 
have complemented the work by Bott (e.g. 
Stolaki et al., 2015; Maalick et al., 2016). More 
recently, Boutle et al. (2018) demonstrated 
the importance of aerosol–fog interactions 
in Numerical Weather Prediction (NWP) and, 
in particular, cases of fog that may form 
within a relatively clean environment.

This study aims to understand the role 
of aerosol–fog interactions on the evolu-
tion of a nocturnal optically thin fog layer, 
by performing and comparing various 
high-resolution numerical simulations with 
different aerosol properties. Simulations 
are undertaken with the Met Office and 
Natural Environment Research Council 
Cloud (MONC) model (Brown et al., 2015; 
2018), which is a newly developed large 
eddy simulation model that is a complete 
rewrite of the Met Office Large Eddy Model 
(Gray et al., 2001). MONC is an atmospheric 

once these droplets reach a certain size, 
where they can grow more easily within 
a saturated environment. Aerosols that 
can act as a substrate for droplets are 
known as cloud condensation nuclei (CCN). 
Microphysical properties and aerosol–fog 
interactions are critical in determining the 
formation and resulting evolution of the 
fog (see Figure 1). At night, prior to fog 
forming, the ground and lower layers of the 
atmosphere will experience radiative cool-
ing. The rate of cooling is influenced by the 
synoptic conditions: high-pressure systems 
with low wind speeds and reduced cloud 
cover can result in a cooling rate sufficient 
for fog formation (Price, 2011). As the lower 
layers of the atmosphere cool, the relative 
humidity increases and water vapour will 
condense onto CCN to form fog droplets 
and a thin fog layer. The number of acti-
vated aerosols (fog droplets) depends on 
the aerosol size distribution and concentra-
tion, as well as the rate of cooling at the 
surface. The fog layer will absorb and emit 
longwave radiation, and as the layer thick-
ens, longwave cooling will be strongest at 
the fog top. The result is that the fog layer 
becomes well-mixed (with a constant tem-
perature profile within the layer) through 
convection, increasing its optical thickness. 
However, the turbulence levels and the 
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Introduction
Fog, which can be defined as a cloud at 
ground level with surface visibility less than 
1km, can cause major disruption to road, 
aviation and marine transport, with asso-
ciated economic losses that are compara-
ble to those resulting from winter storms 
and hurricanes (Gultepe et al., 2007). Fog 
can also have negative impacts on human 
health and the safety of certain activities. 
For example, thick fog on 5 September 2013 
resulted in the Sheppey crossing crash in 
southeast England, which involved 130 
vehicles and resulted in injuries to 60 peo-
ple (BBC, 2013). Understanding the phys-
ics behind fog is crucial in improving fog 
forecasting and mitigating the impact of 
such fog events. Whilst there are several 
different types of fog (Tardif et al., 2007), 
the two types most commonly experienced 
in the United Kingdom are radiation and 
advection fog. What both of these have in 
common is that they depend on a number 
of small-scale physical processes (radiative, 
turbulent, thermodynamical, microphysical) 
which result in an air mass becoming satu-
rated (relative humidity equal to 100%) with 
the consequent formation of fog. This study 
focuses on the influence of aerosols on the 
formation of nocturnal radiation fog. 

Aerosols are small particles suspended 
in the atmosphere, with a range of sizes 
and compositions (Pruppacher and Klett, 
2010). Aerosols are important for fog, as 
they act as the substrate on which water 
condenses and fog droplets form. The 
droplet growth rate is dependent on the 
initial aerosol size and their solubility. The 
aerosols are considered to be ‘activated’ 

How important are aerosol–fog  
interactions for the successful 

modelling of nocturnal radiation fog?

Figure 1. Schematic demonstrating the three stages of the evolution of nocturnal radiation fog: pre-
fog, fog formation and fog development. Orange dots – CCN; light blue dots – water vapour; red 
arrows – radiative cooling; yellow arrows – convection; black arrows – sedimentation by gravity.

Pre-fog Formation Development
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process model designed for research and 
development of parameterisations for the 
forecast model. For this work, MONC has 
been coupled up with the Cloud AeroSol 
Interactive Microphysics (CASIM) scheme, 
which has been developed at the Met 
Office as a long-term replacement for the 
Met Office Unified Model (MetUM) micro-
physics scheme. CASIM has been specifi-
cally developed to simulate and investigate 
aerosol–cloud interactions in the MetUM 
(e.g. Field et al., 2016; Grosvenor et al., 2017; 
Miltenberger et  al., 2018; Stevens et  al., 
2018) and MONC (Dearden et al., 2018). 
This study attempts to address two key 
objectives:

1.	 Evaluate how well MONC coupled with 
the CASIM scheme can simulate an opti-
cally thin nocturnal fog case;

2.	 Investigate the influence of aerosol 
properties on fog development.

Whilst there are other processes that are 
important for the fog life cycle, such as sur-
face interactions, they are outside the scope 
of this study.

Model setup
MONC is used to perform a suite of sensitiv-
ity tests based on IOP1 (intensive observa-
tion period 1) from the recent Local And 

Non-local Fog EXperiment (LANFEX) field 
campaign (Price et al., 2018). IOP1 took 
place at the UK Met Office research field 
site at Cardington, Bedfordshire in south-
east England (52°06'N, 0°25.5'W) on 24/25 
November 2014. The site sits in a wide, shal-
low valley characterised by a patchwork of 
mostly arable fields with low hedges. During 
the night of IOP1 a high-pressure system 
had developed across most of the UK, 
resulting in widespread fog. At Cardington, 
fog formed around 1800 utc and remained 
stable, as well as optically thin, through the 
duration of the night. IOP1 was chosen as it 
was one of the cleanest examples of local 
fog development, with minimal influence by 
advective processes (see Smith et al., 2018 
for more details).

The model setup for IOP1 is presented 
in Table 1. MONC was initialised using the 
observed vertical profiles and surface meas-
urements as shown in Figure 2. The grid 
spacing in MONC was 2  ×  2m in the hori-
zontal and 1m in the vertical up to 100m. 
Previous studies have shown the impor-
tance of model resolution for simulating the 
formation period of fog (e.g. Maalick et al., 
2016; Maronga and Bosveld, 2017); it was 
therefore critical to run MONC at such a high 
resolution. A surface temperature as shown 
in Figure 2(c) and a surface vapour mixing 
ratio of 0.004kgkg−1 were both prescribed 
based on observations. Thus, these simu-
lations do not include an interactive land 
surface. While surface atmosphere interac-
tions and feedbacks can be very important 
for fog, observed surface fluxes from IOP1 
were close to zero or negative (not shown), 
so feedbacks between the surface and 
atmosphere may not be as important for 
IOP1 compared with other fog cases (Boutle 
et al., 2018). Radiation was calculated using 
the Suite of Community RAdiative Transfer 
codes (SOCRATES), based on the work of 
Edwards and Slingo (1996). SOCRATES was 
called by the MONC model every 5min, 
allowing for the longwave radiative fluxes at 
the top of the fog layer to be captured in the 
model. The longwave radiative fluxes are 
determined by the cloud’s optical depth, τ, 
(which is dependent on the cloud’s effective 
radius, r

e
), and the weighted mean droplet 

size for a given population of cloud droplets  
(Edwards and Slingo, 1996). Throughout 
this study, MONC coupled with SOCRATES 
assumes a fixed effective radius, such that 
r

e
 = 10µm. The chosen radius is the default 

value for MONC and is primarily motivated 
by observations of the effective radius 
within cumulus clouds (Blyth and Latham, 
1991). Although this value may not be suit-
able for simulations of fog, investigating the 
effective radius was outside the scope of 
this work.

All simulations use CASIM, as described 
above. In this work, CASIM is configured 
to use two moments (mass and number 

Table 1

Input parameters and model set up for IOP1 in MONC.

IOP 1

Horizontal domain 132 × 132m

Vertical domain 705m

Δx, Δy 2m

Δz Variable – 1m first 100m, stretched up to 6m afterwards

Simulation duration 12h

Timestep 0.1s

Cloud microphysics Cloud AeroSol Interactive Microphysics (CASIM)

Radiative transfer scheme SOCRATES (Edwards and Slingo, 1996)

Figure 2. Initial conditions at 1700 utc used to initialise MONC. From radiosonde data: (a) potential 
temperature (K) and relative humidity (%) and (b) wind components. From surface measurements: 
(c) grass surface infrared-derived temperature.

(a)

(b)

(c)
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concentration of cloud and rain), as well as 
mass and number concentration of multi-
mode aerosols (aerosols of different sizes). 
For the aerosol population, only large CCN 
(those in the accumulation mode where 
0.1µm  <  CCN size diameter  <  1µm) are 
accounted for, and its size distribution is 
assumed to be lognormal with a stand-
ard deviation of 2.0. The aerosol activation 
scheme used in these simulations is that of 
Abdul-Razzak and Ghan (2000), which uses 
an average CCN size that is determined by 
the total soluble mass, the CCN number 
concentration and an assumed aerosol size 
distribution. In-cloud processing of aerosol 
removal is turned off in these simulations 
for consistency with previous studies (e.g. 
Stolaki et al., 2015; Maalick et al., 2016). 

Table 2 summarises the setup of the simu-
lations presented in this study. There were 
five simulations run (as listed in the Table 
2) – these are described in the following 
sections. During IOP1, there were no direct 
observations of CCN. A value of 100cm−3 

in the accumulation mode was set, with a 
total soluble mass of 2.7ng throughout the 
initialised vertical profile, based on typical 
measurements for a clean rural site similar 
to Cardington, UK (Boutle et al., 2018). To 
reduce computational expense, 1D diag-
nostics are output every 1min and 3D diag-
nostics are output every 5min. 

Control simulation – T_control
This section describes the control simula-
tion, T_control, which will be directly com-
pared with observations from IOP1 and will 
form the basis for further sensitivity tests. 
Observations show (Figure 3) the visibility 
at a 2m height dropping below 1000m at 
around 1800 utc, and then decreasing further 
to 100m at 2100 utc. After 2100 utc the fog 
remained optically thin, with visibility vary-
ing between 1000m and 100m, implying that 
the fog was patchy throughout the night.

For all model simulations, the visibility 
is calculated using the formula of Gultepe 

et  al. (2006), where visibility, Vis, is defined 
as follows:

      
Vis

LWC CDNC
�

�

1 002
0 6473

.

( ) .
�

(1)

where LWC is the liquid water content and 
CDNC is the cloud droplet number concen-
tration. Equation 1 was derived based on 
observations of fog in mainland Europe and 
is valid over a range of CDNC from a few 
per cubic centimetre up to a few hundred 
per cubic centimetre. The simulated visibil-
ity at a 2m height in T_control drops under 
1km at 1700 utc, indicating the formation of 
fog an hour prior to observations, where it 
continues to decrease and eventually con-
verges to around 160m. The small visibility 
range before 2245 utc, demonstrated by the 
difference between the minimum and maxi-
mum, shows a spatially homogeneous layer 
of fog. However, after 2245  utc the range 
increases, showing a more heterogeneous 
layer, which is indicative of a more turbulent 
boundary layer. The variability in the simu-
lated visibility across the domain is similar 
to the temporal variability in the observed 
visibility for parts of the night, particularly 
later on. However, the visibility in T_control 
within the initial stages is mostly lower than 
the observations, implying that T_control is 
producing optically thick fog too quickly. 
Consistent with this, a mixed layer devel-
ops much earlier in the simulated boundary 
layer than in observations (not shown).

Vertical profiles of CDNC were taken 
throughout the night, as shown in Figure 4. 
At 2230 utc, the highest concentration of fog 
droplets is within the lowest 10m, at around 
100cm−3. The CDNC gradually decreases 
with height, and from 20m it increases again 
to a maximum of 50cm−3 at a height of 37m. 
The CDNC indicates the height of the fog, 
which at 2230  utc is 50m. At 0030  utc, the 
peak concentration of fog droplets occurs 
at the top of the fog: 100cm−3 at a height 
of 40m. Although it appears as though the 
fog layer has decreased in height, one pos-
sible explanation for the decrease in the 
observed CDNC could be an instrumenta-
tion error which resulted in only cloud drop-
lets that were of sizes between 2 and 50µm 
in diameter being accounted for, with a 1µm 
uncertainty (Price et al., 2018). Finally, at 
0330 utc there is a greater variation in CDNC, 
although it is beginning to homogenise in 
the middle part of the layer, and it ranges 
between 20 and 100cm−3. The peak CDNC 
is at 40m, and the fog layer depth is 65m.

Throughout the night, the activation rate 
in T_control (the percentage of CCN that 
activates into fog droplets), is between 60 
and 70%. At 2230 utc, whilst the difference in 
fog layer height between T_control and the 
observations is only 4m, the proportion of 
fog droplets averaged over the depth of the 
fog in T_control is greater than the observa-
tions by a factor of 2.1 (Table 3). Following 

Table 2

List of tests referred to throughout this study, which includes changes in aerosol properties.

Test CCN concentration  
(cm−3)

Total soluble mass  
(ng)

Average CCN 
radius (µm)

T_control 100 2.7 0.075

T_double_ccn 200 2.7 0.059

T_half_ccn 50 2.7 0.094

T_double_mass 100 5.4 0.094

T_half_mass 100 1.35 0.059

Figure 3. Time series of mean visibility (m) at 2m height. Purple: T_control; green: T_double_ccn;
red: T_half_ccn; light blue: observations. The shaded areas of each colour denote the maximum 
and minimum visibility of each simulation.
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Figure 4. Vertical profiles of cloud droplet number concentration (cm−3) at 2230, 0030 and 0330 utc. The dashed lines represent observations, and solid 
lines represent simulated values. Black: T_control; green: T_double_ccn; red: T_half_ccn.

on, at 0030  utc the height of the fog layer 
in T_control is greater than the observations 
by 30m, with T_control forming an average 
of 1.2 times as many fog droplets across the 
fog depth. Finally, at 0330 utc the fog layer 
has a greater height by 30m in T_control in 
comparison to observations, with an aver-
age of 3.5 times more fog droplets across 

Table 3

Table listing the ratio of modelled to 
observed cloud drop number averaged 
over the vertical height across tested time 
frames.

Test Time (utc)

2230 0030 0330

T_control 2.1 1.2 2.5

T_double_ccn 3.2 1.9 4.1

T_half_ccn 1.3 0.7 1.4

T_double_mass 2.3 1.2 2.5

T_half_mass 1.9 1.1 2.2

the fog depth. The number of droplets 
formed is determined by the aerosol activa-
tion parameterisation. The majority of acti-
vation schemes (including the scheme in 
CASIM) were designed for convective cloud 
formation (Ghan et al., 2011). Discrepancies 
within the scheme may be the main cause 
of too many droplets forming within T_con-
trol. These discrepancies will be discussed in 
more detail in a moment.

Observations show a general increase in 
the liquid water path (LWP, the integrated 
liquid water across the vertical depth) 
throughout the time period (Figure 5), with 
a maximum mean LWP of 15gm−2 (calcu-
lated using a 40-point running average) 
at around 0330  utc. The maximum mean 
LWP occurred around the same time that 
the visibility at 2m dropped below 100m, 
as shown in Figure 3, suggesting that this 
was a key stage at which the fog became 
optically thicker. Throughout the T_control 
simulation, the modelled mean LWP mostly 
agreed with the observed averaged LWP, 
although it was on the lower range of the 

variability up until 0100 utc. Work by Stolaki 
et al. (2015) demonstrated how the LWP is 
controlled by the rate of sedimentation, with 
Boutle et al. (2018) showing that the LWP is 
controlled by both the LWC and the cloud 
droplet number concentration. Therefore, 
this result suggests that the fog produced 
by T_control becoming optically thick too 
quickly is primarily due to the presence of 
too many droplets, which could link back 
to the representation of aerosol activation. 

CCN sensitivity tests
Previous studies (e.g. Bott, 1991; Stolaki 
et  al., 2015; Maalick et al., 2016) show how 
features of the evolution of fog, in particular 
the fog optical depth, are influenced by CCN 
properties. We will now investigate how the 
CCN number concentration and size could 
influence the transition to optically thick 
fog. To address this, two additional simula-
tions were conducted. The first set involved 
fixing the total soluble mass used in T_con-
trol whilst doubling and halving the CCN 
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concentration to 200 and 50cm−3 respec-
tively (referred to as tests T_double_ccn 
and T_half_ccn). The second set involved 
fixing the CCN number concentration used 
in T_control whilst doubling and halving 
the total soluble mass to 5.4 and 1.35ng 
respectively (referred to as tests T_double_
mass and T_half_mass). These tests were 
designed to investigate the sensitivity of the 
fog development and structure to both CCN 
number and size.

CCN number concentration
As shown in Figure 3, the mean visibility 
for T_double_ccn is lower than T_control 
throughout the simulation by up to a factor 
of 0.52, with the formation of fog occurring 
at 1700 utc (the beginning of the simulation) 
and the simulation eventually converging to 
a visibility of around 96m. As with T_control, 
the spatial variation between the minimum 
and maximum visibility is not appreciably 
different prior to 2100 utc for T_double_ccn. 
However, after this point the range increases 
to a maximum of 50m. In comparison with 
the observations, T_double_ccn’s visibility is 
lower throughout much of the simulation. A 
decrease in visibility with an increase in CCN 
number concentration is to be expected, as 
increasing the CCN number results in a higher 
number of smaller fog droplets being formed 
for a given liquid water path, therefore 
increasing the fog optical depth (Twomey, 
1977). A consequence of the increase in 
optical depth is an enhanced rate of cool-
ing above the fog layer, resulting in the fog 
layer becoming well mixed too quickly (for 
this example, the cooling rate increased from 

1.7 to 2.41Khr−1 at the top of the fog layer 
between T_control and T_double_ccn).

The simulated mean visibility in T_half_
ccn shows the best agreement with the 
observed visibility in the early stages of fog 
development (Figure 3). Fog began to form 
45min prior to the timings recorded in the 
observations due to the decrease in CDNC 
throughout the simulation, as seen in Figure 
4 (for this case the CCN ≈ CDNC). The mean 
visibility within the simulation eventually 
converges to around 260m (Figure 3) and 
is greater than T_control by a factor of 1.7. Of 
all three simulations, T_half_ccn appears to 
have the most spatial variation, with the most 
variation occurring from 0000  utc onwards. 
In addition, Figure 5 shows a decrease in 
the LWP as the CCN number concentration 
decreases (as previously shown in Stolaki 
et al., 2015). This result is again physically 
expected, as decreasing the CCN concen-
tration results in an increase in the average 
drop size and hence an enhanced rate of 
sedimentation, leading to a reduced long-
wave cooling rate and thus a decrease in 
the production rate of liquid water. 

So far, the sensitivity studies have shown 
that increasing CCN results in optically thicker 
fog; however, it seems that the model is con-
sistently overpredicting aerosol activation 
and hence CDNC. Such an overprediction 
may be the result of the underlying design of 
the aerosol activation scheme. Traditionally, 
aerosol activation parameterisations are 
designed using a system that solves a time 
variation in supersaturation, in combina-
tion with Köhler theory (e.g. Twomey, 1959; 
Abdul-Razzak and Ghan, 2000; Ming et al., 
2007; Curry and Khvorostyanov, 2012). Köhler 

theory states that should the maximum 
supersaturation within the environment be 
greater than the critical supersaturation for 
a given aerosol, the aerosol will become 
activated (Köhler, 1936). The majority of 
these schemes assume that the change in 
supersaturation is driven by adiabatic lifting, 
which links directly to an updraft velocity 
found in convective clouds. Furthermore, as 
discussed in Boutle et al. (2018), a minimum 
updraft velocity of 0.1ms−1 is often imposed, 
equivalent to a cooling rate of 3.51Khr−1, 
assuming a dry adiabatic lapse rate. The 
threshold was imposed as these schemes 
were designed to be implemented into gen-
eral circulation models (GCMs) to account for 
cloud top turbulence being poorly resolved 
for resolutions coarser than 100m (Ghan et 
al., 1997). Both of these assumptions are 
unsuitable for the representation of aero-
sol activation in radiation fog, since updraft 
velocities at the formation stage are close to 
zero and the change in saturation is driven 
by radiative cooling from the ground (Price, 
2011). Consequently, this may result in the 
maximum environmental supersaturation 
being too high, causing too many aerosols 
to activate and the fog layer to become 
optically thick too quickly. These results will 
motivate future work that could investigate 
the assumptions associated with aerosol 
activation parameterisations used within 
CASIM and their validity for simulations of 
nocturnal radiation fog. 

CCN soluble mass
Increasing the total soluble mass will result 
in larger CCN, which are more likely to acti-
vate according to Köhler theory. The aim 
of this simulation was to understand how 
sensitive the fog layer evolution is to a given 
CCN size. Across all time frames (Table 3), the 
proportion of activated droplets increases 
for T_double_mass, therefore accounting 
for the increase and decrease in the visibil-
ity and LWP respectively, as shown in Figure 
6. By contrast, the proportion of activated 
droplets decreases for T_half_mass, there-
fore accounting for the decrease in visibility 
and increase in LWP. However, the relative 
change in visibility and LWP for each respec-
tive soluble mass test is much lower than it 
is for the tests with the equivalent propor-
tion change in CCN number. So, although 
in this case the change in CCN size, and 
consequently the change in aerosol-size dis-
tribution, influences the evolution of the fog 
layer, further work should be conducted to 
understand its full impact.

Summary
The focus of this study was the investigation 
of the importance of aerosol–fog interac-
tions within a nocturnal radiation fog case 
(LANFEX IOP1). This was split into two 

Figure 5. Time series of liquid water path (gm–2). Purple – T_control; green – T_double_ccn; red – 
T_half_ccn; sky blue – observations; blue dashed – running average over observations (40 points).
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objectives. The first was to evaluate how 
well MONC coupled with CASIM could sim-
ulate IOP1, and identify any potential dis-
crepancies. The conclusion is that although 
MONC captures the main physical features 
within IOP1, the fog transitions evolve too 
fast in comparison to observations, due 
to the high proportion of modelled to 
observed fog droplets.

The second objective was to investigate 
how sensitive the fog evolution is to differ-
ent aerosol properties. By decreasing the 
CCN number from 100 to 50cm−3, the simu-
lated rate of transition to optically thick fog 
is reduced and is more in line with obser-
vations from IOP1. Furthermore, the evolu-

tion of the fog is sensitive to the change in 
soluble mass for a given CCN concentration. 
These results highlight the importance of 
accurate aerosol initial conditions for simu-
lations of fog. Other aspects such as the aer-
osol-size distribution may also be important 
for the evolution of the fog layer (e.g. Zhang 
et al., 2014). It is planned to investigate this 
in future work.

The results presented in this study dem-
onstrate the complexity of aerosol–fog 
interactions and their importance in under-
standing nocturnal radiation fog. In particu-
lar, this study has highlighted why the fog 
droplet number is important for fog evolu-
tion, and why errors in aerosol activation 

representation may be important. Although 
previous studies have investigated aero-
sol–fog interactions, the majority of them 
simulate cases in highly polluted areas (for 
example the ParisFog field study by Haeffelin 
et al., 2010). The main characteristic of the 
LANFEX dataset, and in particular IOP1, is 
that it is a ‘clean’ case with low aerosol con-
centrations, representing a different regime. 

The use of CASIM within MONC has high-
lighted the importance of including aerosol 
processes in fog modelling, with the results 
showing how accounting for different CDNC 
regimes is needed to represent the tran-
sition to optically thick fog. Research is 
ongoing to develop CASIM, in particular 
the aerosol activation scheme, and such 
developments should provide improved 
capabilities for operational fog forecasting.
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Figure 6. (a) - Time series of mean visibility (m) at 2m height. Purple – T control; green – T_dou-
ble_mass; red – T_half_mass; light blue – observations. Minimum and maximum visibility mark 
on figure by shaded area. (b) Time series of liquid water path (gm–2). Purple – T_control; green 
– T_double_ccn; red – T_half_ccn; sky blue – observations; blue dashed – running average over 
observations (40 points).
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