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Summary This paper studies the estimation of latent group structures in het-
erogeneous time-varying coefficient panel data models. While allowing the coefficient
functions to vary over cross sections provides a good way to model cross-sectional het-
erogeneity, it reduces the degree of freedom and leads to poor estimation accuracy when
the time-series length is short. On the other hand, in a lot of empirical studies, it is
not uncommon to find that heterogeneous coefficients exhibit group structures where
coefficients belonging to the same group are similar or identical. This paper aims to pro-
vide an easy and straightforward approach for estimating the underlying latent groups.
This approach is based on the hierarchical agglomerative clustering (HAC) of kernel
estimates of the heterogeneous time-varying coefficients when the number of groups is
known. We establish the consistency of this clustering method and also propose a gen-
eralised information criterion for estimating the number of groups when it is unknown.
Simulation studies are carried out to examine the finite sample properties of the pro-
posed clustering method as well as the post-clustering estimation of the group-specific
time-varying coefficients. The simulation results show that our methods give compa-
rable performance as the penalised-sieve-estimation-based classifier-LASSO approach
by Su et al. (2018), but are computationally easier. An application to a panel study of
economic growth is also provided.

Keywords: Hierarchical agglomerative clustering, Generalised information criterion,
Kernel estimation, Panel data, Time-varying coefficients.

1. INTRODUCTION

Analysis of panel data has become one of the most important areas in theoretical and
applied econometrics. The double-index panel modelling framework facilitates the ex-
ploration of dynamic information over time span and heterogenous structure over cross
sections. In the past few decades, there have been exciting developments in paramet-
ric and nonparametric panel model estimation and inference, see, for example, Arellano
(2003), Su and Ullah (2011), Chen et al. (2012), Robinson (2012), Hsiao (2014) and the
references therein. In the existing literature, it is typically assumed that the regression
relationship between variables is invariant cross sectionally, leading to homogenous panel
data models. However, such an assumption might be inappropriate in many practical
applications when the data are collected from individuals with different characteristics
or in different geographical locations. In the context of parametric linear panel data
models, Ke et al. (2016) and Su et al. (2016) impose latent group structures on the con-
stant regression coefficients, and respectively use the binary segmentation and shrinkage
methods to detect and estimate the group structures. In this paper, we aim to study this
problem in a more general setting by allowing the model regression coefficients to vary
smoothly over time and the panel data to have general cross-sectional dependence.

c© Royal Economic Society 2019. Published by Blackwell Publishers Ltd, 108 Cowley Road, Oxford OX4
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2 J. Chen

Suppose that we have the panel observations: (Yit,Xit), i = 1, · · · , N , t = 1, · · · , T ,
which are allowed to be serially correlated over t and cross-sectionally dependent over
i. The primary interest is to investigate the relationship between the response variable
Yit and the p-dimensional explanatory vector Xit. Consider the following heterogenous
time-varying coefficient panel data model:

Yit = αi +X′
itβit + ǫit, (1.1)

where αi are individual specific effects, βit are p-dimensional vectors of time-varying
functional coefficients which are heterogeneous over i, and the model errors ǫit are sta-
tionary over time t but may be cross-sectionally dependent. As in Robinson (1989) and
Cai (2007), we assume that βit are smooth functions of scaled times:

βit = βi

( t
T

)
, t = 1, · · · , T, i = 1, · · · , N, (1.2)

where βi(·) is a p-dimensional vector of functions satisfying some smoothness condi-
tions. In model (1.1), we allow for the existence of heterogeneous intercept functions

by letting the first element of Xit be one. With Xit =
(
1, Xit,1, . . . , Xit,p−1

)′
and

βi(
t
T ) =

(
βi,0(

t
T ), βi,1(

t
T ), . . . , βi,p−1(

t
T )
)′
, we can rewrite equation (1.1) as

Yit = αi +X′
itβi

( t
T

)
+ ǫit

= αi + βi,0

( t
T

)
+

p−1∑

k=1

βi,k

( t
T

)
Xit,k + ǫit. (1.3)

As both αi and βi,0(·) appear in the intercept of the model, to disentangle αi and βi,0(·)
from each other, we impose the identification condition

∑T
t=1 βi,0(t/T ) = 0 on the in-

tercept functions (Boneva et al., 2015). An alternative is to assume
∑N

i=1 αi = 0 on the

individual effects. In this paper we use
∑T

t=1 βi,0(t/T ) = 0 for convenience of estimation.
This will become clearer in Section 2 when we develop the estimation procedure.

When the intercept functions βi,0(·), i = 1, . . . , N , are homogeneous, i.e., βi,0(·) ≡
β0(·), equation (1.3) becomes a panel data model with a common time trend but hetero-
geneous time-varying slope coefficients. Further assuming homogeneity of time-varying
slope coefficients, i.e., βi,k(·) ≡ βk(·), k = 1, . . . , p − 1, gives the model considered in Li
et al. (2011), of which the nonparametric trending panel model in Robinson (2012) is a
special case. Panel data models with homogeneous time-varying coefficients have been
extensively studied in the literature (to list a few, Li et al., 2011; Chen et al., 2012; Zhang
et al., 2012; Chen and Huang, 2017), and their estimation and inference methods have
been well developed.
Note that model (1.3) offers great flexibility for modelling cross-sectional heterogene-

ity and time-varying effects of regressors on the dependent variable. However, without
considering any group structure for βi(·), we can only reply on the sample information
from the i-th cross section to estimate the time-varying coefficient vector βi(·). This will
lead to slow estimation convergence rates in large samples and unsatisfactory estimation
accuracy in finite samples when the time series length T is not sufficiently large. Con-
sequently the benefits of panel data for giving a larger number of pooled observations
cannot be reaped. On the other hand, in a lot of empirical studies using heterogeneous
panel data models, researchers find group structures where coefficients are homogeneous
within each group but heterogeneous across groups. Such group structures arise due to

c© Royal Economic Society 2019



Estimating Latent Group Structure in Time-Varying Coefficient Panel Models 3

the similarity of some cross sections in certain characteristics such as their geographical
location. Hence, in this paper we consider the case where there exists a latent group struc-
ture for the heterogenous time-varying coefficient functions, i.e., there exists a partition
of the cross-sectional index set {1, 2, · · · , N}, denoted by {G1, · · · ,GK0

}, such that

βi(·) = γk(·) for i ∈ Gk and Gk ∩ Gj = ∅ for k 6= j, (1.4)

where ∅ denotes the empty set. We assume that the Lebesgue measure of
{
u ∈ [0, 1] : γk(u) 6= γj(u), k 6= j

}

is uniformly (over k and j) strictly larger than a positive constant, and the number
of latent groups, K0, is finite but may be unknown in practice. The aim of this paper
is to uncover the latent group structure (1.4) by estimating the number of groups K0

and determining the membership of each index set Gk, k = 1, · · · ,K0. Consequently,
a nonparametric estimation of the time-varying coefficient functions making use of the
estimated group structure can be constructed, which has faster convergence rate than
the naive nonparametric estimation ignoring the latent group structure.

Estimation of latent group structures in nonparametric panel data models has received
increasing attention in recent years. Vogt and Linton (2017, 2018) introduce kernel-based
clustering methods to estimate the latent structure for univariate regression functions in
panel data models. Su et al. (2018) consider the same model structure as (1.1), and use
a sieve approximation for the time-varying coefficient functions before applying the so-
called classifier-LASSO method to estimate the latent structure. In this paper, we use a
fundamentally different method and relax some restrictive model assumptions in Su et
al. (2018) (say, the cross-sectional independence assumption). Partly motivated by Chen
et al. (2019), we combine the kernel estimation method of the heterogenous time-varying
coefficient functions with the classic hierarchical agglomerative clustering (HAC) method
to estimate the latent group structure. We then use a generalised information criterion
to determine the number of groups when it is unknown. The advantages and novelty of
our methods lie in the following aspects.

(a) When Xit ≡ 1 and αi ≡ 0 for all i and t, our model becomes Yit = βi,0(t/T ) +
ǫit, which is the model considered in Vogt and Linton (2018) with a fixed-design
covariate. Vogt and Linton (2018) also use the classical HAC algorithm to cluster
nonparametric regression curves but base the HAC on the complete linkage of
a multi-scale distance statistic which maximises a normalised point-wise distance
between two regression curves over a grid of bandwidth and covariate values. The
multi-scale distance statistic is constructed using large-sample approximation of
normalised point-wise distance maximised over a grid. Furthermore, although their
method does not require the selection of a bandwidth, it does require the choice of a
threshold parameter, πNT , for estimating the number of groups. Applied to the fixed
design model Yit = βi,0(t/T )+ǫit, our method is more straightforward to implement.
The second simulation example in Section 4.2 shows that, with a similar data
generating process, our method performs at least as well as that of Vogt and Linton
(2018). Our proposed method can be easily implemented in R orMatlab with readily
available packages or functions for HAC algorithm. Although our method does
require a selection of a smoothing parameter, i.e., the bandwidth for nonparametric
estimation of the time-varying coefficient functions, such a selection problem has

c© Royal Economic Society 2019



4 J. Chen

been extensively studied in the literature and one can easily use one of the existing
methods, such as the leave-one-out cross validation to tackle it.

(b) Su et al. (2018) use the sieve estimation for the functional coefficients then apply the
classifier-LASSO method, which is first introduced in Su et al. (2016), to simulta-
neously estimate the coefficient vectors and classify them into groups. This method
does not have a closed form solution, and hence an iterative numerical method
has to be used to obtain an estimate of the latent groups. Hence, our method is
implementationally easier. The first simulation study in Section 4.2 shows that our
method works as well as that of Su et al. (2018).

The rest of the paper is organised as follows. In Section 2, we develop an easy-to-
implement approach for estimating the latent group structure when the number of groups,
K0, is known and then propose an information criterion to estimate K0 when it is un-
known. Section 3 gives the consistency of the proposed clustering method and the method
for estimating K0. Section 4 provides 2 simulation examples, in which the data gener-
ating processes are similar to the simulation designs of Su et al. (2018) and Vogt and
Linton (2018) to facilitate comparison of performance of our method against those of
theirs. These are then followed by an empirical application to a cross-country economic
growth study consisting of 100 countries across the globe. Section 5 concludes the paper.
All the proofs are relegated to an online supplement.

2. ESTIMATION METHODOLOGY

In this section, we first introduce a kernel-based HAC algorithm to estimate the latent
groups by assuming that the number of groups, K0, is known, and then propose a gen-
eralised information criterion to determine the number K0.

2.1. Kernel based HAC algorithm

To illustrate the kernel-based clustering method for estimating the group structure,
we first assume that the number of clusters, K0, is pre-specified. The kernel-based
clustering method applies the classic HAC algorithm to kernel estimates of the time-
varying coefficients βi(·). To estimate βi(·), we first absorb αi into βi,0(·) and denote
β∗
i,0(·) = αi + βi,0(·). Then model (1.3) can be written as

Yit = X′
itβ

∗
i

( t
T

)
+ ǫit,

where β∗
i (t/T ) =

(
β∗
i,0(t/T ), βi,1(t/T ), . . . , βi,p−1(t/T )

)′
. Assume that each coefficient

function βi,k(·), i = 1, 2, · · · , N , k = 0, 1, · · · , p−1 are continuous. For each i = 1, · · · , N ,
and any 0 < u < 0, we may use the kernel smoothing method to estimate β∗

i (u):

β̂
∗

i (u) =

[
T∑

t=1

XitX
′
itK

(
t− uT

Th

)]−1 [ T∑

t=1

XitYitK

(
t− uT

Th

)]
, (2.1)

where β̂
∗

i (·) =
[
β̂∗
i,0(·), β̂i,1(·), · · · , β̂i,p−1(·)

]′
, K(·) is a kernel function and h is a band-

width. From the definition of the above kernel estimation, it is easy to find that we only

c© Royal Economic Society 2019
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use the local sample information from the i-th cross section, so its finite-sample perfor-
mance may be relatively poor when the time series length T is not large. We next extract
the estimate of the individual intercept function from β̂∗

i,0(·). Denote

Ẑit = Yit −
p−1∑

k=1

β̂i,k

( t
T

)
Xit,k. (2.2)

It is easy to see that

Ẑit ≈ αi + βi,0

( t
T

)
+ ǫit, (2.3)

which implies

1

T

T∑

t=1

Ẑit ≈ αi +
1

T

T∑

t=1

ǫit, (2.4)

given the identification condition
∑T

t=1 βi,0(t/T ) = 0. We can eliminate the individual
effects αi from (2.3) by subtracting equation (2.4) from (2.3), i.e.,

Ẑit −
1

T

T∑

t=1

Ẑit ≈ βi,0

( t
T

)
+ ǫit −

1

T

T∑

t=1

ǫit.

Since 1
T

∑T
t=1 ǫit = Op(1/

√
T ) = op(1) when T → ∞, we can estimate βi,0(·) in the same

way as in (2.1) but with Xit and Yit replaced by 1 and Ẑc
it := Ẑit − 1

T

∑T
t=1 Ẑit, respec-

tively. Denote the subsequent estimator by β̂i,0(·) and combine it with the estimators of
the slope coefficient functions above to form the estimator,

β̂i(·) =
[
β̂i,0(·), β̂i,1(·), · · · , β̂i,p−1(·)

]′
,

of the original functional coefficient vector βi(·).
We next apply the classic HAC algorithm to the estimates of the individual functional

coefficients to obtain an estimate of the latent groups. To this end, we first define a
distance measure for the estimated coefficient functions. For any β̂i(·) and β̂j(·), define
a weighted Lq-distance between them as:

δ̂ij =
1

T

T∑

t=1

∥∥∥β̂i(t/T )− β̂j(t/T )
∥∥∥
q
W (t/T ), (2.5)

where ‖ · ‖q denotes the Lq-norm for a vector, q ≥ 1, and W (·) is a pre-specified non-
negative weight function which trims out the scaled time points close to either 0 or 1,
preventing the well-known boundary effect in kernel estimation from unduly affecting the
distance. Chen et al. (2019) use the L1-norm and choose W (·) as an indicator function
to estimate the homogeneity structure among the functional coefficients for independent
cross-sectional data, whereas Vogt and Linton (2018) consider the L∞-distance for clas-
sifying univariate regression functions. In the numerical studies in Section 4, we use the
L2-norm to measure the distance. Note that if the two indices i and j are from the same
index set Gk, we expect that the value of δ̂ij will be small.

When the time span T tends to infinity, under some regularity conditions, we may
show that β̂i(u) converges to the true functional coefficient vector βi(u) uniformly over

u and i, indicating that δ̂ij defined in (2.5) would be a reasonable estimate of δij defined

c© Royal Economic Society 2019



6 J. Chen

as

δij =

∫ 1

0

∥∥βi(u)− βj(u)
∥∥
q
W (u)du. (2.6)

Then, we let ∆N be an N ×N distance matrix with the (i, j)-th entry being δij . Corre-

spondingly, we let ∆̂N be the estimated distance matrix of ∆N with the (i, j)-th entry

being δ̂ij . When i = j, it is easy to see that δij = δ̂ij = 0, which implies that the main

diagonal elements of ∆N and ∆̂N are zero.
With the feasible distance matrix ∆̂N , we can apply the classic HAC method to explore

the latent group structure among the individual functional coefficients. The HAC method
has been commonly used in the past few decades, see, for example, Ward (1963), Hastie
et al. (2009), Everitt et al. (2011) and the references therein. A recent extension to the
kernel-based HAC method in nonparametric classification can be found in Chen et al.
(2019) and Vogt and Linton (2018). For the time being, we assume thatK0, the number of
groups, is known a priori, and will later introduce an information criterion for estimating
this number when it is unknown. We let Ĝ1, · · · , ĜK0

be the estimated index sets obtained
via the following algorithm.

Step 1. Start with N groups with each individual unit forming a group.

Step 2. Search for the smallest off-diagonal element in ∆̂N and merge the corresponding
two groups. These two groups are closest to each other among all groups by the
measure of distance used.

Step 3. Re-calculate the distances between the current groups and update the estimated
distance matrix (with its size reduced after each merging). Here the distance be-
tween two groups A1 and A2 is defined as the furthest distance between any two
estimated functional coefficient vectors with one from A1 and the other from A2.

Step 4. Repeat Steps 2 and 3 until the number of groups reaches K0.

As with any clustering algorithm, in each iteration before the given number of groups is
reached, we merge the two groups which have the smallest distance to each other among
all groups. The measure of distance between groups impacts the clustering results. In this
paper, we use the furthest distance (or the “complete linkage” in the clustering analysis
literature) between members of two groups to measure how far away they are from each
other. Other possible distance measures are the closest distance (or “single linkage” in
the clustering analysis literature) or the weighted average distance.

2.2. Selection of number of groups

The kernel-based HAC method above relies on prior information on the number of latent
groups. However, this number is usually unknown in practical applications and needs to
be determined via certain data-driven rule. Hence our next task is to develop such a rule.
For a given value of K for the number of latent groups, we let Ĝ1|K , · · · , ĜK|K be the
K estimated index sets from the kernel-based HAC method in Section 2.1. In this case,
there are K different vectors of coefficient functions, denoted by γ1|K(·), · · · ,γK|K(·),
to be estimated, and it is sensible to pool data from individual units belonging to the
same estimated group in the kernel estimation. Specifically, with the estimated group

c© Royal Economic Society 2019
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structure we have the following time-varying coefficient panel model:

Yit = αi + γk|K,0

( t
T

)
+

p−1∑

j=1

γk|K,j

( t
T

)
Xit,j + ǫit, i ∈ Ĝk|K , k = 1, · · · ,K, (2.7)

whose group-specific coefficient functions γk|K(u) =
[
γk|K,0(u), · · · , γk|K,p−1(u)

]′
can be

estimated as

γ̂k|K(u) =



∑

i∈Ĝk|K

T∑

t=1

XitX
′
itK

(
t− uT

Th

)



−1 

∑

i∈Ĝk|K

T∑

t=1

XitY
c
itK

(
t− uT

Th

)

 (2.8)

for k = 1, · · · ,K, and any u ∈ (0, 1). In (2.8), we have used the notation

Y c
it = Yit −

1

T

T∑

t=1

Ẑit,

where Ẑit was defined in (2.2). Note that we use Y c
it instead of Yit in (2.8). This is mainly

to eliminate the individual effects αi that may cause estimation bias in the above pooled
kernel method.
We then define the following information criterion:

IC(K) = logV2
n(K) +K · ρ, (2.9)

where ρ is a tuning parameter whose value may rely on N,T , and h (due to the non-
parametric kernel-based estimation of the time-varying coefficients in the panel model),
and

V
2
n(K) =

1

NT

K∑

k=1

∑

i∈Ĝk|K

T∑

t=1

[
Y c
it −X′

itγ̂k|K(t/T )
]2

W (t/T ).

The number of latent groups can be estimated by minimising the criterion IC(K), i.e.,

K̂ = arg min
1≤K≤K̃

IC(K), (2.10)

where K̃ is a pre-specified upper bound for the number of latent groups.
In Section 3 below, we will show that the estimator K̂, defined in (2.10), is a consistent

estimate of the true cluster number K0. To achieve the consistency property, we need
to impose some mild restriction on the tuning parameter ρ in the penalty term (see
Appendix A). Section 4 will discuss the practical choice of ρ in numerical studies. In

practical data analysis, one first obtains K̂ from (2.9) and (2.10), and then use the
kernel-based HAC procedure in Section 2.1 to identify the group membership of Gk by
stopping the algorithm when the number of groups reaches K̂.

3. LARGE-SAMPLE THEORY

In this section we provide the asymptotic properties of the methodologies proposed in
Sections 2.1 and 2.2. We start with the assumptions under which the asymptotic results
are established.

c© Royal Economic Society 2019



8 J. Chen

Assumption 3.1. The kernel function K(·) is a symmetric probability density function,
which is Lipschitz continuous and has a compact support [−1, 1].

Assumption 3.2. (a) For each i, the process {(Xit,1, · · · , Xit,p−1, ǫit) : 1 ≤ t ≤ T} is
stationary and α-mixing dependent with the mixing coefficient decaying to zero at a ge-
ometric rate. (b) The explanatory variables Xit,j, 1 ≤ j ≤ p − 1, and disturbances ǫit
satisfy the following moment conditions

max
1≤i≤N

max
1≤j≤p−1

E
(
|Xit,j |2δ

)
< ∞, max

1≤i≤N
E
(
|ǫit|2δ

)
< ∞, (3.1)

where δ > 2(m + 1) with m defiend in Assumption 3.4 below. (c) For each i, the p × p
matrix ∆i = E(XitX

′
it) is positive definite. Furthermore, there exist two finite positive

constants, λ and λ, such that

0 < λ ≤ min
1≤i≤N

λmin (∆i) ≤ max
1≤i≤N

λmax (∆i) ≤ λ < ∞, (3.2)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of a square
matrix, respectively.

Assumption 3.3. (a) The group-specific coefficient functions γk(·), 1 ≤ k ≤ K0, (and
hence βi(·), 1 ≤ i ≤ N), have continuous second-order derivatives on the interval [0, 1].
(b) The weight function W (·) is non-negative and continuous on [0, 1]. In addition, there
exists a small positive constant ω such that W (u) = 0 if u ≤ ω or u ≥ 1− ω.

Assumption 3.4. (a) There exists a positive constant m such that N = o(Tm). (b) The
bandwidth h satisfies h → 0 and (T 1−2(m+1)/δh)/ log3 T → ∞, where δ was defined in
Assumption 3.2(b). (c) Letting

ζ = min
1≤k 6=l≤K0

min
i∈Gk,j∈Gl

δi,j ,

we have h2 + [log T/(Th)]
1/2

= o(ζ).

Assumption 3.5. (a) There exist two positive constants τ1, with 0 < τ1 < 1, and τ2
such that

min
1≤k≤K0

|Gk| ≥ τ1 ·N, min
1≤k1 6=k2≤K0

∫ 1−ω

ω

∥∥γk1
(u)− γk2

(u)
∥∥2
2
W (u)du > τ2. (3.3)

(b) The tuning parameter ρ satisfies ρ → 0 and log T
T + h4 + 1

NTh = o(ρ).

Assumption 3.6. For any index set G ⊂ Gk, k = 1, · · · ,K0,

∑

i∈G

E




T∑

t=1

‖Xit‖22 ·

∥∥∥∥∥∥

∑

j∈G

T∑

s=1

ǫjsXjsKst

∥∥∥∥∥∥

2

2


 = O

(
|G|2T 2h

)
(3.4)

and

E





∑

i∈G

T∑

t=1

∑

j∈G

T∑

s=1

ǫitǫjsKstX
′
it

(
1

|G|
∑

l∈G

∆l

)−1

Xjs



2

 = O

(
|G|2T 2

)
(3.5)

c© Royal Economic Society 2019



Estimating Latent Group Structure in Time-Varying Coefficient Panel Models 9

where Kst = K
(
s−t
Th

)
and ∆i was defined in Assumption 3.2(c).

Remark 3.1. The conditions on the kernel function K(·) in Assumption 3.1 are mild
and satisfied by some commonly-used kernel functions such as the Epanechnikov kernel
and uniform kernel. Assumption 3.2 allows that the panel time series observations are
temporally correlated and the α-mixing dependence is one of the weakest dependence con-
ditions. The moment conditions in (3.1) and (3.2) are crucial to derive uniform conver-
gence (uniform over i and u) of some kernel-based quantities. The smoothness conditions
on the coefficient functions and weight function in Assumption 3.3 are not uncommon. In
particular, Assumption 3.3(b) indicates that the kernel estimates are truncated at those
scaled time points that are close to the boundaries (0 and 1). Assumption 3.4 imposes
some mild restriction on the bandwidth, the relationship between the cross-sectional size
and time series length, and the smallest Lq-distance between coefficient functions for dif-
ferent groups. A combination of Assumptions 3.2(b) and 3.4(a) indicates that there is
a trade-off between the moment conditions and the divergence rate of N . If the cross-
sectional size diverges at a faster rate (m becomes larger), stronger moment conditions
(i.e., larger δ) would be required for the relevant asymptotic theory. In fact, our theory
still holds when N diverges at an exponential rate of T . In the latter case, exponential
moment conditions would be needed for Xit and ǫit. In addition, when δ is very large,
the restriction on the bandwidth in Assumption 3.4(b) would become weaker. Assumption
3.4(c) indicates that ζ can converge to zero at an appropriate rate. Assumptions 3.5 and

3.6 are mainly used to prove consistency of K̂ from the information criterion proposed in
Section 2.2. Assumption 3.5(a) is crucial in order to show that IC(K) > IC(K0) when
K < K0 (i.e., the model is under-identified). The high-order moment conditions in As-
sumption 3.6 indicate that the panel observations can be serially correlated and weakly
cross-sectionally dependent, and both (3.4) and (3.5) are easy to verify when Xit,j and
ǫit are independent over both i and t.

Theorem 3.1 below shows that the kernel-based HAC algorithm can consistently estimate
the membership of the latent groups Gk, k = 1, · · · ,K0, when the number K0 is known.

Theorem 3.1. Suppose that Assumptions 3.1–3.4 are satisfied. If K0, the number of
latent groups, is known a priori, then

P

({
Ĝ1, · · · , ĜK0

}
=
{
G1, · · · ,GK0

})
→ 1 (3.6)

as T → ∞.

Remark 3.2. The consistency result in Theorem 3.1 is similar to some results in existing
literature (although in different model settings), such as Theorem 3.1 in Vogt and Linton
(2017), Theorem 1 in Chen et al. (2019) and Theorem 4.1 in Vogt and Linton (2018).
Note that we only require that T tends to infinity in Theorem 3.1. So the above result is
applicable to settings where the cross-sectional size is either fixed or divergent to infinity.
In addition, it is worth mentioning that we allow arbitrary cross-sectional dependence in
Theorem 3.1.

Theorem 3.2. Suppose that Assumptions 3.1–3.6 are satisfied. Then we have

P

(
K̂ = K0

)
→ 1. (3.7)
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10 J. Chen

as T → ∞.

Remark 3.3. Su et al. (2018) also propose an information criterion for selecting the
number of groups for their classifier-LASSO based clustering method and establish a
similar consistency result under N,T → ∞. Vogt and Linton (2018) use a thresholding
method to choose the number of groups, which is also shown to be consistent. Chen
et al. (2019) also establish the consistency of their information criterion for choosing
the number of homogeneous groups among functional coefficients for independent cross-
sectional data. We note that in Theorem 3.2 we allow for the existence of cross-sectional
dependence that satisfies Assumption 3.6 (especially between cross sections belonging
to the same group). Furthermore, as in Theorem 3.1, the consistency result (3.7) holds
whether N is fixed or diverging to infinity at a slower rate than Tm, where m is a positive
constant defined in Assumption 3.4.

4. NUMERICAL STUDIES

In this section, we first discuss how to choose the bandwidth h and the tuning param-
eter ρ in Section 4.1 and then provide two Monte-Carlo experiments in Section 4.2 to
demonstrate the finite-sample performance of the proposed methodology for identifying
latent groups. Finally in Section 4.3, we apply our method to a panel study of economic
growth and discover 4 groups of countries which have distinct growth patterns.

4.1. Choice of tuning parameters

To achieve good grouping results, it is desirable to first obtain accurate nonparametric
estimates of the functional coefficients, which, in turn, requires a proper choice of the
bandwidth h. As the aim is to achieve good estimation accuracy, we can use existing
bandwidth selection methods such as the leave-one-out cross-validation. This method
selects the h value which minimises the following mean squared error

CV(h) =
1

NT

N∑

i=1

T∑

t=1

[
Y c
it −X′

itβ̂
(−t)

i,h (
t

T
)
]2
,

where, for each i = 1, . . . , N and t = 1, . . . , T , Y c
it was defined in Section 2.2 (which

relies on h, as the construction of Ẑit involves the nonparametric kernel estimates of

the coefficient functions), and β̂
(−t)

i,h ( t
T ) is the nonparametric estimate (with bandwidth

h) of βi(
t
T ) obtained by using observations from the i-th cross section except the t-th

observation (Yit,Xit, t/T ). The simulation studies in Section 4.2 below show that the
bandwidth selected from such an approach gives accurate estimation of the functional
coefficients and good clustering results.
A proper choice of the tuning parameter ρ is crucial in order for the information

criterion to work well. In our numerical study, we choose ρ as

ρ1 =
log(NKTh)

NKTh
or ρ2 =

2

NKTh
with NK = min

{∣∣∣Ĝk|K

∣∣∣ , k = 1, · · · ,K
}
, (4.1)

where |A| denotes the cardinality of a set A. This corresponds to a generalised Bayesian
information criterion (GBIC) with ρ = ρ1 or generalised Akaike information criterion
(GAIC) with ρ = ρ2 if we treat NKTh as the effective sample size (for the smallest
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cluster when the number of clusters is K). Such a criterion for estimating the number of
latent groups works well in our simulation studies in Section 4.2. A similar criterion can
also be found in Wang and Xia (2009) and Chen et al. (2019) for variable selection and
structure identification in high-dimensional varying-coefficient models for independent
cross-sectional data.

4.2. Simulation studies

For easier comparison with the methods in Su et al. (2018) and Vogt and Linton (2018),
we adopt a data generating process, i.e. DGP 2, from Su et al. (2018) in the first sim-
ulation study and then the data generating process from Section 7 of Vogt and Linton
(2018) but with a fixed-design covariate in accordance with our modelling framework.

Example 4.1. This data generating process is the same as DGP 2 in Su et al. (2018),

Yit = αi + βi,0

( t
T

)
+ βi,1

( t
T

)
Xit + ǫit, i = 1, . . . , N, t = 1 . . . , T,

where αi and ǫit are independently drawn from the N(0, 1) distribution and are mutually
independent,

βi,0(u) =





γ1,0(u) = 3F (u; 0.5, 0.1) if i ∈ G1,
γ2,0(u) = 3[2u− 6u2 + 4u3 + F (u; 0.7, 0.05)] if i ∈ G2,
γ3,0(u) = 3[4u− 8u2 + 4u3 + F (u; 0.6, 0.05)] if i ∈ G3,

(4.2)

βi,1(u) =





γ1,1(u) = 3
[
2u− 4u2 + 2u3 + F (u; 0.6, 0.1)

]
if i ∈ G1,

γ2,1(u) = 3
[
u− 3u2 + 2u3 + F (u; 0.7, 0.04)

]
if i ∈ G2,

γ3,1(u) = 3
[
0.5u− 0.5u2 + F (u; 0.4, 0.07)

]
if i ∈ G3,

(4.3)

in which F (u;µ, ν) = 1
1+exp[−(u−µ)/ν] , G1 = {1, 2, . . . , N1}, G2 = {N1+1, N1+2, . . . , N1+

N2}, and G3 = {N1+N2+1, N1+N2+2, . . . , N1+N2+N3}, and the cardinalities of the
three groups are defined as N1 = 0.3N , N2 = 0.3N and N3 = 0.4N . The intercept func-
tional coefficients, βi,0(t/T ), are demeaned so as to satisfy the identification condition∑T

t=1 βi,0(t/T ) = 0. Different sample sizes of N = 50, 100 and T = 40, 80 are considered,
and for each combination of N and T , 200 replicate samples are drawn from the data gen-
erating process. The bandwidth used for the nonparametric estimation of βi(·) is selected
using the leave-one-out cross validation method detailed in Section 4.1, and the kernel
function used is the Epanechnikov kernel K(u) = 3(1−u2)+/4, where (v)+ = max{v, 0}.

For each combination of N and T , we report the accuracy of both the clustering and the
estimation of the time-varying coefficients. To measure clustering accuracy, we calculate
the purity and normalised mutual information (NMI) of our estimated clusters Ĉ =

{Ĝ1, . . . , ĜK̂} with the true clusters C0 = {G1, . . . ,GK0
}, which are defined, respectively,

as

Purity(Ĉ, C0) =
1

N

K̂∑

k=1

max
1≤j≤K0

∣∣Ĝk ∩ Gj

∣∣

and

NMI(Ĉ, C0) =
I(Ĉ, C0)

(H(Ĉ) +H(C0))/2
,
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where I(Ĉ, C0) is the mutual information between Ĉ and C0 defined as

I(Ĉ, C0) =
K̂∑

k=1

K0∑

j=1

(
|Ĝk ∩ Gj |

N

)
log2

(
N |Ĝk ∩ Gj |
|Ĝk||Gj |

)
,

and H(Ĉ) is the entropy of Ĉ defined as

H(Ĉ) = −
K̂∑

k=1

|Ĝk|
N

log2

(
|Ĝk|
N

)

and H(C0) is defined analogously. The advantage of using the measures of NMI and

purity is that their results do not depend on the ordering of clusters in Ĉ or C0. The
closer the values of NMI and purity are to 1, the more accurate the estimated clusters
are to the true clusters. To measure estimation accuracy, we calculate the root mean
squared errors (RMSE) of three estimators of βi(·): the oracle estimator (obtained by
assuming the true group structure is known a priori and pooling data from members
of each group to obtain group-specific estimates of the coefficient functions), the pre-
clustering estimator (obtained individual by individual without considering the group
structure), and the post-clustering estimator (obtained by pooling data from members
of each estimated group for group-specific estimates). Here the RMSE of an estimator

β̂(·) =
(
β̂1(·), . . . , β̂N (·)

)′
is defined as

RMSE(β̂) =
1

N

N∑

i=1

{ 1
T

T∑

t=1

∥∥β̂i(
t

T
)− βi(

t

T
)
∥∥2
2

}1/2
, (4.4)

where those β̂i(·)’s belonging to the same group in the oracle or post-clustering estimation
are equal.
We report, in Table 1, firstly the frequency at which a certain number of groups is

chosen over 200 replications, then the averages and standard deviations (in parentheses)
of the purities and NMI’s between the kernel based HAC results and the true group
structure over these 200 replications, and also the averages and standard deviations (in
parentheses) of the RMSE’s for the oracle, pre-clustering, and post-clustering estimation
of the βi(·)’s.
Table 1 shows that the GBIC chooses the correct number of groups in about 91%

of the repeated samples when the time series length T is 40 and this percentage rises
to almost 100 when T increases to 80, irrespective of whether N = 50 or 100. These
results are comparable to those in DGP 1 of Su et al. (2018), which are obtained from an
information criterion derived from their classifier-LASSO method. The GAIC has very
similar performance in all the four combinations of N and T , which subsequently leads
to the GBIC and GAIC having similar NMI and purity values as well as post-clustering
estimation accuracy (measured by RMSE), as demonstrated in the middle block and lower
block of Table 1. The NMI value for both the GBIC and GAIC is between 0.83-0.85 when
T = 40 and then rises to around 0.98 when T = 80, and the purity is between 0.93-0.94
when T = 40 and then rises to more than 0.99 when T = 80. The RMSE’s of the GBIC
and GAIC post-clustering estimation of the functional coefficients are close to those of the
oracle estimation. They are 50%-60% of the RMSE’s of the pre-clustering nonparametric
kernel estimation, a 40%-50% reduction, which shows the benefit of pooling data from
cross sections of the same group for estimation.
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Table 1. Simulation results for Example 4.1

Frequencies at which K0 is estimated
Sample size GBIC GAIC

1 2 3 4 5 1 2 3 4 5

N = 50
T = 40 0 13 181 6 0 0 5 182 13 0
T = 80 0 0 200 0 0 0 0 199 1 0

N = 100
T = 40 0 8 191 1 0 0 4 182 12 2
T = 80 0 0 200 0 0 0 0 200 0 0

Averages (standard deviations) of NMI’s and purities
Sample size GBIC GAIC

NMI Purity NMI Purity

N = 50
T = 40 0.8473(0.0980) 0.9408(0.0570) 0.8465(0.0989) 0.9304(0.0672)
T = 80 0.9772(0.0441) 0.9925(0.0161) 0.9770(0.0449) 0.9919(0.0205)

N = 100
T = 40 0.8474(0.0754) 0.9470(0.0389) 0.8467(0.0751) 0.9370(0.0603)
T = 80 0.9822(0.0295) 0.9952(0.0087) 0.9822(0.0295) 0.9952(0.0087)

Averages (standard deviations) of RMSE’s of βi(·) estimates
Sample size Oracle Pre-clustering Post-clustering

GBIC GAIC

N = 50
T = 40 0.2508(0.0145) 0.4856(0.0156) 0.2932(0.0431) 0.2908(0.0393)
T = 80 0.1917(0.0122) 0.3618(0.0118) 0.1969(0.0165) 0.1969(0.0165)

N = 100
T = 40 0.2493(0.0120) 0.4871(0.0122) 0.2869(0.0349) 0.2851(0.0304)
T = 80 0.1695(0.0082) 0.3606(0.0090) 0.1728(0.0108) 0.1728(0.0108)

Example 4.2. This data generating process is the same as that in Section 7 of Vogt and
Linton (2018), except that we now replace their i.i.d. Uniform [0, 1] exogenous variable
Xit with the fixed-design Xit = t/T . More specifically, data are generated from

Yit = βi

( t
T

)
+ ǫit,

where

βi(u) =





γ1(u) = G(u, 1
2 ,

1
2 ) if i ∈ G1,

γ2(u) = G(u, 1
4 ,

1
4 ) +G(u, 3

4 ,
1
4 ) if i ∈ G2,

γ3(u) = G(u, 1
8 ,

1
8 ) +G(u, 3

8 ,
1
8 ) +G(u, 3

4 ,
1
4 ) if i ∈ G3,

γ4(u) = G(u, 1
4 ,

1
4 ) +G(u, 5

8 ,
1
8 ) +G(u, 7

8 ,
1
8 ) if i ∈ G4,

γ5(u) = G(u, 1
12 ,

1
12 ) +G(u, 1

4 ,
1
12 ) +G(u, 5

12 ,
1
12 ) +G(u, 3

4 ,
1
4 ) if i ∈ G5,

γ6(u) = G(u, 1
4 ,

1
4 ) +G(u, 7

12 ,
1
12 ) +G(u, 3

4 ,
1
12 ) +G(u, 11

12 ,
1
12 ) if i ∈ G6,

(4.5)

in which

G(u, µ, ν) = I
(∣∣u− µ

ν

∣∣ ≤ 1
)[
1−

(u− µ

ν

)2]2
,

the groups are defined as G1 = {1, 2, . . . , N1}, G2 = {N1 + 1, . . . ,
2∑

k=1

Nk}, and G3 =

{
2∑

k=1

Nk +1, . . . ,
3∑

k=1

Nk}, G4 = {
3∑

k=1

Nk +1, . . . ,
4∑

k=1

Nk}, G5 = {
4∑

k=1

Nk +1, . . . ,
5∑

k=1

Nk},
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and G6 = {
5∑

k=1

Nk + 1, . . . ,
6∑

k=1

Nk}, Nk = N/6, k = 1, . . . , 6, and ǫit are independently

drawn from N(0, σ2) distribution with σ2 = 0.492, 0.602 and 0.72, which correspond to
noise-to-signal ratios (NSR) of 2, 3, and 4. As in Vogt and Linton (2018), the sample
size is set as N = 240, T = 200.

The functions γk(·), k = 3, 4, 5, 6, have different smoothness in different regions of
[0, 1]. Hence, a varying bandwidth (i.e., a bandwidth whose value varies with the point
u at which βi(·) is evaluated) may produce better estimation than a fixed-value band-
width. However, for easier implementation, we still use a fixed bandwidth in the kernel
estimation, which is selected via the cross-validation method detailed in Section 4.1. The
subsequent clustering results (shown in Table 2) are still satisfactory and comparable to
those in Vogt and Linton (2018). However, our method is easier and more straightforward
to implement.
As in Example 4.1, 200 repeated samples are drawn from the data generating process,

and the same quantities (i.e., the frequencies at which K0 is estimated, the NMI and
purity, and the RMSE of the functional coefficients estimation) are computed and pre-
sented in Table 2. Unsurprisingly, as the error variance increases (or the NSR increases),
the performance of both the GBIC and GAIC deteriorates, so does the accuracy of all
the estimation approaches. However, even when the NSR is 4 (σ2 = 0.72), the GAIC
selects the correct number of groups in 87% of the replications and the GBIC in 78%
of the replications. This number is around 82.5% in Vogt and Linton (2018) (although
they have random-design Xit rather than fixed-design t/T as in our setting here). When
the NSR is lower (i.e., 2 or 3), the GAIC and GBIC select the correct number of groups
in almost all of the replications. The RMSE’s of the post-clustering estimation of the
functional coefficients for the GBIC and GAIC are close to that of the oracle estimation,
and there is a reduction of around 45% in the RMSE by pooling data belonging to the
same group, compared with the non-pooling pre-clustering estimation.

4.3. An empirical application

In this session we apply our kernel HAC method to a panel study of economic growth,
in which we consider the following growth model

GYit = αi +βi,0

( t
T

)
+βi,1

( t
T

)
GKit +βi,2

( t
T

)
GPOPit + ǫit, i = 1, . . . , N, t = 1, . . . , T,

(4.6)
where GYit is the GDP annual growth rate of the i-th country in year t, GKit is the
annual growth rate of capital formation, and GPOPit is the annual growth of population.
All three variables are in percentages. Ideally, one would use the annual growth of labour
input in place of GPOPit, but since measures of labour input are scarce, we replace
it with the annual population growth. The data are obtained from the World Bank’s
World Development Indicators (WDI) database and cover 61 countries over the period
1971–2016.
We estimate the functional coefficients βi

(
·
)
=
(
βi,0(·), βi,1(·), βi,2(·)

)′
using nonpara-

metric kernel smoothing with the Epanechnikov kernel and a bandwidth selected from
the leave-one-out cross validation. Then, the kernel HAC method is used to classify the
estimated βi

(
·
)
with the number of groups determined by the information criterion

introduced in Section 2.2. Both GAIC and GBIC identify 4 groups with the estimated
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Table 2. Simulation results for Example 4.2

Frequencies at which K0 is estimated

Error variance
GBIC GAIC

4 5 6 7 8 4 5 6 7 8
σ2 = 0.492 (NSR=2) 0 0 200 0 0 0 0 200 0 0
σ2 = 0.602 (NSR=3) 1 0 199 0 0 1 0 199 0 0
σ2 = 0.702 (NSR=4) 20 24 156 0 0 12 14 174 0 0

Averages (standard deviations) of NMI’s and purities

Error variance
GBIC GAIC

NMI Purity NMI Purity
σ2 = 0.492 (NSR=2) 0.9998(0.0013) 0.9999(0.0005) 0.9998(0.0013) 0.9999(0.0005)
σ2 = 0.602 (NSR=3) 0.9933(0.0147) 0.9975(0.0043) 0.9933(0.0147) 0.9975(0.0043)
σ2 = 0.702 (NSR=4) 0.9497(0.0530) 0.9879(0.0107) 0.9549(0.0468) 0.9850(0.0147)

Averages (standard deviations) of RMSE’s of βi(·) estimates

Error variance
Oracle Pre-clustering Post-clustering

GBIC GAIC
σ2 = 0.492 (NSR=2) 0.0527(0.0017) 0.1299(0.0015) 0.0527(0.0017) 0.0527(0.0017)
σ2 = 0.62 (NSR=3) 0.0749(0.0019) 0.1517(0.0018) 0.0759(0.0048) 0.0759(0.0048)
σ2 = 0.72 (NSR=4) 0.0818(0.0022) 0.1703(0.0020) 0.0939(0.0186) 0.0911(0.0154)

group-specific functional coefficients depicted in Figure 1. The memberships of the four
estimated groups are given in Table 3. A plot of the data by the 4 identified groups is
given in Figure 2.
Most countries (48 out of 61 countries) are classified into the first group, while Groups

2 and 4 have 3 members each and Group 3 has 7 members. Figure 1 shows that the post-
clustering estimates of the functional coefficients for Group 1 have smaller variations
over the sample period than those for the other 3 groups do. This may indicate that
the countries in Groups 2-4 experienced greater economic structural changes than the
countries in Group 1. For all the groups, the growth of capital formation has an overall
positive effect on the growth of GDP. However, the effect of population growth is mixed.
For Group 1 this effect is mixed and for Group 3 it is mostly positive over the period
considered. On the other hand, for Groups 2 and 4, it is mostly negative. Population
growth for Group 2 countries has an increasing negative effect, while it has a decreasing
negative effect for Group 4 countries.

5. CONCLUSIONS

In this paper we propose a kernel HAC method to estimate the latent group structure
in a heterogeneous time-varying coefficient panel data model. This method applies the
classic HAC method to the kernel estimates of functional coefficients from each cross
section. It is easy to implement and provides a consistent estimate of the latent group
structure when T → ∞, irrespective of whether there is cross-sectional dependence or
not. We also introduce an information criterion to estimate the number of groups when it
is unknown and propose two possible choices for the tuning parameter in the information
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Table 3. Memberships of the four estimated groups

Groups Countries

Group 1

1. Argentina, 2. Australia, 3. France, 4. Germany, 7. Italy, 8. Japan

9. Korea, Rep., 10. Mexico, 11. Netherlands, 12. Spain, 13. United Kingdom, 14. United States

15. Algeria, 16. Austria, 17. Bangladesh, 18. Belgium, 19. Benin, 22. Cameroon

23. Canada, 24. Colombia, 26. Denmark, 27. Dominican Republic, 28. Ecuador, 29. Egypt, Arab Rep.

30. Finland, 32. Greece, 35. Iran, Islamic Rep., 36. Ireland, 38. Lesotho, 39. Luxembourg

41. Malaysia, 43. Morocco, 44. New Zealand, 46. Norway, 47. Pakistan, 49. Peru

50. Philippines, 51. Portugal, 52. Rwanda, 53. Senegal, 54. Singapore, 55. South Africa

56. Sri Lanka, 57. Sudan, 58. Sweden, 59. Thailand, 60. Togo, 61. Uruguay

Group 2 5. India, 34. Honduras, 45. Nicaragua

Group 3 20. Bolivia, 21. Burkina Faso, 25. Congo, Rep, 31. Gabon, 33. Guatemala, 40. Madagascar, 48. Panama

Group 4 6. Indonesia, 37. Kenya, 42. Mauritania
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Figure 1. Post-clustering estimates of group-specific functional coefficients. Plots in each
row represent a component of the estimated coefficient vector, one for each group.
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Figure 2. A plot of data by estimated groups.

criterion, which are then shown to work well in the simulation studies. The bandwidth
used in the kernel estimation can be chosen via a data-driven method, such as the cross-
validation method. In the simulation studies we adopt a data generating process from Su
et al. (2018) and another from Vogt and Linton (2018) to see how our method performs
in their settings. The results show that it performs comparably well to those of Su et
al. (2018) and Vogt and Linton (2018). We also apply our method to a panel study of
economic growth and identify 4 groups of countries which have different growth patterns.
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