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The Type II-plateau Supernova 2017eaw in NGC 6946 and Its Red Supergiant
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Abstract

We present extensive optical photometric and spectroscopic observations, from 4 to 482 days after explosion, of the
Type II-plateau (II-P) supernova (SN) 2017eaw in NGC 6946. SN 2017eaw is a normal SN II-P intermediate in
properties between, for example, SN 1999em and SN 2012aw and the more luminous SN 2004et, also in NGC 6946.
We have determined that the extinction to SN 2017eaw is primarily due to the Galactic foreground and that the SN site
metallicity is likely subsolar. We have also independently confirmed a tip-of-the-red-giant-branch (TRGB) distance to
NGC 6946 of 7.73±0.78Mpc. The distances to the SN that we have also estimated via both the standardized candle
method and expanding photosphere method corroborate the TRGB distance. We confirm the SN progenitor identity in
pre-explosion archival Hubble Space Telescope (HST) and Spitzer Space Telescope images, via imaging of the SN
through our HST Target of Opportunity program. Detailed modeling of the progenitor’s spectral energy distribution
indicates that the star was a dusty, luminous red supergiant consistent with an initial mass of ∼15Me.

Key words: galaxies: distances and redshifts – galaxies: individual (NGC 6946) – stars: massive – supergiants –
supernovae: general – supernovae: individual (SN 2017eaw)

Supporting material: data behind figures, machine-readable tables

1. Introduction

Supernovae (SNe) have a profound influence on the host

galaxies in which they occur: through chemical enrichment,

galactic feedback, and the formation of compact neutron star

and black hole remnants. A large fraction of SNe, ∼76% in the

local universe (Li et al. 2011), arise from the core collapse of

massive stars with initial masses Mini8–10Me. The most

common of these core-collapse SNe are the Type II-plateau

(SNe II-P, ∼48% locally; Smith et al. 2011).
Solid evidence has emerged through the direct identification

of the progenitor stars of a number of recent, nearby SNe II-P

that these explosions represent the termination of stars in the
red supergiant (RSG) evolutionary phase (e.g., Van Dyk et al.
2003, 2012a, 2012b; Smartt et al. 2004; Maund & Smartt 2009;
Fraser et al. 2012, 2014; Maund et al. 2014a, 2014b). From a
still incomplete sample ofabout 27 SNe II-P, it has been
inferred that the initial mass range for RSGs leading to SNe II-
P is ∼9.5–16.5Me (Smartt et al. 2009; Smartt 2015).22 More
indirect indicators, such as the ages of the immediate stellar
environment (e.g., Williams et al. 2014, 2018; Maund 2017)
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21
NSF Graduate Research Fellow.

22
Up until now,17 SNe II-P have had their progenitors identified directly

through high-resolution pre-SN imaging, with the remainder consisting of
upper limits on detection(Van Dyk 2017 and also including SN 2018aoq;
O’Neill et al. 2019).
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and mass measurement of the nucleosynthetic products via
modeling of SNe II-P nebular spectra(Jerkstrand et al.
2012, 2014), tend generally to agree with this approximate
mass range. Corroborating evidence for the lack of SN II-P
progenitors above an initial mass of ∼17Me, known as “the
RSG problem,” stems from theoretical modeling of massive
star explosions for which models at this approximate mass are
unable to explode, but would instead collapse to form a black
hole directly (e.g., Sukhbold et al. 2016). Related to this is the
possible discovery of an RSG with Mini≈22Me, which
appears to have vanished, rather than terminated as an SN
(Adams et al. 2017).

Several alternative possibilities have been offered to explain
away the RSG problem, including enhanced wind-driven mass
loss in more massive RSGs, stripping much of the H envelope
(Yoon & Cantiello 2010; Georgy 2012); possible self-
obscuration by more luminous, more massive RSGs possessing
dustier envelopes (e.g., Walmswell & Eldridge 2012); and
inadequate assumptions of the bolometric correction for RSGs
nearing explosion (Davies & Beasor 2018). In addition, Davies
& Beasor (2018) have argued that the uncertainty in the mass–
luminosity relationship, which can be different for various
theoretical stellar evolution models, may shift the limiting mass
up by as much as several solar masses. Furthermore, we note
that some SN II-P/II-linear hybrid cases may have more
massive progenitors (e.g., SN 2016X with Mini≈19–20Me;
Huang et al. 2018).

The mass function of SN II-P progenitors requires additional
development through additional cases of directly identified
progenitors. Furthermore, the data for existing examples are
sparse, with initial progenitor masses being precariously
inferred from fitting of a spectral energy distribution (SED)
based on one or two photometric data points. Inevitably in the
near future, the Large Synoptic Survey Telescope and a
possible general-observer program for nearby galaxies using
the Wide-Field Infrared Survey Telescope would provide
detailed, multiband pre-explosion images for the progenitors
of ever-larger numbers of discovered SNeII-P. In the mean-
time, we can continue to build the sample slowly through the
smatterings of nearby SNe II-P for which sufficient archival
ground- and space-based data are available.

To that end, in this paper we discuss the Type II-P SN
2017eaw, which was discovered by Wiggins (2017) at an
unfiltered brightness of 12.8 mag on 2017 May 14.238 (UT
dates are used throughout this paper). The discovery was
confirmed by Dong & Stanek (2017). The object was found to
be a young SNII-P by Cheng et al. (2017), Xiang et al. (2017),
and Tomasella et al. (2017). A progenitor candidate was
quickly identified by Khan (2017) in pre-explosion data
obtained by the Spitzer Space Telescope and by Van Dyk
et al. (2017) in archival Hubble Space Telescope (HST)

data.Analyses of the progenitor have been published by
Kilpatrick & Foley (2018)and Rui et al. (2019). Tsvetkov et al.
(2018) presented detailed UBVRI light curves of the SN over
the first 200 days. Rho et al. (2018) analyzed near-infrared
spectroscopy of the SN to examine the possibility of dust
formation.The dust properties of the evolving SN also have
been explored by Tinyanont et al. (2019). SN 2017eaw is the
tenth historical SN in the prodigious NGC 6946, also
colloquially known as the “Fireworks Galaxy.” The other
events are SN 1917A, SN 1939C, SN 1948B, SN 1968D
(Hyman et al. 1995), SN 1969P, the Type II-L SN 1980K (e.g.,

Milisavljevic et al. 2012), the Type II-P SN 2002hh (e.g.,
Pozzo et al. 2006) and SN 2004et (e.g., Sahu et al. 2006;
Maguire et al. 2010), and the “SN impostor” SN 2008S
(Botticella et al. 2009; Prieto et al. 2008; Thompson et al.
2009). A number of SN remnants are also known to exist in this
host galaxy (Matonick & Fesen 1997; Bruursema et al. 2014).
This paper is organized as follows. In Section 2 we describe

the various observations of SN 2017eaw, both pre- and post-
explosion. We estimate the extinction to the SN in Section 3,
and in Section 4 we confirm recent estimates of the distance to
the SN host galaxy. The metallicity at the SN site is inferred in
Section 5. In Section 6 we provide an analysis of the SN,
including an estimate of the date of explosion, studies of the
absolute light curves, color curves, and bolometric light curve,
an estimate of the synthesized nickel mass, and analysis of the
spectra. In Section 7 we present identification and character-
ization of the SN progenitor. We provide a discussion and
summarize our conclusions in Section 8.

2. Observations

2.1. SN Photometry

Multiband BVRI images of SN2017eaw were obtained with
both the Katzman Automatic Imaging Telescope (KAIT;
Filippenko et al. 2001) and the 1 m Nickel telescope at Lick
Observatory. Unfiltered images were also obtained with KAIT.
All KAIT and Nickel images were reduced using a custom
pipeline (Ganeshalingam et al. 2010).
We obtained near-daily BVRI coverage with the pt5m, a

0.5 m robotic telescope at the Roque de los Muchachos
Observatory, La Palma (Hardy et al. 2015). Exposure times for
these observations were 5×15 s for both B and I, and
5×10 s for both V and R, prior to 2017 October 26. From that
date onward, exposure times were 5×45 s for both B and I,
and 5×40 s for both V and R. All pt5m observations were
reduced using bias, dark, and flat-field frames acquired on the
same night (or as close in time as possible) as the science
observations. Image alignment was conducted using astro-

metry.net, and coaddition of the images was performed
using swarp (Bertin et al. 2002).
Calibration of the SN 2017eaw photometry was achieved via

transformation from Pan-STARRS1 (PS1)23magnitudes for stars
in the field to BVRI, following relations provided by Tonry
et al. (2012). We show the SN field with this local sequence
of stars in Figure 1 and list their brightnesses in Table 1.
As a check on the validity of this calibration method, we
transformed the PS1 magnitudes to BVRI for the local
sequences employed by Sahu et al. (2006) and Misra et al.
(2007) for SN 2004et and by Botticella et al. (2009) for
SN 2008S, and we found differences of −0.026±0.048,
−0.016±0.024, −0.001±0.031, and −0.029±0.045 mag
in B, V, R, and I, respectively. A systematic offset exists, in the
sense that the published magnitudes are slightly brighter than
the transformed PS1 photometry. However, the rms in the
difference is small in all bands.
Point-spread-function (PSF) photometry was extracted from

the KAIT and Nickel images using DAOPHOT (Stetson 1987)
from the IDL Astronomy User’s Library24 for the SN and the
local sequence. Apparent magnitudes were all measured in the

23
http://archive.stsci.edu/panstarrs/search.php

24
http://idlastro.gsfc.nasa.gov/
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KAIT4/Nickel2 natural system and were transformed to the
standard system using the local sequence and color terms for
KAIT4 from Table 4 of Ganeshalingam et al. (2010) and
updated Nickel color terms from Shivvers et al. (2017). The
KAIT clear (unfiltered) photometry was also calibrated using
this sequence in the R band.
Aperture photometry of the SN and local sequence stars in

the pt5m images was conducted using SExtractor (Bertin &

Arnouts 1996). Comparison with the local sequence was used

to determine the zero-point (although no color correction was

derived), with sigma-clipping (σ=2 for 10 iterations) to

remove outliers.
We combined all of the photometry from the three telescopes,

covering from about 1 day after the discovery by Wiggins (2017)

through nearly the end of calendar year2017. We show the light

curves for SN 2017eaw in Figure 2. The curvesseem to exhibit a

conspicuous initial “bump” near maximum brightness (see the

figure inset), followed by an extended plateau phase, a steady rapid

decline from the plateau, and an exponential tail(see, e.g.,

Anderson et al. 2014). In the figure we also compare with the

previously published BVRI light curves from Tsvetkov et al.

(2018) at (approximately) matching epochs. The agreement is

quite good, withΔB=0.04±0.09, ΔV=0.00±0.05, ΔR=
0.00±0.04, and ΔI=0.06±0.04mag, in the sense of “ours −

Tsvetkov et al.”A similar comparison with the photometry of Rui

et al. (2019) results in ΔB=0.04±0.05, ΔV=0.04±0.04,
ΔR=0.03±0.02, and ΔI=0.05± 0.02mag, again in the

Figure 1. KAIT R-band image from 2017 June 23 showing a 6 7×6 7 field,
including SN 2017eaw and the local sequence of calibration stars (labeled)
listed in Table 1. North is up and east is to the left.

Table 1

Photometric Sequence around SN 2017eawa

Star B (mag) V (mag) R (mag) I (mag)

A 14.788 14.138 13.756 13.332

B 15.176 14.404 13.956 13.482

C 16.006 15.140 14.640 14.135

D 16.032 14.836 14.154 13.507

E 16.288 15.346 14.805 14.332

F 15.878 15.379 15.079 14.686

G 17.444 16.490 15.942 15.367

H 16.830 15.923 15.400 14.843

I 15.534 14.670 14.172 13.689

J 17.073 15.935 15.285 14.637

K 16.923 16.015 15.492 14.955

L 16.345 15.401 14.859 14.315

M 17.081 16.191 15.677 15.152

N 17.632 16.078 15.195 14.330

O 17.044 16.080 15.526 14.982

P 16.824 15.637 14.960 14.330

Q 16.358 15.530 15.051 14.548

R 17.520 16.436 15.816 15.229

S 17.394 16.400 15.831 15.274

T 16.870 15.884 15.317 14.779

U 17.387 16.494 15.980 15.475

V 18.008 16.764 16.055 15.365

W 18.489 17.387 16.757 16.116

X 18.274 16.994 16.266 15.583

Y 17.291 16.384 15.861 15.324

Note.
a
The uncertainties in these magnitudes are those from the PS1-to-Johnson–

Cousins transformations from Tonry et al. (2012), i.e., 0.034, 0.012, 0.015, and

0.017 mag in B, V, R, and I, respectively (the uncertainties in the observed PS1

magnitudes for these stars are all =0.01 mag).

(This table is available in its entirety in machine-readable form.)

Figure 2. The BVRI and unfiltered (clear; orange points) light curves of SN
2017eaw. KAIT data are shown as open squares, Nickel data are shown as
open pentagons, and pt5m data are shown as open triangles. We also include
our remeasurements of the discovery and upper limit to discovery from
Wiggins (2017) as orange crosses (see Section 6.1). For comparison we include
the BVRI light curves from Tsvetkov et al. (2018; dotted–dashed curves). We
also show the expected decline rate if the exponential tail of the light curve is
powered by the decay of 56Co. In the inset we focus on the first 35 days of the
light curves; the offsets for the curves are of the same magnitude as in the main
figure. The data used to create this figure are available.
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sense of “ours − Rui et al.,” indicating that their photometry was
slightly brighter, particularly in the redder bands. Rui et al. also
began monitoring the SN about 1 day before we did.

We have not performed S-corrections (Stritzinger et al. 2002) to
our photometry. Nevertheless, we have made a comparison of all
of the photometry obtained between the three telescopes and
instruments: ΔB=−0.06±0.09, ΔV=−0.02±0.05, ΔR=
−0.01±0.05, and ΔI=−0.01±0.04mag, “KAIT − pt5m”;
ΔB=0.01±0.12, ΔV=−0.03±0.04, ΔR= −0.03±0.05,
and ΔI=−0.02±0.03mag, “Nickel − pt5m”; and ΔB=
−0.04±0.06, ΔV=0.02±0.03, ΔR=0.00±0.03, and
ΔI=0.00±0.03mag, “KAIT − Nickel.” As one can see,
the differences are quite small. We also have generated
synthetic photometry from the Lick Observatory Kast spectra
that we obtained (see Section 2.2) using pysynphot

25
(STScI

Development Team 2013) with the KAIT, Nickel, and pt5m
bandpasses, comparing with the photometry at or near
contemporaneous epochs (these spectra were all first recali-
brated to the V magnitude for the nearest epoch), and find the
following: Δ(B−V )=−0.31±0.14, Δ(V−R)=0.00±
0.05, Δ(V−I)=0.11±0.04 mag, “KAIT − phot”; Δ(B−
V )=−0.27±0.12, Δ(V−R)=0.05±0.05, Δ(V−I)=
−0.10±0.06 mag, “Nickel − phot”; and Δ(B−V )=
0.06±0.10, Δ(V−R)=0.05±0.05, Δ(V−I)=0.13±
0.05 mag, “pt5m − phot.” One could therefore correct our
photometry by these amounts, although we caution that the
blue end of the KAIT and Nickel B bandpasses extends
shortward of the bluest wavelengths of the spectra, so there is
likely flux missing within those bandpasses; likewise, the
spectra extend redward of the end of the Nickel I bandpass
trace, so, again, not all of the flux may be represented in the
synthetic photometry with that filter. The authors will happily
provide the bandpasses to the reader should an inquiry
be made.

We analyze the photometric properties of SN 2017eaw more
extensively in Section 6.

2.2. SN Optical Spectroscopy

Over an eight-month period beginning on 2017 May 19, a
series of 20 optical spectra of SN 2017eaw were obtained with
the Kast double spectrograph (Miller & Stone 1993) mounted
on the 3 m Shane telescope at Lick Observatory. These spectra
were taken at or near the parallactic angle (Filippenko 1982) to
minimize slit losses caused by atmospheric dispersion. Data
were reduced following standard techniques for CCD proces-
sing and spectrum extraction (Silverman et al. 2012) utilizing
IRAF

26 routines and custom Python and IDL codes.27 Low-
order polynomial fits to arc-lamp spectra were used to calibrate
the wavelength scale, and small adjustments derived from
night-sky lines in the target frames were applied. Observations
of appropriate spectrophotometric standard stars were used to
flux-calibrate the spectra.

With the Blue Channel(BC) spectrograph on the MMT we
also obtained nine spectra with the 1200 lines mm−1 grating,
with a central wavelength of 6360Å and a 1 0 slit width,
andtwo spectra with the 300 lines mm−1 grating.We obtained
five epochs of optical spectroscopy with the Boller & Chivens

(B&C) spectrograph mounted on the 2.3 m Bok telescope on
Kitt Peak using the 300 lines mm−1 grating. Standard
reductions were carried out using IRAF, and wavelength
solutions were determined using internal He–Ne–Ar lamps.
Flux calibration was achieved using spectrophotometric
standards at a similar airmass taken throughout the night.
Additionally, some of us (H.I., I.J.M.C., D.H., M.R.K.)

obtained an optical spectrum of SN 2017eaw with the HIRES
spectrometer (Vogt et al. 1994) on the Keck I 10 m telescope
on Maunakea on 2017 June 2. The spectrum, with an exposure
time of 292 s, has a continuum signal-to-noise ratio (S/N) of
40 per pixel at 5500Å. The use of the 0 87×14 0 (C2)
decker provided a resolution of 50,000; while sky subtraction
can be performed, the extra on-sky pixels in the spatial
direction provide additional information about the environment
of the primary target. The spectrum was reduced using the
standard California Planet Search pipeline (Howard et al.
2010).
We provide a log of the Kast, MMT,Bok, and Keck

observations in Table 2. The sequence ofKast, MMT, and Bok
spectra is shown in Figure 3. All of the spectra have been
corrected for the redshift of NGC 6946, taken to be
z=0.000133.28 We can see from the sequence in Figure 3
that SN 2017eaw appears to be a normal SN II-P.

2.3. Pre-SN HST Imaging

The site of SN 2017eaw was observed serendipitously by
several HST programs prior to explosion. These include GO-
14156 (PI A. Leroy) with the Wide Field Camera 3 (WFC3) IR
channel in bands F110W (total exposure 455.87 s) and F128N
(1411.74 s) on 2016 February 9, and GO-14638 (PI K. Long)
with WFC3/IR F160W (396.93 s) on 2016 October 24; and
GO-9788 (PI L. Ho) with the Advanced Camera for Surveys
(ACS) Wide Field Channel (WFC) on 2004 July 29 in F658N
(700 s) and F814W (120 s), and GO-14786 (PI B. Williams)
with ACS/WFC on 2016 October 26 in F814W (2570 s) and
F606W (2430 s).

2.4. Pre-SN Spitzer Imaging

The SN site was also serendipitously observed pre-explosion
by a number of programs on various dates, from 2004 June 10
to 2017 March 31, using Spitzer. We list all of these
observations and the data that we considered in Table 3. The
data were obtained primarily with the Infrared Array Camera
(IRAC; Fazio et al. 2004), but also with the Multiband Imaging
Photometer for Spitzer (MIPS; Rieke et al. 2004). The IRAC
imaging was obtained both during the cryogenic mission in all
four bands (3.6, 4.5, 5.8, and 8.0 μm) and during the so-called
“Warm” (post-cryogenic) mission only in the two shortest
wavelength bands. For MIPS we consider only the available
24 μm data.

2.5. Post-explosion HST Imaging

We observed SN 2017eaw on 2017 May 29.79 with HST
WFC3/UVIS in subarray mode in F814W (270 s total
exposure), as part of our Target of Opportunity (ToO) program
(GO-14645, PI S. Van Dyk). Although the SN was quite bright
at the time, we successfully avoided saturating the detector (the25

https://github.com/spacetelescope/pysynphot
26

IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by AURA, Inc., under a cooperative agreement with the NSF.
27

https://github.com/ishivvers/TheKastShiv

28
From the NASA/IPAC Extragalactic Database (NED),http://ned.

ipac.caltech.edu/.
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F814W band was expressly chosen to reduce the probability of
this happening on the likely observing date), while achieving
appreciable S/N on fainter point-like objects in the SN
environment that could be used as astrometric fiducials (see
Section 7.1). SN 2017eaw was also observed on 2018 January
5 with WFC3/UVIS in F555W and F814W (710 and 780 s) as
part of the HST Snapshot program GO-15166 (PI A.
Filippenko); unfortunately, the SN was still quite bright
(V≈16.8 and I≈14.8 mag) at the time, and the central
pixels of the SN image are saturated, further leading to
prominent detectorrow and column bleeding.

3. Extinction to SN 2017eaw

What is noticeable in the spectral sequence is the presence of
a strong NaI D feature, consistent with the large Galactic
extinction we would expect for a host galaxy at a Galactic
latitude of only b=11°.7. Of course, at low resolution the NaI
feature could also include a contribution to the extinction

internal to the host, given its low redshift. As mentioned in
Section 2.2, we obtained a Keck HIRES spectrum, with the aim
of isolating both the NaID and 5780Å diffuse interstellar
band (DIB) features, to assess the amount of extinction to the
SN. We show the HIRES spectrum in Figure 4 for these two
portions of the overall coverage. As one can see, the NaID1
and D2 lines are essentially saturated; however, these are both
at wavelengths corresponding essentially to zero redshift (i.e.,
to the Galactic component of extinction), whereas at wave-
lengths corresponding to NGC 6946, no clear sign of either
feature exists. Phillips et al. (2013) cautioned that NaID is a
rather poor measure of the value of the extinction and
recommended use of the DIB λ5780 feature instead. One can
see in Figure 4 that a strong DIB feature is evident; however,
again this corresponds to the foreground extinction component,
whereas any contribution from the host cannot be distinguished
from the broad Galactic feature. Hence, we conclude that
there is little evidence for significant host-galaxy extinction.
Hereinafter we therefore assume the Galactic foreground

Table 2

Log of Optical Spectroscopy of SN 2017eaw

Obs.Date MJD Agea Instrument Wavelength Resolution

Range (Å) (Å)

17-05-17.402 57890.902 5.2 MMT-BC 5697–6997 0.49

17-05-19.481 57892.981 7.3 Kast 3650–10650 2.0

17-05-20.377 57893.877 8.2 Kast 3660–10600 2.0

17-05-20.429 57893.929 8.2 MMT-BC 5785–7090 0.49

17-05-21.482 57894.982 9.3 MMT-BC 5788–7093 0.49

17-06-02.231 57906.731 21.0 HIRES 3642.9–7967.1 0.02–0.03

17-06-02.478 57906.978 21.3 Kast 3660–10630 2.0

17-06-21.480 57925.980 40.3 Kast 3622–10718 2.0

17-06-24.418 57928.918 43.2 MMT-BC 5711–7022 0.49

17-06-27.500 57932.000 46.3 Kast 3627–10718 2.0

17-06-30.351 57934.851 49.2 MMT-BC 5709–7020 0.49

17-07-01.468 57935.968 50.3 Kast 3638–10710 2.0

17-07-17.488 57951.968 66.3 Kast 3614–10690 2.0

17-07-26.498 57960.998 75.3 Kast 3622–10680 2.0

17-07-30.489 57964.989 79.3 Kast 3620–10708 2.0

17-08-01.488 57966.988 81.3 Kast 3620–10710 2.0

17-08-27.492 57992.992 107.3 Kast 3620–10716 2.0

17-08-29.166 57994.666 109.0 Bok-B&C 3684–8040 3.6

17-09-12.330 58008.830 123.1 Bok-B&C 4000–8039 3.6

17-09-14.191 58010.691 125.0 Kast 3632–10720 2.0

17-09-27.155 58023.655 138.0 Kast 3630–10680 2.0

17-09-29.249 58025.749 140.0 Bok-B&C 3799–8029 3.6

17-10-08.149 58034.649 148.9 MMT-BC 3476–8695 1.9

17-10-09.100 58035.600 149.9 MMT-BC 5705–7010 0.49

17-10-11.117 58037.617 151.9 Bok-B&C 4731–9079 3.6

17-10-19.346 58045.846 160.1 Kast 3622–10670 2.0

17-10-25.330 58051.830 166.1 Kast 3620–10680 2.0

17-10-27.080 58053.580 167.9 MMT-BC 5646–6958 0.49

17-10-28.113 58054.613 168.9 Bok-B&C 4415–8728 3.6

17-10-30.100 58056.600 170.9 Kast 3622–10706 2.0

17-11-20.091 58077.591 191.9 MMT-BC 5657–6965 0.49

17-11-26.099 58083.599 197.9 Kast 3630–10700 2.0

17-12-12.098 58099.598 213.9 Kast 3632–10680 2.0

17-12-18.096 58105.596 219.9 Kast 3632–10712 2.0

18-01-13.093 58131.593 245.9 Kast 3630–10680 2.0

18-07-01.415 58300.915 415.2 MMT-BC 5720–7025 0.49

18-09-06.316 58367.816 482.1 MMT-BC 3245–8104 1.9

Note.
a
The age is referenced to our estimate of the date of explosion, JD 2,457,885.7.

(This table is available in its entirety in machine-readable form.)
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contribution toward SN 2017eaw from Schlafly & Finkbeiner
(2011) (via NED), AV=0.941 mag, as the total visualinter-
stellar extinction.The uncertainty in the extinction is likely
0.1 mag.

4. Distance to SN 2017eaw

Not surprisingly for such a famous and well-studied galaxy
as NGC 6946, NED lists 32 redshift-independent distances.
These include Tully–Fisher estimates of 5.0–5.3 Mpc by
Bottinelli et al. (1984, 1986), 5.4–5.5Mpc by Schoniger &
Sofue (1994), and 5.5 Mpc by Pierce (1994). A number of SN-
based distances have also been estimated, including early
measurements with the expanding photosphere method(EPM)

applied to SN 1980K by Schmidt et al. (1992) (7.2 Mpc) and
Schmidt et al. (1994) (5.7 Mpc), with more recent attempts
using SN 2004et by Takáts & Vinkó (2012) (4.8 Mpc) and
Bose & Kumar (2014) (4.0–5.9 Mpc). The standardized candle
method(SCM) has also been applied to SN 2004et by Olivares
et al. (2010) (4.3–5.4Mpc) and Pejcha & Prieto (2015)
(4.5 Mpc), and applied with a modified version of this method
by Poznanski et al. (2009) to SN 2002hh (6.0Mpc) and SN
2004et (4.7 Mpc). Thus, most of these distance estimates to
NGC 6946 have been quite “short,” at approximately
5Mpc.Karachentsev et al. (2000) estimated 6.8 Mpc using
the brightest blue stars in a galaxy group containing NGC
6946, and Tikhonov (2014) measured a tip-of-the-red-giant-
branch (TRGB) distance to NGC 6946 of 6.72±0.15Mpc
using archival HST data.

We have independently estimated a TRGB distance using
more recent HST data. We downloaded publicly available deep
archival WFC3/UVIS images in F606W (total exposure
5470 s) and F814W (5548 s) for a parallel field 6 9 from the

Galaxy center, obtained on 2016 October 28 by GO-14786 (PI

B. Williams). We were well underwayanalyzing this field

when the work by Murphy et al. (2018) appeared. These

authors analyzed a different field, also observed by GO-14786

in the same bands to approximately the same depth, but at a

nuclear offset of 7 9. Murphy et al.inferred an astonishingly

larger distance of 7.83±0.29Mpc (i.e., a distance modulus of

29.47±0.08 mag), much greater than previous estimates. To

confirm this measurement and to potentially bolster confidence

in the measurement from our chosen field, we decided to

undertake analysis of bothfields, shown in Figure 5.We note

that yet another TRGB analysis, by Anand et al. (2018),

appeared, also while our analysis was underway.

Figure 3. Sequence ofKast, MMT, and Bok spectra of SN 2017eaw; see
Table 2. The spectra have all been corrected for the redshift of the host galaxy,
but not for the reddening to the SN. The spectra are labeled by the day since
explosion, assumed to be JD 2,457,885.7 (see Section 6.1). The data used to
create this figure are available.

Table 3

Log of Spitzer Data Covering the SN 2017eaw Site

Obs.Date AORKEY Data

2004 Jun 10 5508864 IRAC 3.6, 4.5, 5.8, 8.0 μm

2004 Jul 10 5576704 MIPS 24, 70, 160 μm

2004 Jul 11 5576960 MIPS 24, 70, 160 μm

2004 Sep 12 10550528 IRAC 3.6, 4.5, 5.8, 8.0 μm

2004 Nov 25 5508608 IRAC 3.6, 4.5, 5.8, 8.0 μm

2004 Nov 25 10550784 IRAC 3.6, 4.5, 5.8, 8.0 μm

2005 Jul 19 14526976 IRAC 3.6, 4.5, 5.8, 8.0 μm

2005 Jul 20 14456320 IRAC 3.6, 4.5, 5.8, 8.0 μm

2005 Jul 20 14457856 IRAC 3.6, 4.5, 5.8, 8.0 μm

2005 Sep 24 14528000 MIPS 24 μm

2005 Dec 30 14528256 IRAC 3.6, 4.5, 5.8, 8.0 μm

2006 Jan 10 14528512 MIPS 24 μm

2006 Nov 26 17965568 IRAC 3.6, 4.5, 5.8, 8.0 μm

2006 Dec 29 18277120 IRAC 3.6, 4.5, 5.8, 8.0 μm

2007 Jan 6 18270976 MIPS 24 μm

2007 Jul 3 18277376 IRAC 3.6, 4.5, 5.8, 8.0 μm

2007 Jul 10 18271232 MIPS 24 μm

2007 Dec 27 23508224 IRAC 3.6, 4.5, 5.8, 8.0 μm

2008 Jan 27 24813824 IRAC 3.6, 4.5, 5.8, 8.0 μm

2008 Jul 18 27190016 IRAC 3.6, 4.5, 5.8, 8.0 μm

2008 Jul 29 27189248 MIPS 24 μm

2009 Aug 6 34777856 IRAC 3.6, 4.5 μm

2010 Jan 5 34778880 IRAC 3.6, 4.5 μm

2010 Aug 13 39560192 IRAC 3.6, 4.5 μm

2011 Jul 27 42195456 IRAC 3.6, 4.5 μm

2011 AUg 1 42415872 IRAC 3.6, 4.5 μm

2012 Feb 1 42502144 IRAC 3.6, 4.5 μm

2013 Aug 17 48000768 IRAC 3.6, 4.5 μm

2014 Jan 3 49665024 IRAC 3.6, 4.5 μm

2014 Feb 17 48934144 IRAC 3.6, 4.5 μm

2014 Mar 26 50623232 IRAC 3.6, 4.5 μm

2014 Sep 16 50623744 IRAC 3.6, 4.5 μm

2014 Oct 15 50623488 IRAC 3.6, 4.5 μm

2015 Jan 31 53022464 IRAC 3.6, 4.5 μm

2015 Sep 2 52785664 IRAC 3.6, 4.5 μm

2015 Sep 7 52785920 IRAC 3.6, 4.5 μm

2015 Sep 16 52786176 IRAC 3.6, 4.5 μm

2015 Sep 28 52786432 IRAC 3.6, 4.5 μm

2015 Oct 27 52786688 IRAC 3.6, 4.5 μm

2015 Nov 25 52786944 IRAC 3.6, 4.5 μm

2015 Dec 23 52787200 IRAC 3.6, 4.5 μm

2016 Sep 4 52787456 IRAC 3.6, 4.5 μm

2016 Oct 12 60832256 IRAC 3.6, 4.5 μm

2016 Dec 30 60832512 IRAC 3.6, 4.5 μm

2017 Mar 31 60832768 IRAC 3.6, 4.5 μm

(This table is available in its entirety in machine-readable form.)
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Both fields have comparatively fewer of contaminants, e.g.,
younger supergiants, in NGC 6946 than other archival HST
pointings in these bands and likely better probe the desired
older halo population. We processed the data with Dolphot

(Dolphin 2000, 2016), with the same input parameters as
described in Section 7.1 after first running the individual
frames corrected for charge transfer efficiency (CTE) through
AstroDrizzle, to flag cosmic-ray hits. We further culled
objects from the output photometry list that are most probably
“good stars,” by imposing cuts on the Dolphot parameters
object type (=1), sharpness s (−0.3�s�0.3), crowding
(<0.5 mag), quality flag (=0), and χ (<2 at F606W and <3 at
F814W),following, e.g., Mager et al. (2008). Even with these
cuts we cannot rule out that source crowding and confusion are
affecting the photometry. The photometry for these selected
objects was then corrected for the appropriate Galactic
foreground extinction in each band (Schlafly & Finkbeiner
2011) toward each of the two fields.Field B is less
extinguished than is Field A. The extinction varies up to
0.01 mag in both AV and AI for Field A, and to 0.03 and
0.02 mag in AV and AI, respectively, for Field B.

We transformed the reddening-corrected photometry at F814W
to the color-dependence-corrected brightness QT, following Jang
& Lee (2017) for the HST appropriate camera and filter
combination. The resulting color–magnitude diagrams(CMDs)
for the two fields are shown in Figures 6 and 7 for A and B,
respectively. A prominent red giant branch can be clearly seen in
both of the figures. We applied two different Sobel edge detectors,
the [−1, −1, −1, 0, 0, 0, +1, +1, +1] kernel from Madore et al.
(2009) and the [−1, −2, −1, 0, +1, +2, +1] kernel from Jang &
Lee (2017), to 0.05mag binned histograms of QT in the color
range1.1�(F606W−F814W)0�2.0mag,to mitigate against
contamination from the likely RSGs near (F606W−
F814W)0≈1.0 mag and to locate the TRGB. We show the
resulting edge detector responses in Figures 6 and 7 as well. By

trial and error we had found that these two edge detectors
provided the clearest discrimination of the TRGB; as can be seen
in the figures, their results are quite similar.
From our analysis the TRGB appears to be at25.40 and

25.42 mag for Fields A and B, respectively.The RGB is more
populated in Field A than in Field B. For the uncertainties in

Figure 4. Portions of the spectrum of SN 2017eaw obtained with HIRES on the Keck I telescope on 2017 June 2, focusing on the NaID lines (left panel) and the DIB
λ5780 feature (right panel). The locations of these features at the host-galaxy redshift are indicated (by “host”) in both panels.

Figure 5. Digitized Sky Survey image of the host galaxy, NGC 6946, showing
the footprints of the two WFC3/UVIS fields, A and B, that we analyzed when
determining the TRGB distance to the Galaxy. Field A is at a galactic nuclear
offset of 6 9, while Field B is at 7 9. The latter field was previously analyzed
by Murphy et al. (2018). Both fields were also analyzed by Anand et al. (2018).
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these two estimates we assumed the width of a Gaussian fit to

the edge detector response(Sakai et al. 1999, 2000) for the

two fields, which are 0.23 and 0.20 mag, respectively. Taking
the uncertainty-weighted mean of these two estimates, and

assuming the luminosity of the TRGB is QT=−4.031 mag

(Jang & Lee 2017, this is the value for the similar late-type

spiral galaxy NGC 4258), we found a reddening-corrected

distance modulus to NGC 6946 of29.44±0.21 mag, or a

distance of7.73±0.78 Mpc.
Note that we arrive at the same value, to within the

uncertainties, for both the TRGB apparent brightness and the

distances as did Murphy et al. (2018) and Anand et al. (2018;

7.72±0.32Mpc, from analysis of both Fields A and B), via

somewhat less sophisticated pathways to the TRGB estimate

(we used the Sobel edge detection, whereas the other two

studies used a Bayesian maximum likelihood technique; see

their studies for details).
To demonstrate that the TRGB distance estimate for NGC

6946 is reasonable, we compare in Figure 8 the CMD for the

combined fields A and B with a CMD of a field in NGC 4258,

considered a distance anchor by Jang & Lee (2017). The TRGB

distance for the latter galaxy (7.18±0.40Mpc; Mager et al.

2008) is consistent with distance estimates obtained using that

galaxy’s nuclear water megamaser (7.54±0.17Mpc; e.g.,

Riess et al. 2016). It is evident from the figure that the TRGB

distance to NGC 6946 is comparable to that of NGC 4258, with

the former galaxy being slightly more distant than the latter.

The TRGB distance to NGC 6946 is inconsistent with the

previous shorter SN-based distances. We note that general
comparisons of Cepheid and TRGB distance estimates have
been in excellent agreement (e.g., Jang et al. 2018).
Hereinafter we adopt our estimate, above, of the distance to

NGC 6946. As a cross-check, we also computed SCM and
EPM distances to SN 2017eaw in Section 6.6.

5. Metallicity of the SN 2017eaw Site

One means of estimating the metallicity at the site of a SN is
from an abundance gradient for the host galaxy, if it has been
established. Since the oxygen abundance is often adopted as a
proxy for metallicity, the gradient considered is usually that of
oxygen. First, we deprojected an image of NGC 6946 assuming
the relevant galaxy parameters (inclination, position angle)
from Jarrett et al. (2003). From the absolute positions of SN
2017eaw and the NGC 6946 nucleus, the nuclear offset of the
SN site is then ∼221″. At the assumed host distance, this
corresponds to 7.3 kpc. Using the oxygen abundance gradient
from Belley & Roy (1992; although they assumed a distance of
5.9Mpc to NGC 6946), we estimate that the abundance at the
SN 2017eaw site is12+log(O/H)=8.71±0.05. With the
Sun’s oxygen abundance assumed to be12+log(O/H)=
8.69±0.05 (Z=0.014; Asplund et al. 2009), this would
imply a solar-like metallicity at the SN site.
Another, potentially more accurate, way of estimating the

SN site metallicity is from the O abundances of nearby
emission regions, if available (e.g., Modjaz et al. 2011).
Examination of the archival HST F658N image reveals that no

Figure 6. Left:CMD of the color-dependence-corrected brightness QT (Jang &
Lee 2017) vs. the reddening-corrected (F606W−F814W) color for stars in Field
A (see Figure 5), which is 6 9 from the center of NGC 6946. Representative
uncertainties in the photometry are also shown. A well-developed red giant branch
can clearly be seen.Middle: histogram of QT, binned by 0.05 mag, for stars in the
color range (F606W−F814W)0=1.1–2.0 mag. Right: the Sobel edge detector
responses, from Madore et al. (2009; solid red curve) and Jang & Lee (2017;
dotted–dashed blue curve), that we appliedto the histogram in the middle panel. A
dashed line indicates the TRGB atQT=25.40 mag, which is at the peak
of a Gaussian fit to the edge detector responses. The width of that Gaussian
is 0.23 mag.

Figure 7. Left:CMD of the color-dependence-corrected brightness QT (Jang &
Lee 2017) vs. the reddening-corrected (F606W−F814W) color for stars in Field
B (see Figure 5), which is 7 9 from the center of NGC 6946. Representative
uncertainties in the photometry are also shown. A well-developed red giant branch
can clearly be seen.Middle: histogram of QT, binned by 0.05 mag, for stars in the
color range (F606W−F814W)0=1.1–2.0 mag. Right: the Sobel edge detector
responses, from Madore et al. (2009; solid red curve) and Jang & Lee (2017;
dotted–dashed blue curve), that we appliedto the histogram in the middle panel. A
dashed line indicates the TRGB atQT=25.42 mag, which is at the peak of a
Gaussian fit to the edge detector responses. The width of that Gaussian is
0.20 mag. Note that Murphy et al. (2018) had previously performed this analysis
for this field and found essentially the same value for the TRGB brightness. Anand
et al. (2018) also found a similar value.
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such regions exist in the SN’s immediate environment.
Fortunately, Gusev et al. (2013) measured the O abundance
for three HII regions nearest the SN site, #2, #22, and #23
(all ∼73″ to the northwest), to be12+log(O/H)=
8.46±0.01, 8.56±0.02, and 8.46±0.01, respectively; the
next closest, #6, ∼92″ to the southeast, has12+log(O/H)=
8.58±0.02. All of these measurements would imply that
the SN 2017eaw site is somewhat subsolar in metallicity.
Given that this method is likely a more direct means of
estimating the metallicity, we adopt hereinafter a subsolar
metallicity in the range of Z=0.009 ([Fe/H]=−0.2) to
Z=0.011 ([Fe/H]= −0.1).

6. Analysis of SN 2017eaw

6.1. Date of Explosion

Not many observational constraints exist on the explosion
epoch of SN 2017eaw. For instance, the KAIT SN search did
not obtain its first image of the host (independent of the
multiband SN 2017eaw monitoring) until 2017 June 12.99,
nearly a month after discovery, owing to hour-angle limitations
imposed for the search. Steele & Newsam (2017) did not detect
the SN on 2017 May 6.18 to R>21.2 mag, eight days prior to
discovery. Wiggins (2017) reported that nothing was detected
at the SN position to an unfiltered mag >19 on May 12.20,
∼2 days before his discovery. Interestingly, Drake et al. (2017)
reported detection of a source at the SN position in the Catalina
Real-Time Transient Survey (CRTS) data at V≈19.8 mag on
2017 May 7.43, slightly more than one day later than the deep
upper limit from Steele & Newsam.

Patrick Wiggins kindly provided his unfiltered images both
of the discovery and of the pre-discovery upper limit. We
analyzed the images with DAOPHOT, using our photometric

sequence at R from Table 1 for calibration. We confirmed that
the SN was discovered at 12.8 mag. However, we found that
the nondetection limit on 2017 May 12 was >16.8 mag, rather
than >19 mag.
Additionally, Andrew Drake graciously provided us with

four nearly contemporaneous CRTS exposures from 2017 May
7, which were the basis of their report (Drake et al. 2017). We
analyzed these images both individually and as a coaddition. In
short, we could not convince ourselves that the SN had been
detected on that date. In more detail, we compared the coadded
CRTS image astrometrically, first with a good-quality KAIT
image of the SN, and subsequently with the archival HST
images in which the SN progenitor is detected (see
Section 7.1), using 25 and 13 stars in common between the
two image data sets, respectively. In the coadded image there is
indeed what appears to be a source within 1 pixel of the
nominal SN position. However, DAOPHOT did not detect this
source, and therefore we were not able to measure its
brightness. Additionally, just a hint of this source appears only
in one of the four individual exposures.Nevertheless, with the
Wiggins discovery and pre-discovery nondetection, in part-
icular, we can employ knowledge of the rise time of SNe II-P to
place a further constraint on the explosion date. Specifically,
we draw upon the beautifully defined rise of KSN 2011a
(Garnavich et al. 2016), which appears to be a relatively normal
SN II-P, albeit at higher redshift than SN 2017eaw. In Figure 9
we show a comparison of the very early KSN 2011a light curve
with the R-band and unfiltered SN 2017eaw light curves. We
note, of course, that the Kepler bandpass used to detect KSN
2011a is far broader than R, although comparable in breadth to
the unfiltered KAIT CCD response function (Riess et al. 1999).
Assuming that the rise of the latter was similar to that of the
former (and the comparison tends to imply that this is the case),

Figure 8. Left: CMD of the color-dependence-corrected brightness QT (Jang &
Lee 2017) vs. the reddening-corrected (F606W−F814W) color for stars in the
combined Fields A and B in NGC 6946 (see Figure 5). Right: a similar CMD
for stars in the halo of the late-type spiral galaxy NGC 4258 (see Jang &
Lee 2017). The long-dashed line in both panels indicates the detected level of
the TRGB in each galaxy. The short-dashed line in the left panel indicates
where the TRGB would be if the distance to NGC 6946 were 5.2 Mpc.

Figure 9. The rise of SN 2017eaw compared to that of KSN 2011a (Garnavich
et al. 2016). Shown are the R-band (red open squares) and KAIT unfiltered
(orange open triangles) light curves for SN 2017eaw. The discovery and pre-
discovery nondetection by Wiggins (2017) are shown as orange open
diamonds; the R nondetection by Steele & Newsam (2017) is shown as a red
cross. The very early KSN 2011a light curve is represented by open gray
circles.
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we can infer that the explosion date for SN 2017eaw was about
JD 2,457,885.7 (May 12.2). The Wiggins nondetection
constrains this date to about ±0.1 day, which is remarkable.
The implied rapid rise time of SN 2017eaw would also rule out
the CRTS “pre-discovery,” some five days prior to the Wiggins
discovery. Our assumed explosion date is almost exactly a day
earlier than the date assumed by Rui et al. (2019).

6.2. Absolute Light and Color Curves

We corrected the observed BVRI light curves of SN 2017eaw
for the assumed Galactic foreground extinction and then adjusted
them to be absolute light curves with our adopted distance
modulus to NGC 6946. As an illustration we show the absolute V
curve in Figure 10. At maximum V=−17.57mag, SN 2017eaw
is generally more luminous than SN 1999em (Hamuy et al. 2001;
Leonard et al. 2002a; Elmhamdi et al. 2003b), SN 1999gi
(Leonard et al. 2002b), and SN 2012aw (Bose et al. 2013;
Dall’Ora et al. 2014).However, it is intermediate in luminosity
between these SNe and SN 2004et (Sahu et al. 2006; Maguire
et al. 2010; when adjusted to our assumed distance to NGC 6946),
which appears to be significantly more luminous than SN
2017eaw.(See also the comparison of SN 2017eaw with SN
2004et by Tsvetkov et al. 2018.)The bump in the light curve near
maximum brightness (at ∼8 days after explosion) appears more
prominent for SN 2017eaw, and not nearly as pronounced for the
other SNe, although Morozova et al. (2018) required 0.3Me of
dense circumstellar matter (CSM) to account for enhanced
emission in the early-time curves of SN 1999em, SN 2004et,

and SN 2012aw.(SN 2004et may have exhibited a less prominent,
more extended bump peaking at about 20 days post-explosion.)
We have also fit via a minimum χ2 the simple model from
Elmhamdi et al. (2003a), shown in the figure, for the behavior of
the light curve. See Section 6.4 for the ramifications of this fit.
The color evolution of SN 2017eaw is shown in Figure 11.

Generally, reasonably close agreement exists between this SN
and other SNe II-P, such as SN 1999em, SN 1999gi, SN
2004et, and SN 2012aw. SN 1999gi may have been somewhat
redder than SN 2017eaw in all colors, while SN 2004et appears
to have been bluer in all of our observed colors, especially at
early and later times.

6.3. Bolometric Light Curve

With an absence of photometry both shortward and
longward of BVRI, we transformed the absolute observed light
curves to a bolometric light curve viaseveral different
methods. One method was to assume bolometric corrections
to the broadband photometry derived from the modeling of
SNe II-P by Pejcha & Prieto (2015).Similarly, we also used
the bolometric corrections from Bersten & Hamuy (2009).
Another was to assume bolometric corrections derived
empirically and more generally for SNe II by Lyman et al.
(2014), and more specifically for SN 2004et and SN 1999em
relative to the R band by Maguire et al. (2010). Finally, we
produced a bolometric light curve from extrapolations of
blackbody fits to the observed BVRI data points, using the
routine superbol(Nicholl 2018).29 The fitting with this
routine was initially set relative to the observed V-band

Figure 10. Absolute V light curve of SN 2017eaw (black open squares). For
comparison we show the absolute curves of SN 1999em (Hamuy et al. 2001;
Leonard et al. 2002a; Elmhamdi et al. 2003b, blue open triangles), SN 1999gi
(Leonard et al. 2002b, dark green open stars), SN 2004et (Sahu et al. 2006;
Maguire et al. 2010, red crosses), and SN 2012aw (Bose et al. 2013; Dall’Ora
et al. 2014, purple open circles),all adjusted by the distances and reddenings in
the literature, although SN 2004et was adjusted to our assumed distance to
NGC 6946. The displayed error bar is representative of the average uncertainty
in the SN 2017eaw curve, with the predominant source of error being the
uncertainty in the adopted distance modulus to NGC 6946. Also shown is a
simple model for the behavior of the light curve, following Elmhamdi et al.
(2003b; yellow dotted–dashed curve).

Figure 11. B−V, V−R, and V−I color curves (black open squares) for SN
2017eaw, corrected for our assumed value of the reddening to the SN. For
comparison we show the color curves for the SNe II-P 1999em (Hamuy et al.
2001; Leonard et al. 2002a; Elmhamdi et al. 2003b, blue open triangles),
1999gi (Leonard et al. 2002b, dark green open stars), 2004et (Sahu et al. 2006,
red crosses), and 2012aw (Bose et al. 2013; Dall’Ora et al. 2014, purple open
circles), all corrected by the reddening assumed by thosestudies and adjusted
in time to match approximately the curves for SN 2017eaw.

29
https://github.com/mnicholl/superbol
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maximum, which was on JD 2,457,893.06. We note that we
just missed the actualV maximum: fitting a Gaussian function
approximately to the early bump in the observed light curve,
we estimate that the time of V maximum likely occurred around
JD 2,457,893.7.

The ensemble of results from these various methods
indicates a general trend for the bolometric light curve, and
so we computed an average from all of these various results.
However, the earliest portion of the curve (25 days) was
established only from the average of the bolometric corrections
from Bersten & Hamuy (2009) and Pejcha & Prieto (2015) and
the superbol fit, since the former two corrections tend to
agree with the early blackbody fitting when the SN was still hot
(T>8000 K) and relatively free from emission lines. We
consider it less likely that the early behavior of the curves
resulting from the corrections from Maguire et al. (2010) and
Lyman et al. (2014) adequately represents the actual early-time
bolometric evolution of SN 2017eaw. In a forthcoming paper
(V. Morozova et al. 2019, in preparation), we will demonstrate
that the bolometric light curve—particularly the early peak—is
consistent with the presence of dense CSM immediately
adjacent to the progenitor at the time of explosion. Such
CSM is strongly suspected to be present for a number of SNe
II-P (Moriya et al. 2017, 2018; Morozova et al. 2017, 2018;
Förster et al. 2018; Paxton et al. 2018) and could be related to
pre-explosion outbursts during the late stages of RSG nuclear
burning (e.g., Quataert & Shiode 2012; Shiode & Quataert
2014; Fuller 2017). The behavior of the curve on the
exponential tail is likely more consistent with that resulting
from the bolometric correction of Lyman et al. (2014) and the
bolometric correction for SN 1999em from Maguire et al.
(2010) than the superbol blackbody extrapolation, which is
affected by the presence of strong spectral emission lines
during this phase and overpredicts the luminosity on the tail.
The uncertainty in our average curve conservatively includes
the individual uncertainties in the superbol fit and in the
individual bolometric corrections.

For comparison we also show the bolometric light curves for
SN 2004et (Maguire et al. 2010; Faran et al. 2018; after
adjusting their published curves from their respective assumed
distances to the distance of NGC 6946 that we assume) and SN
1987A (Suntzeff & Bouchet 1990). The former SN, again,
appears to have been more luminous than SN 2017eaw, except
possibly at peak.

6.4. Estimate of the Nickel Mass

We can estimate the mass, M(
56Ni), of radioactive nickel,

whose daughter is 56Co, the decay of which powers the
exponential tail of SN II-P light curves via deposition and
trapping of γ-rays released by the decay. For a given SN II-P,
assuming that the γ-ray thermalization is equally efficient, the
comparison is usually made to SN 1987A, the bolometric light
curve of which (Suntzeff & Bouchet 1990) we show in
Figure 12.The luminosities of the light-curve tails for the two
SNe after about day 135 are comparable, if not the same, to
within the uncertainties. The nickel mass for SN 1987A was
estimated at MNi=0.075±0.015Me (Arnett & Fu 1989), so
it is likely safe to assume that MNi for SN 2017eaw is
essentially the same, based on this comparison. Another means
of estimating MNi is via a “steepness” parameter, S, introduced
by Elmhamdi et al. (2003a) for the V-band light curve. We
show a best fit of their simple analytical model for the behavior

of the V curve in Figure 10. From that model fit we find that

S=0.089 mag day−1 at an “inflection point” of day 113.6.

From Elmhamdi et al. (2003a; their Equation (3)) we then

estimate that MNi=0.04Me, which is about a factor of two

less than the SN 1987A comparison. Rho et al. (2018) found

that dust had started forming as early as day 124, so there may

be an increase in extinction local to the SN that could decrease

the luminosity of the exponential tail. However, we note that

Rho et al. arrived at satisfactory model fits of their near-infrared

nebular spectra assuming that MNi=0.084Me, which is

consistent with the SN 1987A-based value. The uncertainty in

MNi for SN 2017eaw, based on our bolometric light curve, is

∼±0.03Me. An estimate of ∼0.07–0.08Me is consistent with

the trend that Valenti et al. (2016) (their Figure 22) found for

SNe II, given MV=−17.13 at day 50 for SN 2017eaw.

6.5. Spectral Analysis

We compared our spectra of SN 2017eaw with the template

spectra in both SNID (Blondin & Tonry 2007) and GELATO

(Harutyunyan et al. 2008). With SNID the SN 2017eaw spectra

compared best with other SNe II-P, such as SN 2006bp, SN

1999em, SN 2005dz, SN 2004fx, SN 2004et, and (at later

times) even with SN 1987A. For the GELATO comparison the

best matches were with SN 1999gi and, most often, SN 2004et.

Figure 12. Bolometric light curve of SN 2017eaw, which we adopt as the
average (solid curve) of various methods: The blackbody-fitting routine
superbol (Nicholl 2018; Nic18, purple open squares) and bolometric
corrections from Bersten & Hamuy (2009; Ber09, light blue stars), Lyman et al.
(2014; Lym14, dark green crosses), Pejcha & Prieto (2015; PP15, green open
triangles), and Maguire et al. (2010; Mag10, cyan open circles for SN 2004et
and magenta open pentagons for SN 1999em, both relative to the R band). The
hashed region indicates the conservative 1σ uncertainty in our adopted curve.
Also shown for comparison are bolometric light curves for SN 2004et from
Maguire et al. (2010; red short-dashed curve, adjusted to our assumed distance
from their adopted distance of 5.9±0.4 Mpc) and Faran et al. (2018; Far18,
orange long-dashed curve, adjusted from their adopted distance of
4.81±0.16 Mpc), and of SN 1987A (Suntzeff & Bouchet 1990; Sun90, dark
blue short-dashed–dotted curve). Also indicated is the expected decline rate for
the light-curve tail if it is powered primarily by the decay of 56Co (long-
dashed–dotted curve).
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At very early times (�10 days) some SNe II-P have shown
“flash” features in their spectra indicative of an explosion
within dense CSM. The features arise from recombination of
the CSM ionized by the UV/X-ray flash from shock breakout
(Khazov et al. 2016).(We mention that Kochanek 2019,
however, has explained the flash spectral features via a
collision interface formed between the regular stellar winds
in a binary system.) In Figure 13 we show our SN 2017eaw
spectra within the first nine days or so after explosion. We have
also included here the earliest available spectrum of SN
2017eaw of which we are aware, obtained byXiang et al.
(2017)30 and shown by Rui et al. (2019).Xiaofeng Wang
graciously permitted us to present this spectrum in the figure.
We compare these spectra with some examples that have
exhibited prominent flash features,31 the SNe II PTF12krf and
PTF11iqb (Khazov et al. 2016; also Smith et al. 2015), as well
as the SN IIb iPTF13ast (SN 2013cu; Gal-Yam et al. 2014;
Khazov et al. 2016), which is among the first known instances
of this phenomenon.The spectra of PTF12krf, PTF11iqb, and
iPTF13ast are from days 4 1

1

-
+ , 2.1 1.1

0

-
+ , and 3 0.2

0

-
+ , respectively.

Various emission features—Hα, Hβ, HeII λ4686, and an NIII
λλ4634, 4640/CIII λλ4647, 4650, 4651 blend—are all strong
in the early spectra of the latter three SNe. However, for
SN 2017eaw there may be only quite weak indications of
these features in the spectrum by Xiang et al.and in our
earliest MMT spectrum from day 5.2, in particular at Hα.

Rui et al. (2019) argued that in the day 2.6 spectrum the weak
Hα feature is indicative of slow-moving (163 km s−1

) CSM,
although we see no evidence of this in our day 5.2 spectrum,
and instead only weak Hα near zero rest-frame velocity. By the
day 7.3 spectrum any traces of these features have vanished.
It is possible therefore that either spectra were not obtained

sufficiently early and the features were missed, or these flash
features were just intrinsically weaker for SN 2017eaw than for
the notable cases that do show them. If the latter is the case, then,
as noted earlier, an implication is thatany CSM in immediate
proximity to SN 2017eaw may have been too dense and massive
for these features to form. Alternatively, narrow lines might have
been hidden if the CSM was asymmetric, as in the case of
PTF11iqb, which had early SNIIn-like signatures present and an
enhanced early luminosity peak that declined to a plateau (Smith
et al. 2015). In order to explain the rapid disappearance of the
narrow lines, while the excess CSM interaction luminosity
remained, Smith et al. (2015) proposed that a highly asymmetric
CSM geometry, such as a disk, could allow the opaque SN ejecta
to envelop the CSM interaction occurring in a disk. In that
scenario, CSM interaction would continue to generate luminosity,
which would heat the SN ejecta and produce a larger emergent
luminosity, but it would be buried inside the opaque ejecta, so
that the narrow lines are hidden from view. This type of
asymmetric CSM interaction might also help to explain the lack
of narrow lines during the initial peak of SN 2017eaw.
The primary absorption features in the early-time spectra are

the Balmer lines, HeI λ5876, the strong NaID line (discussed
above), and what is likely interstellar CaII, also due to the
Galactic foreground. The Balmer profiles continue to develop
their characteristic P-Cygni-like appearance over time, and HeI
is no longer visible by or before day 39. It is possible that in our
moderate-resolution data we see (weakly) the “Cachito” feature
discussed by Gutiérrez et al. (2017) to the blue side of Hα.
However, the feature as observed in SN 2017eaw is comprised
not of one wide absorption, but of two narrow (FWHM≈
100 km s−1

) absorption minima that evolve very little over time,
with respect to both profile substructure and wavelength
position. The position overlaps with a grouping of O2 absorption
lines centered near 6280Å, so some telluric contamination is
possible. If the feature is associated with Hα, then its velocity in
the earliest spectrum is −13,300 km s−1. The feature is not
discernible in our spectra beyond day 47.9. We note that this
feature does bear striking resemblance to persistent absorptions
blueshifted with respect to Hα that are sometimes observed in
SNeIIb (Milisavljevic et al. 2013). The origin of these high-
velocity features is unclear, and explanations involving ejecta
asymmetry, a mixture with FeII or SiII lines, and interaction
with CSM have been put forward (Baron et al. 1994; Zhang &
Wang 1996; James & Baron 2010; Milisavljevic et al. 2013).
At later times during the plateau phase, the spectra evolved

gradually. We show an example spectrum in Figure 14 from
day 46.3. When we compare this spectrum using SNID we
obtain a best match with SN 2004et (Sahu et al. 2006). Using
GELATO the best comparison is with SN 1999gi (Leonard et al.
2002b). We show the spectra for these two other SNeII-P in
the figure for comparison.32 The comparison shows that,
spectroscopically, SN 2017eaw is evidently quite normal. We
have indicated various features in these spectra (including a
few telluric lines primarily in the spectrum of SN 2004et),

Figure 13. Spectra of SN 2017eaw in the first ∼9 days after explosion. For
comparison we show the spectra of three SNeII that showed flash-ionization
features, indicative of the presence of CSM—PTF12krf (Khazov et al. 2016),
PTF11iqb (Smith et al. 2015; Khazov et al. 2016), and iPTF13ast (SN 2013cu;
Gal-Yam et al. 2014; Khazov et al. 2016). The ages, in days, ofthe SN
2017eaw spectra are labeled.The spectra of PTF12krf, PTF11iqb, and

iPTF13ast are from days 4 1

1

-
+ , 2.1 1.1

0

-
+ , and 3 0.2

0

-
+ , respectively. Various emission

and absorption features are indicated.

30
Posted on the Transient Name Server,https://wis-tns.weizmann.ac.il/

object/2017eaw.
31

These spectra have been obtained from WISEReP,https://wiserep.
weizmann.ac.il/ (Yaron & Gal-Yam 2012).

32
Again, obtained from WISEReP.
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following Gutiérrez et al. (2017): the Balmer profiles, NaI,
CaII, and various metal lines of FeII, ScII, and blends. We
may also see evidence for the CI λ10691 line.

We measured the evolution of the expansion velocity of SN
2017eaw from our multi-epoch spectra, starting with our earliest
spectrum on day 5.2 through well off the plateau on day 151.9.
Velocities were estimated from the minimum of the absorption
features of theHα, HeI λ5876, and FeII λλ4924, 5018, 5169
lines. Multiple measurements were performed to estimate
uncertainties. See Figure 15. We compared the evolution of the
expansion velocity of SN 2017eaw to the sample of 96 SNe II
from Gutiérrez et al. (2017), as well as to other well-studied
SNe II, including SN 1999em(Leonard et al. 2002a),SN 1999gi
(Leonard et al. 2002b), SN 2004et(Sahu et al. 2006; Maguire
et al. 2010),and SN 2012aw (Bose et al. 2013).We also show
the trends in velocity evolution from Faran et al. (2014). The
expansion velocities of SN 2017eaw are generally within the
mean of all SNe II-P, although the expansion velocities from FeII
λ5169 are somewhat higher, particularly at the earliest epochs.

We can also analyze the spectra at ages that are among the latest
available (213.9, 245.9, and 415.2 days) in light of the modeling of
the nebular spectra of SN 2004et by Jerkstrand et al. (2012) at
comparable ages.33(These models were also applied to the
nebular spectra of SN 2012aw; Jerkstrand et al. 2014.) We
show these three observed spectra once again in Figures 16–18,
after dereddening them (see Section 3; assuming the reddening
law of Cardelli et al. 1989 with RV=3.1), along with the
model spectra34 for initial masses MZAMS=12, 15, and 19Me

at days 212, 250, and 400, respectively (a 19Me model on day
400 is not available).For each figure we have photometrically
scaled the model spectra to the observed one, via pysynphot,
using the light-curve data closest in time to the observed
spectrum on day 213.9; for the day 245.9 and day 415.2
spectra, we had to linearly extrapolate the light curves at V and
R, respectively. We especially focusin the figure on the
spectral region containing the NaID λλ5890, 5896 and [O I]
λλ6300, 6364 lines, whose strengths (as Jerkstrand et al. 2012
pointed out) are most influenced by the assumed progenitor
initial mass.One can see that the observed spectra at all three
epochs are best matched by the 15Me model, with the 12Me

model generally underpredicting and the 19Me model over-
predicting the line strengths (on days 213.9 and 245.9),
particularly for [O I]. In total, the implication of this
comparison is that the progenitor initial mass of SN 2017eaw
is closest to 15Me.

6.6. SN-based Distance Estimates

Primarily to provide a check on our TRGB distance estimate
to the host galaxy (see Section 4), we also estimated distances
to SN 2017eaw itself through the SCM (Hamuy & Pinto 2002;

Figure 14. Comparison of the day 46.3 spectrum of SN 2017eaw with spectra
of two SNeII-P, SN 2004et (Sahu et al. 2006), and SN 1999gi (Leonard et al.
2002b), at comparable ages during the plateau phase. Various spectral lines and
features are indicated. Telluric lines have not been removed from the spectrum
of SN 2004et, and may be weakly present in the spectrum of SN 2017eaw.

Figure 15. Evolution of the expansion velocity of SN 2017eaw. Top panel:
from Hα absorption, solid black points; data for SN 1999em (Leonard et al.
2002a, open blue triangles), SN 2012aw (Bose et al. 2013, open purple circles),
SN 2004et (Sahu et al. 2006, red crosses; Maguire et al. 2010, open red
diamonds), and the range of the sample of 96 SNe II-P from Gutiérrez et al.
(2017) (cyan error bars) shown for comparison. Bottom panel: from FeII line
absorption, solid green circles (λ4924), solid magenta pentagons (λ5018), and
solid black diamonds (λ5169); data for SN 1999em (Leonard et al. 2002a,
λ5169, open blue diamonds), SN 1999gi (Leonard et al. 2002b, photospheric
velocity, dark green long-dashed line), SN 2012aw (Bose et al. 2013, all
spectral lines, open purple stars), SN 2004et (Sahu et al. 2006, λ4924, red open
circles, λ5018, red open pentagons, λ5169, red open diamonds; Maguire et al.
2010, average, red open squares), and the sample of Gutiérrez et al. (2017)
(λ4924, cyan open circles, λ5018, cyan open pentagons, λ5169, cyan open
diamonds). The measurements for SN 2017eaw from HeI λ5876 absorption
are shown as maroon solid triangles. Also shown in both panels are the trends
for SNe II-P found by Faran et al. (2014) (orange short-dashed line). The SN
2017eaw data behind this figure are available as a machine-readable table.

33
We do not analyze the 482.1 day spectrum, since the closest modelin time

is from day 451.
34

Obtained fromhttps://star.pst.qub.ac.uk/webdav/public/ajerkstrand/Models/
Jerkstrand+2014/.
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Nugent et al. 2006) and the EPM (Kirshner & Kwan 1974;

Eastman & Kirshner 1989; Schmidt et al. 1992). To compute the

SCM distance, we closely followed the technique of Polshaw et al.

(2015) and input the values directly drawn from our data into their

Equation (1): the I brightness on day 50, I50=12.29±0.01mag;
the extinction at I to SN 2017eaw, AI=0.517mag (with a very

conservative uncertainty of 0.1mag); and the expansion velocity

on day 50, v50= 4697±103 km s−1, which we estimated

from the FeII λ5169 absorption line in our spectrum on day

50.3 (∼day 50; see Figure 15). For all other constants and their

uncertainties, we adopted the values provided by Polshaw et al.

Our resulting distance estimate from SCM is then 7.32±
0.60Mpc.

For the EPM distance estimate, we only considered spectral

epochs earlier than 60 days (i.e., 21.3, 40.8, 46.7, and 50.2

days) after explosion that included the Fe II λ5169 absorption

feature. We adopted the velocities measured from that spectral

feature as representing the photospheric velocity, vphot. We

considered the photometry data of the SN that were as

contemporaneous as possible with the spectral epochs. We

assumed our estimate of the extinction to the SN (Section 3).

We also adopted the dilution factors from Dessart & Hillier

(2005). (We note that dilution factors have also been generated

more recently by Vogl et al. 2019 and are in good agreement

with those of Dessart & Hillier.) To implement the EPM to

estimate the theoretical angular size, θ, of the photosphere, we

closely followed the procedure detailed by Leonard et al.

(2002b). We carried out this procedure for each of three

bandpass combinations (BV, BVI, and VI) to determine the

photospheric temperatures (T) and appropriate dilution factors

(ζ); see Table 4.
To estimate the distances using each of the bandpass

combinations, we fixed the explosion date (t0) to be our

adopted value, JD 2,457,885.7 (see Section 6.1). We feel

confident that we can do this, given how well the rise time of

the SN appears to be constrained. We then merely measured the

slope of the best-fitting line (via weighted least-squares)

describing the relation between the day since explosion and

the ratio θ/vphot for each of the three combinations; see

Figure 19. Uncertainties in each of the three slopes were

established by determining the 1σ dispersion in model slopes

generated from 1000 simulated data sets characterized by the

parameter values and uncertainties in Table 4, together with the

uncertainty in the assumed reddening and a flat likelihood of

±1day uncertainty around t0 (which contributed ∼0.25Mpc to

the total uncertainty). We then calculated the unweighted mean

of the three slopes (which were all quite similar in value,

∼7.3 Mpc, as can be seen in the figure) as our final EPM

distance estimate. Since the three distance values are not

independent, we conservatively report the final uncertainty as

the sum in quadrature of the largest uncertainty in an individual

distance and the 1σ dispersion in the three individual distances.

Our distance estimate from EPM is then 7.27±0.42Mpc.
We note that both of the uncertainties given for the SCM and

EPM estimates are purely statistical in nature and do not reflect

potential systematics inherent in both techniques. Nevertheless,

these estimates appear to corroborate the TRGB distance we

have estimated for NGC 6946 (see Section 4).

Figure 16. Lick/Kast low-resolution spectrum of SN 2017eaw obtained on day
213.9 (black curve); see Section 2.2. The spectrum has been dereddened
following our assumed value for the reddening to the SN (Section 3). We
compare the SN 2017eaw spectrum with model spectraon day 212 from
Jerkstrand et al. (2012), assuming a progenitor at MZAMS=12Me (blue
curve), 15 Me (red curve), and 19 Me (green curve).The model spectra have
been scaled in flux to the observed spectrum. Various spectral lines and
features are indicated. The inset in the figure focuses on the spectral region
containing the NaID λλ5890, 5896 and [O I] λλ6300, 6364 lines.

Figure 17. Lick/Kast low-resolution spectrum of SN 2017eaw obtained on day
245.9 (black curve); see Section 2.2. The spectrum has been dereddened
following our assumed value for the reddening to the SN (Section 3). We
compare the SN 2017eaw spectrum with model spectraon day 249 from
Jerkstrand et al. (2012), assuming a progenitor at MZAMS=12Me (blue
curve), 15 Me (red curve), and 19 Me (green curve).The model spectra have
been scaled in flux to the observed spectrum. Similar spectral features are seen
as in Figure 16. The inset in the figure focuses on the spectral region containing
the NaID λλ5890, 5896 and [O I] λλ6300, 6364 lines.
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7. The SN Progenitor

7.1. Identification of the Progenitor

We (Van Dyk et al. 2017) were the first initially to identify a

stellar object in the optical/near-infrared with characteristics

indicative of an RSG and not far from the nominal position of

the SN in a ground-based image, when matched to the pre-SN

HST data. However, we noted then that high-spatial-resolution

imaging of the SN was required to confirm this candidate. We

astrometrically registered our 2017 WFC3 ToO image mosaic

at F814W to the 2004 ACS/WFC F814W exposure (the 2004

image was publicly available in 2017 May, whereas the 2016

F814W data were not). Using 25 stars in common between the

two data sets, we registered the images to an rms uncertainty of

0.37 ACS/WFC pixel (18.5 mas). The difference between the

transformed centroid of the SN and the centroid of the

candidate object is 0.31 pixel, within the 1σ astrometric
uncertainty. We therefore consider it highly likely that this
object is the progenitor of SN 2017eaw. We show the ACS and
WFC3 images at the same scale and orientation in Figure 20.
The progenitor candidate is indicated in the figure. We note
thatJohnson et al. (2018), Kilpatrick & Foley (2018), and Rui
et al. (2019) also identified this object as the SN progenitor in
their studies.
The pre-SN HST images obtained from the HST archive had

been pre-processed with the standard pipeline at STScI. We
measured photometry from all of the pre-SN HST images with
Dolphot. First, we processed the individual CTE-corrected
frames through AstroDrizzle to flag cosmic-ray hits. We
then set the Dolphot parameters FitSky=3, RAper=8, and
InterpPSFlib=1 and used the default TinyTim model PSFs.
We list the resulting (Vegamag) photometry in Table 5. The
progenitor candidate was detected in all bands, except F658N,
for which we provide a 3σ upper limit estimate of the star’s
brightness.Our measurements in these bands roughly agree
with those presented by Kilpatrick & Foley (2018) and Rui
et al. (2019), although both of these studies included a

Figure 18. MMT moderate-resolution spectrum of SN 2017eaw obtained on
day 415.2 (black curve); see Section 2.2. The spectrum has been dereddened
following our assumed value for the reddening to the SN (Section 3). This
spectrum only covers the region containing the NaID λλ5890, 5896 and [O I]
λλ6300, 6364 lines (plus Hα). We compare the SN 2017eaw spectrum with
model spectra generated by Jerkstrand et al. (2012) atprogenitor mass
MZAMS=12 Me (blue curve) and 15 Me (red curve) on day 400. (No model is
available at MZAMS=19 Me for this epoch.)The model spectra have been
scaled in flux to the observed spectrum. Various spectral lines and features are
indicated.

Figure 19. EPM fitting for SN 2017eaw for three combinations of bandpasses,
BV (red open squares, short-dashed line), BVI (green open triangles, long-
dashed line), and VI (blue open circles, short-dashed–dotted line). We have
fixed the explosion time, t0, to our adopted date of JD 2,457,885.7
(Section 6.1). See text for further details.

Table 4

Quantities Derived from the EPM Analysis of SN 2017eawa

Age θBV TBV ζBV θBVI TBVI ζBVI θVI TVI ζVI
(days) (108 km Mpc−1

) (K) (108 km Mpc−1
) (K) (108 km Mpc−1

) (K)

21.3 20.67(0.40) 7473(189) 0.716(0.021) 21.47(0.40) 8041(96) 0.595(0.005) 21.52(0.36) 8578(133) 0.543(0.003)

40.3 26.27(3.33) 5032(627) 1.256(0.243) 25.55(2.71) 6056(339) 0.774(0.051) 24.84(0.88) 7227(352) 0.594(0.021)

46.3 26.54(0.84) 4818(123) 1.350(0.058) 26.22(0.92) 5730(80) 0.828(0.015) 26.04(0.56) 6739(163) 0.629(0.014)

50.3 26.94(0.52) 4684(73) 1.416(0.038) 26.51(0.55) 5582(47) 0.857(0.010) 26.40(0.27) 6573(76) 0.643(0.007)

Note.
a
Uncertainties are in parentheses.
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Figure 20. (a) Portion of the HST WFC3/UVIS image mosaic of SN 2017eaw in F814W obtained on 2017 May 29; the SN is the brightest object in the image.
(b) Portion of the pre-explosion ACS/WFC image mosaic in F606W from 2016 October 26, with the likely candidate for the SN progenitor indicated with tick marks.
(c) Same as for (b), but at F814W. (d) Same as for (b), but for WFC3/IR F110W from 2016 February 9. (e) Same as for (b), but for WFC3/IR F160W from 2016
October 24. (f) Same as for (b), but in the Spitzer IRAC 3.6 μm band during the “Warm” (post-cryogenic)Mission (data from 2009 August 6 through 2017 March 31).
All panels are shown to the same scale and orientation. North is up and east is to the left.
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measurement in the F164N band from HST program GO-
14786, whereas we considered that this would contribute little
additional insight into the progenitor SED, since the bandpass
of the F164N filter is encompassed by that of F160W, and
therefore did not include it. Asboth Kilpatrick & Foley
(2018)and Rui et al. (2019) noted, the brightness of the
progenitor appears to have dimmed somewhat at F814W
between 2004 and 2016.

Our progenitor detections in the HST data are consistent with
the conservative upper limit (R>22.4 mag) that Steele &
Newsam (2017) placed on detection.

7.2. Analysis of the Spitzer Data

As Khan (2017) pointed out, the progenitor candidate is
clearly detected at 3.6 and 4.5 μm; see Figure 20. We know that
RSGs, particularly of high luminosity, experience variability in
the optical (e.g., Soraisam et al. 2018), although Johnson et al.
(2018) appeared to have ruled out significant variability at the
5%–10% level for the SN 2017eaw progenitor within the
decade prior to explosion.Tinyanont et al. (2019) have also
ruled out any variability at Ks greater than 6% lasting longer
than 200 days from 1 yr to 1 day before explosion. Given
thelarge amount of available Spitzer data, we were able to
explore possible variability of the progenitor at 3.6 and 4.5 μm,
during both the cryogenic and “Warm” (post-cryogenic)
missions. We note that Kilpatrick & Foley (2018) performed
a similar analysis. For each of the observation dates listed in
Table 3 we analyzed the Spitzer individual artifact-corrected
basic calibrated data (cBCDs) with MOPEX and APEX

(Makovoz & Khan 2005; Makovoz & Marleau 2005; Makovoz
et al. 2006). We performed point-response-function (PRF)
fitting photometry with the APEX User List Multiframe
module, forcing the model PRF to find and fit the progenitor
at its absolute position.In addition to the progenitor, we also
forced the PRF fitting on two objects of similar brightness, both
southwest of the progenitor, one at 3 5 (it can be seen in
Figure 20(f)) and the other at 13 2.

To successfully avoid oversubtracting the PRF from the
progenitorand the two comparison objects against the complex
galactic background, within the Extract Med Filter module of

APEX we adjusted (decreased) the values of Window X,

Window Y, and Outliers per Window from the default values

and visually inspected the residual image created with the task

APEX_QA.The photometry was executed in exactly the same

way for all three objects. For each epoch we created with

MOPEX an array-location-dependent photometric correction

mosaic for each of the two bands, the correction factors from

which we applied to the photometry. (This correction is very

close to unity, in general.) The photometry was further

aperture- and pixel-phase-corrected35; the progenitor photo-

metry was further color-corrected36 assuming a 3500 K black-
body appropriate for an RSG(this correction was also very
close to unity).
We show the multi-epoch photometry at 3.6 and 4.5 μmfor

all three objects in Figure 21.One can readily see that

the scatter in the data points for all three objects far exceeds

the formal APEX uncertainties, and the scatter may, in fact, be

somewhat correlated for all three, indicating that the photo-

metry of objects at this brightness level in the Spitzer data may

be dependent both on the image quality and on the photometric

extraction technique. Although the objects were formally

detected at an appreciable S/N in the majority of epochs in

both bands, the objects, including the progenitor, are still quite

faint relative to the background and are in close proximity to

brighter objects; assessing the degree of oversubtraction or

undersubtraction of the PRF model was therefore quite

Table 5

Photometry of the SN 2017eaw Progenitor

Instrument Band Obs.Date Magnitude

HST ACS/WFC F606W 2016 Oct 26 26.40(05)

HST ACS/WFC F658N 2004 Jul 29 >24.6

HST ACS/WFC F814W 2004 Jul 29 22.60(04)

HST ACS/WFC F814W 2016 Oct 26 22.87(01)

HST WFC3/IR F110W 2016 Feb 9 20.32(01)

HST WFC3/IR F128N 2016 Feb 9 19.69(02)

HST WFC3/IR F160W 2016 Oct 24 19.36(01)

Spitzer IRAC 3.6 μm 2015 Dec 23–2017 Mar 31a 18.01(03)

Spitzer IRAC 4.5 μm 2015 Dec 23–2017 Mar 31a 17.80(04)

Spitzer IRAC 5.8 μm 2004 Jun 10–2008 Jul 18a >16.15

Spitzer IRAC 8.0 μm 2004 Jun 10–2008 Jan 27a >15.47

Spitzer MIPS 24 μm 2004 Jul 9–2004 Jul 11a >10.39

Note.
a
Consists of a coaddition of data obtained in this band during the indicated

date range.

(This table is available in its entirety in machine-readable form.)

Figure 21. Apparent brightness of the SN 2017eaw progenitor in the Spitzer

(a) 3.6 μm (open triangles) and (b) 4.5 μm (open squares) bands over ∼12.9 yr
prior to explosion.We also show measurements for two objects in the Spitzer

data with comparable brightness in the vicinity of the progenitor, one at 3 5
(open cyan circles) and the other 13 2 (magenta crosses), both to the southwest
of the progenitor. A machine-readable version of the data behind this figure is
available.

35
http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/

iracinstrumenthandbook/79/#_Toc410728413, Table C.1.
36

http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/18/#_Toc410728306, Table 4.4.
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subjective, and the formal photometric uncertainties almost
certainly underrepresent the actual uncertainties.

From this analysis we can rule out any detectable variability
in the progenitor at these wavelengths at the ∼0.5–0.6 mag
level over the nearly 13 yr prior to explosion. One could
potentially better investigate the existence of any variability
below this level in the two Spitzer bands through the template-
subtraction technique. One would have to wait, though,
ostensibly until the SN has faded sufficiently at 3.6 and
4.5 μm to provide an adequate template. As of the end of 2018,
SN 2017eaw is still quite bright as seen by Spitzer (Tinyanont
et al. 2019), and given the limited lifetime of the Spitzer
mission, it may not be possible to acquire the desired images in
time. We may need to turn to the James Webb Space Telescope
(JWST) to obtain the templates, degrading the resolution to
match the existing Spitzer data before subtraction.

7.3. Modeling of the Progenitor SED

To attempt to mitigate against the existence of any variability of
the progenitor, we considered only those Spitzer measurements at
3.6 and 4.5μm—that is, those from 2015 December through 2017
March—that bracket the HST progenitor brightness from 2016
February through October. We note how fortunate we are in this
case to have as much temporal and wavelength coverage, both to
be able to so exquisitely characterize the progenitor SED and also
to minimize the impact of variability (see, e.g., Soraisam et al.
2018). This is usually not the case when determining the nature of
detected SN progenitors!Although the profile of the progenitor
could also include other, fainter objects within it (and we will not
be able to assess this until after the SN has long since vanished), we
possessed far less trepidation over including the Spitzer data in the
progenitor SED than did Rui et al. (2019), since the object’s
FWHM was essentially the same as that of brighter stars in the
mosaics (∼2.9 pixels) and we produced residual images during
the PRF fitting, with the progenitor cleanly subtracted away. We
computed an uncertainty-weighted mean of those Spitzer measure-
ments in each band. The star is not detected at longer Spitzer
wavelengths (4.5, 8.0, and 24μm) as a result of the relative lack of
sensitivity in those bands, and therefore we estimated upper limits
to its detection. We provide the final photometry of the progenitor,
adopting the IRAC and MIPS 24μm zero-points, in Table 5.

Next, we corrected the photometry presented in Table 5 for
Galactic foreground reddening (the reddening law adopted for
the Spitzer data is from Indebetouw et al. (2005), assuming the
value of AK for the SN from Schlafly & Finkbeiner 2011) and
then adjusted the corrected photometry by our assumed
distance modulus.We have assumed that the interstellar
reddening toward the progenitor is the same as toward the
SN. We show the resulting SED for the progenitor in Figure 22.
We found that this SED is totally inconsistent with a cool
supergiant photosphere at any effective temperature, Teff. In
particular, excess flux in the infrared clearly exists, as
represented by the two shortest wavelength Spitzer bands,
relative to a bare photosphere. We concluded that the SED had
to be fit by models of RSGs that includedadditional
circumstellar dust immediately surrounding the star.

We therefore fit the observed SED of the progenitor with
O-rich models from the Grid of RSG and AGB Models
(GRAMS; Sargent et al. 2011; Srinivasan et al. 2011). GRAMS
is a precomputed grid of radiative-transfer models for
circumstellar dust shells around hydrostatic photosphere
models with two fixed prescriptions for the dust properties,

one each for O-rich and C-rich dust. The radiative transfer for

the GRAMS models is performed using the 2DUST code (Ueta

& Meixner 2003).
For these RSG models we input a PHOENIX model

photosphere (Kučinskas et al. 2005), around which varying

amounts of silicate dust (Ossenkopf et al. 1992) are placed in

spherically symmetric shells.Both Kilpatrick & Foley (2018)

and Rui et al. (2019) employed MARCS model atmospheres

(Gustafsson et al. 2008) in their modeling, and Kilpatrick &

Foley used the circumstellar dust prescriptions from Kochanek

et al. (2012), which assume dust according to Draine & Lee

(1984) consistent with interstellar properties. We computed

Figure 22. Reddening-corrected observed SED for the SN 2017eaw progenitor
(solid points and upper limits). The measurements are from pre-explosion HST

and Spitzer images (see Table 5). The solid curves are the GRAMS models
(Sargent et al. 2011; Srinivasan et al. 2011), with the black curve being the
best-fit model, and the gray curves being the family of 100 models with
acceptable fit quality, when Teff is allowed to be a free parameter (top panel)
and when it is constrained to the range 3300–3600 K (bottom panel). The
dashed curve in both panels is the input RSG model photosphere. In both
panels we indicate the best-fit luminosity, DPR, Teff, and τV.
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two sets of fits: one for which Teff was allowed to attain any
value available in the grid, and another for which Teff was
limited to the range 3300–3600 K. The results for the
unconstrained and constrained cases are shown in Figure 22
in thetop and bottom panels, respectively. The fit procedure
was as follows. We computed a χ2 per data point (χ2 divided
by the number of bands with valid flux measurements) for
every O-rich model in the grid, using the model with the lowest
value to obtain the best-fit bolometric luminosity, Lbol, and dust
production rate (DPR) or, equivalently, the optical depth, τV.
Data with upper limits were also included in the fit, following
the method described by Sawicki (2012). We set the
uncertainty in each parameter to the median absolute deviation
from the median of that parameter, computed using the 100
models with the lowest χ2 per point (gray curves in Figure 22).
The uncertainty in distance is incorporated into the uncertain-
ties in Lbol and DPR.

The best-fit temperature for the case where Teff was a free
parameter is 2500 K. For this case, the best-fit luminosity and
DPR are (1.2±0.2)×105 Le and (1.1±0.1)×10−8Me yr−1,
respectively. The fit tends to follow the observed data points
reasonably well, although with a somewhat irregularly shaped
model SED. The luminosity is effectively the same in the case in
which Teff was constrained. In this case, the best-fit Teff is a
somewhat warmer 3300 K, and the DPR is (2.4±0.3)×
10−8Me yr−1. With the constrained, somewhat higher Teff, the
overall fit is not quite as good as the unconstrained fit. In both
cases the fits are significantly driven by the two Spitzer data
points and far less so by the HST optical data.The luminosity of
the progenitor RSG is quite high based on this modeling;
however, even simply “eyeballing” the absolute brightness of the
star at K from the dereddened observed SED and applying the
bolometric correction for that single band from Levesque et al.
(2005), one would already arrive at a luminosity of ∼105 Le,
indicating that a high luminosity is certainly plausible.

For both best fits the flux at bluer wavelengths is redistributed
into the mid-infrared by the presence of the circumstellar dust.
The upper limits at the longer Spitzer wavelength, particularly at
24μm, provide comparatively poorer constraints on this mid-
infrared emission and the overall model fit. It is interesting to note
that in both cases, constrained and unconstrained Teff, the best fits
tend toward the lowest possible temperatures. Through their
modeling, Kilpatrick & Foley (2018) also found a fit at
Teff≈3350K(Rui et al. 2019 arrived at a somewhat warmer
∼3550 K). These temperatures are at the low end of the RSG Teff
scale of Levesque et al. (2005) and much cooler than the scale of
Davies et al. (2013). The best-fit stellar radii in the modeling are
1828 and 1049 Re for the unconstrained and constrained Teff,
respectively. This radius estimate for the constrained case is
essentially the same as the effective radius we compute from the
best-fit luminosity and temperature (see Section 7.4). For both
cases the corresponding inner radius of the dust shell is at 15R

å

and the outer radius is 104 times the inner radius.
It should be mentioned that in the current version of the

GRAMS model grid the luminosity resolution is limited at the
highest luminosities. Additionally, the fractional uncertainty in
the luminosity, according to the suite of model fits, is about
17%. The V optical depth is τV=1.1 (AV=1.2 mag) for
the unconstrained fit and a significantly higher τV=4.3
(AV=4.7 mag) for the constrained fit. It is not surprising that
the warmer models would require more circumstellar dust to

achieve a good fit. We show in each panel of Figure 22 the
best-fit Lbol, Teff, DPR, and τV corresponding to this DPR.
We note that the PHOENIX photospheric models used here

are at solar metallicity, whereas the SN 2017eaw site is likely at
subsolar metallicity (see Section 5). However, we do not consider
this to be an issue since, while metallicity will affect the UV/
optical/near-infrared photospheric spectrum and, for a given
luminosity, the stellar parameters, such as mass and surface
gravity (log g), for a dusty source we should not be able to
distinguish between solar and subsolar metallicity models
based on photometry alone. Furthermore, the DPR is directly
proportional to the assumed expansion speed in the shell.
GRAMS models are computed for vexp=10 km s−1. However,
expansion velocities measured for Galactic RSGs are larger than
this value, and can be as high as ∼45 km s−1

(De Beck et al.
2010). The expansion velocity and therefore the DPR may
depend on metallicity, but this dependence is not well calibrated
and nonetheless appears to be quite weak (e.g., van Loon 2006).
Note that this modeling of the progenitor SED does not depend

on invoking application of bolometric corrections to the observed
broadband measurements, which for RSGs can be plagued by
uncertainties as a result of both intrinsic photometric variability
and changes in spectral type at the latest evolutionary phases
(Soraisam et al. 2018; Davies & Beasor 2018).

7.4. Initial Mass of the Progenitor

Finally, given Teff and Lbol from our modeling in the previous
section, we can now place the SN 2017eaw progenitor in a
Hertzsprung–Russell (H-R) diagram and make comparisons with
theoretical stellar evolutionary tracks for massive stars, in order
to estimate the initial mass, Mini, of the star. We indicate the SN

Figure 23. Hertzsprung–Russell diagram showing the locus of the SN
2017eaw progenitor (solid point). Shown for comparison are single-star
evolutionary tracks from the Geneva group at subsolar metallicity Z=0.006
(with rotation at Ω/Ωcrit=0.3; Georgy et al. 2013)for 12 Me (blue short-
dashed line) and 15Me (red long-dashed line), and from PARSEC (Bressan
et al. 2012; Chen et al. 2015) at Z=0.010for 18 Me (dark green dotted line).
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progenitor in the H-R diagram in Figure 23. The uncertainties in
both Teff and Lbol shown in the figure arise from the theoretical
modeling of the star’s SED in Section 7.3.For comparison we
show theoretical single massive-star evolutionary tracks from the
Geneva group (Georgy et al. 2013) at subsolar metallicity
Z=0.006 for 12 and 15Me, with rotation at Ω/Ωcrit=0.3. We
also show a PARSEC track (Bressan et al. 2012; Chen et al.
2015) at Z=0.010 for 18Me (subsolar Geneva tracks for
M>15Me have not been published).

 None of these tracks provides a particularly satisfactory
comparison with the locus for the progenitor. The tracks all
appear to terminate (at the initiation of carbon burning for
PARSEC, at the end of C burning for Geneva) at warmer Teff
than what we infer for the star itself. Conversely, the results
from our modeling of the progenitor SED in Section 7.3 might
also be too cool, although, as mentioned before, to within the
uncertainties of the modeling the trend of the best fits is
definitely toward cooler Teff. Nevertheless, as one can see, Teff
and Lbol for the progenitor aremost consistent, to within the1σ
uncertainties, with theendpoint of the RSG phase for the
15Me track. At the 1σ levelthe tracks withMini=12Me and
withMini=18Me appear to be ruled out. We therefore
conclude that the SN 2017eaw progenitorlikely arose from a
star with Mini≈15Me. Note that this is larger than the 13Me

that Van Dyk et al. (2017) estimated, based on a cursory
comparison with an RSG photospheric SED, without the
inclusion of circumstellar dust, and also assuming a shorter
distance to the host galaxy. Assuming Teff=3300 K, with Lbol
we further estimate that the effective radius of the RSG
progenitor within approximately a year of explosion was
Reff=1046±90 Re. This radius, for instance, is larger than
what Dessart et al. (2013) derived for the radius of the Type II-
P SN 1999em.

8. Discussion and Conclusions

We have presented extensive optical photometric and
spectroscopic monitoring of SN 2017eaw from about 4 to
482 days after explosion. We also independently confirmed the
TRGB distance estimate to the host galaxy, NGC 6946,
of7.73±0.78 Mpc (see also Murphy et al. 2018; Anand et al.
2018).This distance is corroborated by both our SCM and
EPM distance estimates based on SN 2017eaw—7.32±0.60
and 7.27±0.42Mpc, respectively.Eldridge & Xiao (2019)
have also endorsed this larger distance to NGC 6946. The
extinction to SN 2017eaw appears to be primarily the result of
appreciable Galactic foreground dust, consistent with expecta-
tions for the host galaxy being at low Galactic latitude.SN
2017eaw is a normal SN II-P, possibly intermediate in both
photometric and spectral properties between other SNe II-P,
such as SN 1999em, SN 1999gi, and SN 2012aw, and SN
2004et, which also occurred in NGC 6946. We estimated that a
nickel massMNi≈0.07Me was synthesized in the explosion.
Also, the metallicity at the SN site is likely to be subsolar.

We concluded that SN 2017eaw arose from a luminous
(Lbol≈105.1 Le), massive, and cool (Teff≈2500–3300 K)
RSG. The progenitor was surrounded by extended CSM with
substantial dust that was established by mass loss during
previous stages of stellar evolution, especially during the RSG
phase. From detailed, realistic modeling of the observed SED
for the progenitor star in 2016 (derived from combined HST
and Spitzer data) and comparison of the inferred location of the
progenitor in the H-R diagram with recent, state-of-the-art

theoretical massive-star evolutionary tracks, we found that the

staris consistent with an initial mass of 15Me.
Such a high mass for the progenitor is also supported by

comparison of the late-time spectra of SN 2017eaw with

existing models produced to analyze SN 2004et (Jerkstrand

et al. 2012): these nebular spectra are more consistent with the

model for an Mini=15Me progenitor than an 12Me one,

whereas a model with even higher mass, at 19Me, also appears

to be ruled out.We note that both Kilpatrick & Foley (2018)

and Rui et al. (2019) concluded that the progenitor initial mass

was nearer 12–13Me, although both studies had assumed a

shorter distance to the host galaxy.
This case of SN 2017eaw represents an unprecedented

photometric characterization, in terms of wavelength coverage,

for the progenitor of an SN of any type, especially at this

distance. Such coverage has allowed us to model the progenitor

SED with the sort of detail normally reserved for RSGs within

(for example) the Local Group. It is especially rare to have data

points in the Spitzer bands. It is by virtue of the star’s high

luminosity and infrared excess that this was possible. If we had

had, as is usually the situation, only HST F606W and F814W

data available, we would have attempted to fit a 3300 K model

atmosphere with spherical geometry for a 15Me star from (for

example) MARCS (Gustafsson et al. 2008)—without any

knowledge of the need for additional CSM extinction—which

would have overpredicted somewhat the brightness at F606W.

(No atmosphere models at a cooler 3200 K are available from

MARCS for a 15Me star, only for a 5Me one.) We would

have then assumed the bolometric correction for this temper-

ature at solar metallicity from Levesque et al. (2005;

BCV=−3.66 mag) and applied that to the V magnitude

inferred from the model 3300 K atmosphere—25.90 mag,

when fixing the model SED to the dereddened observed

F814W magnitude. This would have resulted in a lower overall

luminosity Lbol≈104.8 Le. Assuming the lower-metallicity

BCV from Levesque et al. (2006; −3.26 mag), the luminosity

would be an even lower Lbol≈104.6 Le. Even assuming the

BC to F814W from Davies & Beasor (2018; 0.0 mag), we

would have arrived at Lbol≈104.7 Le. All of these would have

greatly underestimated the actual likely Lbol of the progenitor,

and subsequently its initial mass: based on the Geneva models

alone, Mini would only be ∼10–11Me. This should provide a

cautionary tale with respect to deriving the initial masses of SN

II-P RSG progenitors, especially of nominally higher lumin-

osity, based on the typically limited data sets available so far

for most cases. It would, of course, be inordinately valuable to

obtain better wavelength coverage in the future of nearby

potential SN hosts, especially in the near- to mid-infrared.
This high range of initial mass for the SN 2017eaw

progenitor pushes up against, but does not entirely exceed,

the previously established upper limit for SN II-P progenitor

initial masses (Smartt et al. 2009; Smartt 2015). This limit

remains to be challenged. We expect such massive stars to have

extensive wind-driven, dusty mass loss as an RSG (e.g.,

Massey et al. 2005), although we note that the inferred mass

range for the SN 2017eaw progenitor is less than the threshold

(∼18Me) at which pulsationally driven superwinds are

predicted to be prevalent (Yoon & Cantiello 2010). Whether

late-stage, pre-explosion outbursts occur for RSGs (Quataert &

Shiode 2012; Shiode & Quataert 2014; Fuller 2017) remains to

be confirmed observationally.Such a pre-explosion outburst in
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the case of SN 2017eaw cannot be entirely ruled out
observationally (see, e.g., Tinyanont et al. 2019).

It is interesting to contemplate whether SN 2004et, also in
NGC 6946, with its higher luminosity might have arisen from a
more massive progenitor than SN 2017eaw (see, e.g., Faran
et al. 2014). That the two are fortuitously in the same host
galaxy makes such a comparison that much more straightfor-
ward and compelling. The nature of the progenitor of SN
2004et has been up for debate, with much of the uncertainty
arising from detection of the star in ground-based data with
limited wavelength coverage: Li et al. (2005) concluded that

the progenitor had M M15ini 2

5= -
+

, whereas a revisit by

Crockett et al. (2011) resulted in an estimate of M8 1

5

-
+

 (the
former study assumed a distance of 5.5 Mpc, and the latter,
5.7 Mpc); Jerkstrand et al. (2012; also adopting 5.5 Mpc),
based on the modeling of the nebular spectra mentioned above,
found the progenitor to be more consistent with 15Me; and
Maund (2017), based on the SN 2004et stellar environment,
estimated that Mini=17±2Me (with distance assumed at
4.9 Mpc).Eldridge & Xiao (2019) also argued for a larger
initial mass for the SN 2004et progenitor. Based on the
comparison with SN 2017eaw it now seems more credible that
the higher mass estimate applies for SN 2004et.

It is notable that the SN 2017eaw progenitor mass estimates
byKilpatrick & Foley (2018), Rui et al. (2019), and us areall
substantially larger than that inferred by Williams et al. (2018;

M8.8 0.2

2.0

-
+

) from the properties of the stellar environment
around the SN. Such low progenitor masses have been
generally found for subluminous SNe II-P, and no indication
exists that SN 2017eaw is subluminous; in fact, just the
opposite seems more plausible. The low mass estimate based
on the stellar environment is consistent with the progenitor
being relatively spatially isolated (see Figure 20). The origin of
this isolation for such a massive star is curious.

It is, of course, necessary to revisit SN 2017eaw when it has
significantly faded, particularly at F814W and the WFC3/IR
bands with HST or withJWST, to determine whether the
candidate progenitor has vanished. One could also reimage the
site with Spitzer, although if ejecta dust is forming, as Rho et al.
(2018) have found, the SN may not be fading as rapidly; also,
opportunities to observe with Spitzer are drawing to a close.
We cannot rule out that the light curves may flatten at late
times, as a result of SN ejecta–CSM interaction or a light echo
off pre-existing circumstellar dust, as in the case of SN 2004et
(Kotak et al. 2009; Fabbri et al. 2011).Thus, one of these
possibilities may, in fact, be in effect, in which case our wait
time may be extended for several years. Nonetheless, we
already consider it very unlikely that a less luminous RSG, or
even a bluer star, may have been hidden in the glare of the
candidate progenitor and be responsible for the SN. None of the
observed properties of SN 2017eaw is consistent with an origin
as a low-luminosity RSG, or as a blue or yellow star. We
therefore fully expect that the candidate progenitor will no
longer be at the SN site. (However, we certainly believe it
would be worthwhile to place constraints on the existence of a
less luminous companion.) We remain confident that the star
we have identified will turn out to have been the SN 2017eaw
progenitor. Finally, given the inferred lack of interstellar dust
internal to the host galaxy at the SN site, we consider it unlikely
that SN 2017eaw will have resulted in a detectable extended,
interstellar light echo (as is the case, e.g., for SN 2012aw; Van
Dyk et al. 2015).
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