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RESEARCH ARTICLE Open Access

Two-stage estimation to adjust for treatment
switching in randomised trials: a simulation
study investigating the use of inverse
probability weighting instead of
re-censoring
N. R. Latimer1*, K. R. Abrams2 and U. Siebert3,4,5

Abstract

Background: Treatment switching is common in randomised trials of oncology treatments, with control group

patients switching onto the experimental treatment during follow-up. This distorts an intention-to-treat comparison

of the treatments under investigation. Two-stage estimation (TSE) can be used to estimate counterfactual survival

times for patients who switch treatments – that is, survival times that would have been observed in the absence of

switching. However, when switchers do not die during the study, counterfactual censoring times are estimated,

inducing informative censoring. Re-censoring is usually applied alongside TSE to resolve this problem, but results in

lost longer-term information – a major concern if the objective is to estimate long-term treatment effects, as is usually

the case in health technology assessment. Inverse probability of censoring weights (IPCW) represents an alternative

technique for addressing informative censoring but has not before been combined with TSE. We aim to determine

whether combining TSE with IPCW (TSEipcw) represents a valid alternative to re-censoring.

Methods: We conducted a simulation study to compare TSEipcw to TSE with and without re-censoring. We simulated

48 scenarios where control group patients could switch onto the experimental treatment, with switching affected by

prognosis. We investigated various switching proportions, treatment effects, survival function shapes, disease severities

and switcher prognoses. We assessed the alternative TSE applications according to their estimation of control

group restricted mean survival (RMST) that would have been observed in the absence of switching up to the

end of trial follow-up.

Results: TSEipcw performed well when its weights had a low coefficient of variation, but performed poorly

when the coefficient of variation was high. Re-censored analyses usually under-estimated control group RMST,

whereas non-re-censored analyses usually produced over-estimates, with bias more serious when the treatment effect

was high. In scenarios where TSEipcw performed well, it produced low bias that was often between the two extremes

associated with the re-censoring and non-recensoring options.

Conclusions: Treatment switching adjustment analyses using TSE should be conducted with re-censoring, without re-

censoring, and with IPCW to explore the sensitivity in results to these application options. This should allow analysts

and decision-makers to better interpret the results of adjustment analyses.

Keywords: Treatment switching, Treatment crossover, Survival analysis, Overall survival, Oncology, Health technology

assessment, Time-to-event outcomes, Prediction, Re-censoring, Inverse probability weighting
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Background
Treatment switching in randomised controlled trials

(RCTs) has been shown to be an important issue in

health technology assessment (HTA) [1–5]. In oncology

trials patients randomised to the control group are often

permitted to switch onto the experimental treatment

during trial follow-up. This is problematic because it

prevents a standard intention-to-treat (ITT) analysis

from providing the distinct comparison of randomised

treatments that is usually required in HTA. To address

this issue, several HTA agencies around the world have

embraced statistical adjustment methods [5–8]. These

methods allow counterfactual survival times and treat-

ment effects – those that would have been observed

had switching not occurred – to be estimated. However,

concerns around the use of these methods remain –

some agencies are not ready to use adjustment analyses

and those that are may still reject an adjustment ana-

lysis if it is deemed to be inappropriate [5, 9, 10]. Con-

cerns surround the – often untestable – assumptions

made by adjustment methods, but another problem is that

each adjustment method can be applied in a multitude of

ways [9, 10]. Different applications of the same over-arch-

ing method can lead to important differences in results

and decision-makers may therefore be concerned about

the reliability of analyses presented to them – and, pos-

sibly, whether application choices have been made to pro-

duce results most favourable to the new treatment. This

problem is inhibiting the usefulness of adjustment

methods in health care decision making.

Two-stage estimation (TSE) represents a method for

adjusting for treatment switching that has been used

in HTA [1, 11, 12]. The method involves estimating

counterfactual survival times for patients who switch

treatments. Several application choices must be made

– such as which accelerated failure time model to

use, which covariates to include in that model, and

whether or not to include re -censoring. It has been

shown that re -censoring – which will be described

in the next section – can have a substantial impact

on the results of adjustment analyses. Latimer et al.

presented a series of adjustment analyses applied to a

trial analysing the effect of trametinib compared to

chemotherapy in patients with metastatic melanoma,

in which 67% of control group patients switched onto

the experimental treatment [13]. A standard ITT ana-

lysis resulted in a hazard ratio (HR) of 0.72 (95% con-

fidence interval (CI) 0.52 to 0.98), whilst a TSE

analysis yielded a HR of 0.43 (95% CI 0.20 to 0.96)

when re-censoring was applied, and an HR of 0.53

(95% CI 0.29 to 0.97) without re-censoring – see Fig. 1 for

an illustration of the differences between these analyses.

Estimates of overall survival often heavily influence esti-

mates of cost-effectiveness and therefore such substantial

differences in the point -estimate of the overall survival

treatment effect can be crucial in HTA [6, 14–17].

A recently published study investigated the use of

re-censoring and concluded that adjustment analyses

should be conducted with and without re-censoring [18].

Historically it has been recommended that re-censoring

should be applied in adjustment analyses to avoid prob-

lems associated with informative censoring in the counter-

factual dataset [19–21]. However, re-censoring results in a

loss of longer-term information which is problematic

when the objective is to estimate long-term survival times

and treatment effects – which is almost exclusively the

case in HTA [1, 6, 15–17, 21–25]. Latimer et al. found that

across a wide range of scenarios analyses that excluded

re-censoring consistently produced under-estimates of the

longer-term treatment effect, whilst re-censored analyses

produced over-estimates of the treatment effect when the

survivor function was complex, with decreasing hazards

in the longer -term [18]. Whilst this is useful informa-

tion, it is relevant to question whether alternatives to

re -censoring exist, since both re-censoring and non-

recensoring options are prone to bias. Inverse prob-

ability of censoring weights (IPCW) represents a

well-known technique for dealing with informative

censoring [26, 27], and has been suggested as an al-

ternative to re-censoring [21], but to our knowledge

has never been used specifically for this purpose.

In this paper we investigate the use of IPCW com-

bined with TSE instead of re-censoring, to estimate

counterfactual survival times in the presence of treat-

ment switching in an RCT context. We focus on the

problem typically seen in HTA [1–5, 7, 9, 10], whereby a

subset of control group patients switch onto the experi-

mental treatment after disease progression and we wish

to estimate what survival would have been in the control

group as a whole had this switching not occurred. Other

types of switching occur – switching is sometimes trig-

gered by an interim analysis [28] or patients may switch

on to treatments other than those under investigation in

the RCT [1, 5]. The type of switching may influence

whether adjustment is appropriate, and what the target

of estimation should be [29] but these issues are not the

focus of this study. We use the simulation study previ-

ously reported by Latimer et al. [18] but extend it to in-

clude the TSE method in combination with IPCW in

addition to the previously investigated TSE with and

without re-censoring methods. We aim to establish

whether combining TSE with IPCW represents a valid

alternative to re-censoring or not re-censoring.

Methods
The study design has previously been reported by Latimer

et al. [18] In this section we first describe the TSE
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statistical adjustment method and the alternative cen-

soring options, and then summarise the simulation

study design.

Statistical adjustment methods and censoring options

Two-stage estimation (TSE)

The TSE adjustment method is designed to adjust for

switching that occurs after a specific disease-related

time-point (such as disease progression), which is referred

to as a “secondary baseline” [11, 12]. Stage one of the TSE

method involves estimating the effect of switching on

post-secondary baseline survival. Stage two involves using

this estimated effect to derive counterfactual survival

times for switchers. The method is reliant upon the as-

sumption of no unmeasured confounding – information

on prognostic covariates (i.e. independent risk factors for

survival which are associated with switching) is required

at the secondary baseline time-point [11, 12]. In addition,

if switching occurs some time after the secondary baseline,

it must be assumed that no time-dependent confounding

occurs between the secondary baseline time-point and the

time of switch because the TSE only controls for differ-

ences between switchers and non-switchers at the second-

ary baseline time-point [11, 12].

For stage one, post-secondary baseline survival times

in control group patients who switch onto the experi-

mental treatment are compared to those in control

group patients who do not switch. A parametric acceler-

ated failure time model (e.g. Weibull or Generalised

Gamma) is used, controlling for prognostic covariates

measured at the secondary baseline time-point and in-

cluding the switch indicator as a time-dependent vari-

able which equals ‘1’ after the time of switch. This

provides an estimate of the treatment effect associated

with switching (referred to as e−ψ) in the form of a

a

b

Fig. 1 Overall survival in primary efficacy population. a Two-stage method with re-censoring; b Two-stage method without re-censoring.

Adapted from Latimer et al, 2016 [13]
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time-ratio, where e−ψ represents a multiplicative factor

by which an individual’s expected survival time is in-

creased (or decreased) by treatment.

In stage two, the treatment effect estimated in stage

one is used in the following counterfactual survival

model to estimate counterfactual survival times (Ui).

U i ¼ TAi
þ eψTBi

ð1Þ

The counterfactual survival model splits the observed

event time,Ti, for each patient into time spent on the con-

trol treatment, TAi
, and time spent on the intervention

treatment, TBi
. For control group switchers, TAi

is equal

to the time from randomisation until switching occurs,

and TBi
is equal to the time from switch until death or

censoring. To estimate counterfactual survival times for

switchers the inverse of the treatment effect estimated in

stage 1 (i.e. eψ) is applied to TBi
. If switching was esti-

mated to extend survival in stage one, due to effective

treatment, this will result in counterfactual survival times

being shorter than observed survival times, and vice-versa

if switching was estimated to reduce survival in stage one.

Re-censoring

Informative censoring is a problem for methods such as

TSE that estimate counterfactual survival (and censoring)

times [18–21], which is why it is recommended that

re-censoring is combined with such methods. For TSE the

problem arises because the counterfactual survival model

involves adjusting survival times for switchers but not for

non-switchers. For some switchers the event time (usually

death) may not be observed – instead survival time is cen-

sored. For these patients, the TSE involves adjusting cen-

soring times. Thus, the TSE method involves adjusting

censoring times in switchers, but not in non-switchers.

This will result in informative censoring if there is an as-

sociation between switching and prognosis.

Re-censoring breaks the dependence between the

counterfactual censoring time and switching. Counter-

factual survival times associated with a given value of

ψ (that is, Ui(ψ)) are re-censored for all patients in

the control group at the minimum of the administra-

tive censoring time Ci and Ci exp ψ, representing the

earliest possible censoring time over all possible treat-

ment trajectories, D�
i ðψÞ. Ui(ψ) is then replaced by D�

i

ðψÞ if D�
i ðψÞ < U iðψÞ.

Alternatives to re-censoring

Evidently, re-censoring results in a loss of longer term sur-

vival information – observed events may be re-censored,

and follow-up time is lost. This is problematic if the ob-

jective is to estimate long-term survival and long-term

treatment effects. If the treatment effect changes over time,

using re-censored survival data would result in inaccurate

estimates of the long-term treatment effect. Similarly, if the

objective was to fit parametric survival models to trial data

in order to extrapolate into the future (as is often the case

in HTA), re-censoring could lead to problems if important

changes to the hazard occur beyond the timeframe of the

re-censored dataset. Such phenomena are unlikely to be

rare – it has often been recognised that cancer populations

are characterised by complex hazard functions [30–32].

Fundamentally, whilst re-censoring avoids the problem of

informative censoring and produces valid estimates of the

treatment effect for the timeframe of the re-censored data-

set, it is problematic when the goal is to estimate the

long-term survival effect associated with a new treatment.

One alternative to re-censoring is to simply not

re-censor. Stages one and two of the TSE method would

be applied to obtain counterfactual survival (and censor-

ing) times for switchers and then the analysis would be

complete, without the extra step of re-censoring. We

denote this method TSEnr. TSEnr is prone to inform-

ative censoring in the counterfactual dataset. A second

alternative is to use IPCW to address the potentially in-

formative censoring in the counterfactual dataset.

TSE combined with inverse probability of censoring weights

(TSEipcw)

Combining TSE with IPCW might be beneficial because

the loss of information associated with re-censoring is

avoided, and the informative censoring associated with

not re-censoring is addressed. We denote this TSE and

IPCW combination as TSEipcw. Stages one and two of

TSE are used to produce a counterfactual dataset for the

control group, and then IPCW is applied to adjust for

informative censoring. The assumptions associated with

TSE are required (switching only after a specified

secondary baseline, and no unmeasured confounding).

The IPCW part of the approach requires correctly speci-

fied weighting models [33], no covariates which ensure

(that is, the probability equals 1) that censoring will

occur [27, 34, 35], and the ‘no unmeasured confounding’

assumption [34, 36]. After TSE has been used to produce

a counterfactual dataset, a model predicting censoring is

fit to the group(s) in which switching occurred in order to

estimate weights, with all censoring events classified as

potentially informative (that is, censoring in switchers and

non-switchers). IPCW is commonly applied working in

discrete time and using pooled logistic regression, mean-

ing that follow-up time is divided up into intervals [27].

The most appropriate time interval duration may depend

upon the data being analysed, but could be monthly,

weekly, or even daily, and the importance of the chosen

duration can be assessed through sensitivity analysis. Sta-

bilised or unstabilised inverse probability of censoring

weights can be estimated. Stabilised weights estimated for
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each individual for each time interval (t), as specified by

Hernan et al. (2001) are [27]:

Wb tð Þ ¼
Yt

k¼0

Pr C kð Þ ¼ 0jC k−1ð Þ ¼ 0;A k−1ð Þ;V ;T > k
� �

Pr C kð Þ ¼ 0jC k−1ð Þ ¼ 0;A k−1ð Þ; L kð Þ;T > k
� �

ð2Þ

where C(k) is an indicator function demonstrating whether

or not censoring had occurred at the end of interval k, and

Cðk−1Þ denotes censoring history to the end of the previous

interval. Aðk−1Þ denotes an individual’s treatment history

up to the end of the previous interval, and V is an array of

an individual’s baseline covariates. LðkÞ denotes the history

of an individual’s time-dependent covariates measured at or

prior to the beginning of interval k and includes V. LðkÞ
should include baseline and time-dependent covariates that

are thought to be prognostic factors for mortality that are

also related to switching (and therefore are predictive of cen-

soring time). The numerator of (2) represents the probability

of an individual remaining uncensored at the end of interval

k given that he or she was uncensored at the end of the pre-

vious interval (k− 1), conditional on baseline characteristics

and treatment history. The denominator of (2) represents

that same probability, but differs from the numerator be-

cause it is conditional on baseline characteristics, treatment

history, and time-dependent characteristics. For unstabilised

weights, the numerator of (2) is simply replaced with ‘1’.

Once inverse probability of censoring weights have

been estimated, they can be used in a weighted survival

analysis, accounting for the potentially informative cen-

soring in the counterfactual dataset.

It is relevant to note that in the context being

discussed here, treatment history drops out of the

weighting model. This may seem strange, given that the

rationale for re-censoring is that treatment history pre-

dicts counterfactual censoring and survival times – it

may be expected that treatment history would be an im-

portant covariate in the censoring model. However, we

are applying IPCW to a counterfactual dataset in which

survival times have been adjusted for treatment switch-

ing – survival and censoring times have been estimated

as if switching had never occurred. Recall that the cen-

soring model is only fit to the group(s) in which switch-

ing occurred – in the context where switching is only

from the control group onto the experimental treatment

the censoring model is only fit to counterfactual control

group data, in which all patients are untreated, leaving

no role for treatment history in the model. For the

TSEipcw combination to work we need to assume that

by including time-updated covariates for factors other

than treatment history we can eliminate any informative

censoring bias present in the counterfactual dataset.

It is also important to note that IPCW has been

used within marginal structural models (MSM) as a

standalone approach to adjust for treatment switch-

ing, with varying degrees of success, and with the

TSE method often producing lower bias than MSM

with IPCW [1, 11, 12]. Here we seek to combine TSE

and IPCW in order to improve performance in the

context of estimating long-term survival.

Simulation study design

In this study we used the same simulation study design

as in our previous study [18], but extended it to investi-

gate whether the TSEipcw method results in an im-

provement in performance compared to TSE with and

without re-censoring. We simulated a subset of the sce-

narios described in Latimer et al. [18] Datasets with a

sample size of 500 were simulated, with 2:1 randomisa-

tion in favour of the experimental group, and with treat-

ment switching from the control group onto the

experimental treatment permitted. True survival times

(without switching) were known. We applied the TSE

adjustment methods with and without re-censoring, and

TSEipcw, and compared the percentage bias in their

estimation of restricted mean survival time (RMST) in

the control group, where RMST was the mean survival

time restricted to the maximum administrative censor-

ing time in the simulated datasets. We focussed on con-

trol group RMST because the objective of the analysis

was to estimate survival times for the control group that

would have been observed in the absence of treatment

switching. We calculated the empirical standard error,

root mean squared error and coverage associated with

estimates of control group RMST. These measures are de-

fined in the “Performance measures” section below. The

simulation study was conducted using Stata software,

version 13.1 [37]. The code used for the simulation study

is provided in Additional file 1: Appendices A and B.

Underlying survival times

A joint survival and longitudinal model was used to sim-

ultaneously generate a continuous time-dependent co-

variate (referred to as ‘biomarker’) and survival times

[38]. Within the data-generating joint model, the longi-

tudinal model for the underlying biomarker value for

the ith patient at time t was:

biomarkeri tð Þ ¼ β0i þ β1t þ β2t � trti þ β3badprog i

ð3Þ

where,

β0i � N β0; σ
2
0

� �
:

Here β0i is the random intercept, β1 is the average rate

of change of the biomarker for a patient in the control

group, and β1 + β2 is the average rate of change of the
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biomarker for a patient in the experimental treatment

group. trti is a binary covariate that equals 1 when the

patient is in the experimental group and 0 otherwise,

badprogi is a binary covariate that equals 1 when a pa-

tient has poor prognosis at baseline and 0 otherwise, and

β3 is the change in the intercept for a patient with a

poor prognosis compared to a patient with a good prog-

nosis. Biomarker observations were subject to an error

term with a standard normal distribution with mean 0

and variance σ, and were simulated to occur at random-

isation, and at 21 day intervals thereafter.

We used Crowther and Lambert’s [38] general survival

simulation framework to simulate survival dependent on a

time-varying biomarker, with a 2-component mixture

Weibull baseline survival function, allowing us to simulate

complex hazard functions. The model can be written as:

S0 tð Þ ¼ p exp −λ1t
γ1ð Þ þ 1−pð Þ exp −λ2t

γ2ð Þ ð4Þ

where λ1, λ2 > 0 and γ1, γ2 > 0 are scale and shape pa-

rameters, respectively. The contribution of the first Wei-

bull to the survival model is represented by p, with 0 ≤

p ≤ 1, and 1 − p represents the contribution of the sec-

ond Weibull. The related baseline hazard function is:

h0 tð Þ ¼
λ1γ1pt

γ1−1 exp −λ1t
γ1ð Þ þ λ2γ2 1−pð Þtγ2−1 exp −λ2t

γ2ð Þ

p exp −λ1tγ1ð Þ þ 1−pð Þ exp −λ2tγ2ð Þ

ð5Þ

The linear predictor of the survival model was incor-

porated as follows:

hi tð Þ ¼ h0 tð Þ

exp δ1 trti þ η t� trti þ δ2 badprog i þ α biomarkeri tð Þ
� �

ð6Þ

with δ1 representing the direct effect of treatment at

time 0, η representing the rate at which the direct effect

of treatment changes with time, δ2 representing the im-

pact of poor prognosis, and α representing the coeffi-

cient of the underlying biomarker level.

Disease progression times were simulated to equal sur-

vival times multiplied by a value from a beta distribution

with shape parameters (5,10). Disease progression was

assumed to be observed at the first simulated consult-

ation following the progression event, with consultations

occurring every 21 days.

Random entry into the study was simulated, with the

maximum administrative censoring time set at 548 days

(1.5 years). Patients in the control group had a random

uniform entry time from 0 to 183 days and therefore ad-

ministrative censoring times ranged from 365 to 548 days.

In our previous study [18], the complexity of the sur-

vivor function was an important driver of bias associ-

ated with the adjustment methods and therefore we

retained a set of scenarios in which the ‘t’ terms were

excluded from the data generating mechanism, with the

resulting survival model being a single – rather than a

mixture – Weibull model with a constant treatment ef-

fect. The α and η were set to zero. In these scenarios

re-censoring is prone to less bias, because long-term

trends in the hazard are established in the short-term

and the treatment effect is constant.

In line with our previous study [18], scenarios were

ordered such that low numbers were associated with

parameter values that were unlikely to result in major

biases for the adjustment methods, and high numbers

assessed scenarios where bias was more likely to be a

problem. For instance, Scenario 1 had a simple, single

Weibull survival model, a low treatment effect and a

low switching proportion. Scenario 20 provides a more

representative illustration of the scenarios tested, char-

acterised by a mixture Weibull survival model and a

high, time-dependent treatment effect. Parameter

values for the mixture Weibull survival model and the

longitudinal biomarker model in Scenario 20 were:

β0 ¼ 20; σ20 ¼ 1; β1 = 0.04 , β2 = − 0.02, β3 = 2.5, σ = 1,

δ1 = − 1.30, δ2 = 0.3, α = 0.01, λ1 = 0.00001, γ1 = 2.0, λ2 =

0.00001, γ2 = 0.8, p = 0.5, η = 0.003.

Figure 2 presents an example of the Kaplan-Meier

curves and hazard function produced by the simulation

model (in the absence of treatment switching) from a

single simulated data set in Scenario 20. By using a mix-

ture model, we were able to simulate a hazard function

that was initially low, then steadily increased before

decreasing towards the end of the trial follow-up. As has

been previously described, we believe this is reflective of

the types of hazards often observed in a metastatic on-

cology RCT setting [11, 18].

Treatment effect in the experimental group

For the majority of scenarios, the treatment effect simu-

lated in the experimental group cannot be summarised

using a single hazard ratio or acceleration factor, because

our hazard function includes ‘t’ terms. In reality, we

believe that it is likely that the treatment effect (in terms

of a hazard ratio) falls over time, as people discontinue

treatment, or when only better prognosis patients re-

main alive. Therefore, primarily we simulated a treat-

ment effect that initially increased during the period of

greatest hazard, before falling in the longer-term. In the

set of scenarios that excluded the ‘t’ terms from the data

generating model the true treatment effect was known,

with δ1 representing the log hazard ratio. In other sce-

narios, as a summary of the size of the treatment effect

we calculated the ‘average’ HR and acceleration factors

(AF) by generating scenario-specific survival data for a

large number of patients (1,000,000) without applying

Latimer et al. BMC Medical Research Methodology           (2019) 19:69 Page 6 of 19



switching, and by fitting Cox and accelerated failure

time models to this.

The switching mechanism

Switching could only occur in control group patients at

one of the three consultations immediately following

disease progression. A logistic function was used to cal-

culate the probability of switching at these consultations,

dependent on the time of observed disease progression

and the observed biomarker value at that time-point.

Switching probabilities were varied to test different

switching proportions, as was the prognosis of patients

most likely to switch. Further details on the probability

of switching in different simulated groups are presented

in Additional file 1: Appendix C.

Treatment effect in switchers

Switchers were simulated to benefit from switching by

multiplying the survival period post switch by a factor

(ω) using the following approach:

T zi ¼ TAi
þ ω� TBi

ð7Þ

where T zi is the survival time incorporating the impact

of switching, TAi
represents the time of switching and

TBi
represents the survival time after the switch point

that was simulated to occur in the absence of switching.

This is the same as the accelerated failure time model

presented in (1), but here we denote the treatment effect

as ω rather than e−ψ.

In our previous study [18], the magnitude of ω was

varied across scenarios, allowing an assessment of the

impact of the ‘common treatment effect’ assumption,

whereby the effect of the treatment is assumed to be the

same irrespective of when it is received. This was im-

portant because one of the methods tested in our previ-

ous study, the rank preserving structural failure time

model (RPSFTM), assumes that there is a common

treatment effect. In contrast, the TSE method (and

IPCW) has been shown to be unaffected by this assump-

tion [11, 12, 18], and therefore in the present study we

did not vary ω. Instead we set ω equal to the average

Fig. 2 One simulated dataset from Scenario 1 with no switching: (a) Overall survival Kaplan–Meier; (b) Smoothed hazard rate
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acceleration factor observed in the experimental group.

Scenario-specific survival data were generated for

1,000,000 patients without applying switching and an ac-

celerated failure time model was applied to estimate ψ,

with ω then set to equal e−ψ.

Scenarios investigated

Our intention was to investigate realistic scenarios and

to test the sensitivities of the adjustment methods to

changes in key scenario characteristics. Scenarios were

run varying the following characteristics:

� Switch proportion: low (approximately 25% of control

group patients who experienced disease progression);

moderate (approximately 55% of control group patients

who experienced disease progression)

� Treatment effect: low (average HR/AF/ ψ under the

incorrect assumption of proportional treatment effects

approximately 0.80/1.13/− 0.12); high (average HR/AF/

ψ approximately 0.56/1.85/− 0.62)

� Switcher prognosis: good prognosis more likely to

switch; poor prognosis more likely to switch;

� Severity of disease: low (restricted mean survival in

control group approximately 357 days, administrative

censoring proportion approximately 40–50%); high

(restricted mean survival in control group

approximately 228 days, administrative censoring

proportion approximately 17–25%)

� Complexity of the survivor function and time

dependency of treatment effect: simple (single

Weibull model, α = 0.00, η = 0.000); moderate

(mixture Weibull model, α = 0.01, η = 0.003); high

(mixture Weibull model, α = 0.01, η = 0.006)

Using a 2x2x2x2x3 factorial design resulted in a total

of 48 scenarios. The scenarios were numbered 1–48 with

all levels of one factor nested inside one level of the next

factor, following the order listed above. This represents

half of the scenarios reported in Latimer et al. [18]

because in this study we did not include scenarios to test

the sensitivity of the results to the common treatment ef-

fect assumption, because none of the included methods

rely upon this assumption. It is important to note that sce-

narios are ordered differently in the present study, to aid

the presentation of results. For instance, Scenarios 1, 2, 3

and 4 in this study are equivalent to Scenarios 3, 51, 7 and

55 in Latimer et al. [18] One thousand simulations were

run for each scenario. Further details on scenario values

and settings are presented in Additional file 1: Appendices

D and E.

Adjustment methods compared

We applied TSE using a Weibull model with disease

progression as the secondary baseline time-point, and

included covariates for switching, baseline prognosis

group, observed biomarker value at time 0, observed

time-to-disease progression, and observed biomarker

value at disease progression. We included the two-stage

method with and without re-censoring (denoted as TSE

and TSEnr respectively). For TSEipcw, we applied TSEnr

to estimate counterfactual survival and censoring times

for switchers, and then estimated weights according to

eq. (2) using a similar approach to that described by

Fewell et al. [39] Covariates included in V were baseline

prognosis group and the biomarker value observed at time

0. Additional covariates included in LðkÞ were an indicator

for disease progression, observed time-to-disease progres-

sion, and observed biomarker value at the beginning of

the interval. 21-day intervals were used, representing the

observation times simulated in our data, and time was in-

corporated using restricted cubic splines using the Stata

command rcsgen. Interior knots were placed at the 33rd

and 67th centiles of the distribution of censoring times

and 2 boundary knots were placed at the minimum and

maximum values of the censoring times.

For IPCW applications that use stabilised weights, base-

line covariates should be incorporated in survival models

fitted to the weighted survival times. This is computation-

ally intensive in a simulation setting when estimating

mean survival times. Therefore, in the majority of scenar-

ios we applied TSEipcw using only unstabilised weights.

However, in Scenarios 17–20 and 25–28 we applied

TSEipcw with stabilised and unstabilised weights. This

allowed us to investigate the impact of stabilised com-

pared to unstabilised weights in scenarios deemed realistic

(that is, with a moderately complex survivor function).

To provide context on the performance of the various

TSE applications, we included a ‘No Switching’ analysis,

representing the results of a standard ITT analysis (that

is, an unadjusted estimate of control group RMST)

undertaken on the simulated dataset before switching

was applied. This does not represent a feasible estimator,

but provides a useful upper bound for adjustment

method performance which may be considered a ‘gold

standard’. We also included a standard ITT analysis after

switching has been applied.

Performance measures

Control group restricted mean survival time (RMST)

was our estimand upon which we based our perform-

ance measures. This is in line with our aim of investi-

gating the performance of adjustment methods in

estimating counterfactual survival times in the pres-

ence of switching from the control group onto the

experimental treatment. As previously described by

Latimer et al. [18] our simulated survival function

was not analytically tractable so for each scenario we
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simulated data for 1,000,000 patients without incorporating

treatment switching, and estimated the RMST at 548 days

(the maximum administrative censoring time in the simu-

lated datasets). This value is the product of a simula-

tion rather than a calculation so is prone to error,

but this is minimal given the large number of pa-

tients simulated. For instance, in Scenario 1 the

standard error of the control group “true” RMST was

0.28 days (0.07% of the estimated RMST).

To estimate RMST at 548 days for each of the adjust-

ment methods we used flexible parametric models [40].

Non-parametric methods could not be used because

when re-censoring is applied longer-term information is

lost and therefore a non-parametric estimate of RMST

would be restricted to too short a time period. Instead,

we used flexible parametric models fitted to the counter-

factual datasets provided by TSE and TSEnr, and fitted

to the weighted survival times provided by TSEipcw.

These were used to obtain the survivor function extrap-

olated to 548 days, ensuring our RMST comparisons

were comparing “like with like”. The Stata command

stpm2 was used to fit the models on the log cumulative

hazard scale, with 3 interior knots placed at the 25th, 50th

and 75th centiles of the distribution of log survival times

and boundary knots placed at the minimum and

maximum of the distribution of uncensored survival times

[40]. If the final observed counterfactual survival time was

less than 548 days, RMST at 548 days was estimated

through extrapolation using stpm2, which involves a linear

extrapolation of log time on the log cumulative hazard

scale, based on the fitted function and extrapolating from

the last knot. This is consistent with UK HTA recommen-

dations for undertaking survival modelling in the presence

of complex hazard functions [41, 42].

To appropriately estimate confidence intervals for

RMST for TSE and other adjustment methods the entire

adjustment process should be bootstrapped, in order to

take into account the uncertainty in underlying survival

times as well as the uncertainty associated with the adjust-

ment. This involves sampling from the dataset being ana-

lysed multiple times, applying the adjustment method and

estimating RMST for each sample. In a simulation study

setting, with 1000 simulated datasets generated for each

scenario, this is extremely computationally intensive. We

completed this procedure only for the four key scenarios

that we focus on in the Results section. For each simula-

tion we took 200 samples, sampled with replacement,

clustered by individual patient, stratified by treatment

group and using the same sample size as the simulated

datasets (i.e. 500). The adjustment method was applied to

each sample and RMST was calculated. Confidence inter-

vals were then estimated using the 2.5th and 97.5th

percentiles of the calculated RMST over the 200 bootstrap

samples for each simulation.

The performance of methods was evaluated according to

the percentage bias in their estimate of control group

RMST at 548 days. Percentage bias was estimated by taking

the difference between the mean estimated RMST and the

true RMST and expressing this as a percentage of true

RMST [43]. The root mean squared error (RMSE) of the

percentage bias was calculated to provide information on

the variability of estimates in combination with percentage

bias. The empirical standard error (SE) of the RMST esti-

mate was also calculated for each method, defined as the

standard deviation in the percentage bias of the RMST esti-

mate for each method over the 1000 simulations run for

each scenario. Coverage was also calculated, defined as the

proportion of simulations where the 95% confidence inter-

val of the RMST contained the true RMST. Convergence

was measured, defined as the proportion of times that each

method resulted in an estimate of control group RMST.

Percentage bias, RMSE, empirical SE and coverage were

calculated based upon simulations in which convergence

occurred. For each method, Monte Carlo (MC) standard

errors were calculated for each performance measure, in

line with Morris et al. [44] For methods that incorporated

IPCW, we recorded the proportion of simulations in each

Scenario that resulted in maximum weights that were

greater than (i) 100 and (ii) 1000. We also recorded the

coefficient of variation of the weights (that is, the standard

deviation of the weights divided by the mean of the

weights) measured across control group patients in each

simulated data set. This allowed us to explore the relation-

ship between variations in the weights and the performance

of the TSEipcw method.

Results

Results for TSE and TSEnr have been previously re-

ported [18] – to summarise, TSEnr produced positive

bias across almost all scenarios, over-estimating control

group RMST and therefore under-estimating the true

treatment effect. TSE always produced lower estimates

of RMST than TSEnr, consistently producing negative

bias and over-estimating the true treatment effect. Nei-

ther method consistently outperformed the other with

respect to bias in RMST estimates, but TSEnr produced

lower RMSE in every scenario, demonstrating greater

precision than TSE. Here, we focus on the relative per-

formance of the TSEipcw method. We present detailed

results from four key scenarios that illustrate the key

findings. We then summarise the extent to which these

reflect the results of the other scenarios simulated.

Finally we report findings comparing TSEipcw with sta-

bilised and unstabilised weights, and TSEipcw results ac-

cording to the coefficient of variation in the weights.

A summary table describing the characteristics of each

scenario is presented in Additional file 1: Appendix F.

Additional file 1: Appendices G, H and I present the
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percentage bias, empirical standard error and RMSE

respectively across all scenarios for each method.

Detailed results from key scenarios

Table 1 presents detailed results from Scenarios 20 and

28. The characteristics of Scenario 20, with regard to

survival times, switch proportion, treatment effect and

censoring proportion are described in Table 1. This sce-

nario incorporated a large treatment effect, a moderate

switch proportion, and relatively low disease severity

(and therefore a high censoring proportion). As ex-

pected, the ITT analysis over-estimated control group

RMST, equivalent to a percentage bias of 7.5%. The TSE

analysis that incorporated re-censoring under-estimated

control group RMST (percentage bias − 2.3%) and

TSEnr over-estimated control group RMST (percentage

bias 3.5%). TSEipcw led to a higher level of percentage

bias than the other adjustment methods (percentage bias

− 5.1%). The mean coefficient of variation of the inverse

probability of censoring weights was 16.9, and the max-

imum weight was greater than 100 in 77.4% of simula-

tions (and greater than 1000 in 43.5% of simulations).

The only substantive difference between Scenario 20

and Scenario 28 was that disease severity was greater in

Scenario 28, leading to the censoring proportion being

approximately halved. The TSE and TSEnr methods were

relatively unaffected by this change (percentage bias − 3.5

and 4.0% respectively), but the percentage bias produced

by TSEipcw reduced substantially (percentage bias 1.1%),

such that it was lower than that produced by TSE and

TSEnr. Whilst TSE and TSEnr under- and over-estimated

control group RMST respectively, TSEipcw produced an

RMST estimate that was between those two extremes. In

Scenario 28 the mean coefficient of variation of the inverse

probability of censoring weights was 5.4, substantially lower

than that observed in Scenario 20. The maximum weight

was greater than 100 in 53.5% of simulations and was

greater than 1000 in 10.6% of simulations.

Table 2 presents detailed results from Scenarios 25 and

26. Scenario 26 was approximately equivalent to Scenario

28, except the treatment effect was lower. Scenario 25 was

approximately equivalent to Scenario 28 except the treat-

ment effect was lower and the switching proportion was

reduced to approximately 25% of at-risk patients. TSEipcw

performed well in both of these scenarios, producing

percentage bias of 1.8% in Scenario 26 and 1.0% in Scenario

25. The mean coefficient of variation of the inverse prob-

ability of censoring weights was 1.5 in Scenario 26 and 0.9

in Scenario 25. The maximum weight was greater than 100

in 4.7% of simulations in Scenario 25, but was never greater

than 1000. In Scenario 26 the maximum weight was greater

than 100 in 21.2% of simulations and greater than 1000 in

0.3%. Although TSEipcw produced low bias in Scenarios 25

and 26, TSE and TSEnr produced similar or lower bias

(percentage bias 0.3% in both scenarios for TSE, and 1.5

and 1.0% for Scenarios 26 and 25 respectively for TSEnr).

The RMSE results presented in Tables 1 and 2 demon-

strate that the levels of variability associated with the

different adjustment methods differed importantly – as

also demonstrated in our previous study [18]. TSEnr pro-

duced least RMSE (aside from the gold standard ‘no

switching’ analysis) in all four scenarios but did not pro-

duce least bias in any of the scenarios. TSEipcw produced

slightly higher levels of RMSE than TSE in the three sce-

narios in which the mean coefficient of variation of the in-

verse probability of censoring weights was relatively low

(Scenarios 25, 26 and 28), but produced substantially

higher RMSE in Scenario 20, in which the mean coeffi-

cient of variation of the weights was high. The RMSE

results reflect the fact that the empirical standard errors of

Table 1 Scenarios 20 and 28 – performance measures for estimation of control arm RMST

Scenario details Method Percent bias Empirical SE of % bias RMSE of % bias Coverage (%) Convergence (%)

Scenario number: 20
True RMST:
Control: 357
Experimental: 430
Mean switch: 57%
True ave. HR: 0.57
True ave. AF: 1.53
Mean censored: 50%

No switching 0.0 3.7 3.7 94.4 100.0

ITT 7.5 3.4 8.3 46.7 100.0

TSE −2.3 6.9 7.3 97.8 100.0

TSEnr 3.5 3.9 5.3 86.1 100.0

TSEipcw −5.1 16.3 17.1 96.0 95.8

min/max MC error 0.1/0.5 0.1/0.4 0.1/0.5 0.5/1.6 –

Scenario number: 28
True RMST:
Control: 228
Experimental: 322
Mean switch: 57%
True ave. HR: 0.56
True ave. AF: 1.85
Mean censored: 26%

No switching −0.1 5.7 5.7 94.7 100.0

ITT 15.1 5.5 16.0 29.1 100.0

TSE −3.5 9.1 9.8 93.0 100.0

TSEnr 4.0 6.5 7.6 91.6 100.0

TSEipcw 1.1 11.3 11.3 97.1 99.9

min/max MC error 0.2/0.4 0.1/0.3 0.1/0.8 0.5/1.4 –

Note: RMST restricted mean survival time, HR hazard ratio, AF acceleration factor, SE standard error, RMSE root mean squared error, MC Monte-Carlo, ITT intention

to treat, TSE two-stage estimation, TSEnr two-stage estimation without re-censoring, TSEipcw two-stage estimation with inverse probability of censoring weights
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the percentage bias differed substantially between

methods. As shown in our previous study [18], TSE

produced empirical standard errors that were substantially

higher than those associated with TSEnr. These were

higher still for TSEipcw in the four scenarios considered

here – with their size again seemingly related to the size

of the mean coefficient of variation of the inverse prob-

ability of censoring weights.

Tables 1 and 2 show that coverage was around 95–96%

for all the adjustment methods in Scenarios 25 and 26, in

which percentage bias was low for all methods. Coverage

changed in Scenarios 20 and 28, in which levels of percent-

age bias were generally slightly higher than in Scenarios 25

and 26. In Scenario 28 coverage for TSE and TSEnr

decreased to 92–93%. In Scenario 20, which differed to Sce-

nario 28 by having a higher censoring proportion, coverage

associated with TSEnr decreased to 86.1%, whilst remaining

over 95% for TSE and TSEipcw, despite percentage biases

of − 2.3% and − 5.1% respectively. This indicates that for

these methods model standard errors must overestimate

the empirical standard error, because coverage is adequate

despite bias. Coverage was markedly better for the adjust-

ment methods than for the ITT analysis. This is in contrast

to results from previous simulation studies where we did

not use bootstrapping to estimate confidence intervals for

the adjustment methods [11, 12, 18]. Convergence was

achieved with all of the adjustment methods, with the pos-

sible exception of the TSEipcw. Whilst the method con-

verged successfully, in doing so it resulted in weights with a

large range in some simulations, particularly in Scenario 20.

Results from other scenarios

The overall patterns in our results are illustrated in

Figs. 3, 4, and 5, which present nested loop plots for

percentage bias, empirical SE and RMSE [45]. More

detailed barplots for each of these performance mea-

sures are presented in Additional file 1: Appendices G,

H and I. The results presented for Scenarios 20, 25, 26

and 28 provide a good basis for reporting the results of

the remaining scenarios – particularly those observed

in scenarios where the complexity of the survivor func-

tion was moderate or high. The characteristics that had

the most impact on the performance of TSEipcw were

the complexity of the survivor function and the severity

of disease. The complexity of the survivor function, the

switching proportion and the size of the treatment

effect were particularly important for TSE and TSEnr.

The prognosis of switchers was not an important driver

of the results.

TSE, TSEnr and TSEipcw all produced low levels of

bias in Scenarios 1–16, in which the survivor function

was simple, with a constant treatment effect over time.

TSE produced least percentage bias in 6 of these scenar-

ios, and TSEnr and TSEipcw produced least bias in 5

apiece. TSEnr consistently produced lower empirical SE

and RMSE than TSEnr and TSEipcw, and TSEipcw

produced lower empirical SE and RMSE than TSE in 9

of the 16 scenarios. The mean coefficient of variation in

the inverse probability of censoring weights ranged

between 0.6 and 2.3 in these scenarios, the proportion of

simulations in which the maximum weight was greater

than 100 ranged between 1.0 and 34.2% and the propor-

tion of simulations in which the maximum weight was

greater than 1000 ranged between 0 and 1.5%.

When the complexity of the survivor function was

moderate or high, with a decreasing treatment effect

over time, the performance of the adjustment methods

varied much more widely. Scenario 20 provides a useful

representation of the scenarios in which disease severity

was low (that is, Scenarios 17–24 and Scenarios 33–40),

Table 2 Scenarios 25 and 26 – performance measures for estimation of control arm RMST

Scenario details Method Percent bias Empirical SE of % bias RMSE of % bias Coverage (%) Convergence (%)

Scenario number: 25
True RMST:
Control: 228
Experimental: 269
Mean switch: 25%
True ave. HR: 0.78
True ave. AF: 1.30
Mean censored: 18%

No switching 0.1 5.8 5.8 94.9 100

ITT 2.7 5.8 6.4 92.9 100

TSE 0.3 6.4 6.4 95.6 100

TSEnr 1.0 5.9 6.0 94.8 100

TSEipcw 1.0 6.6 6.7 95.3 100

min/max MC error 0.2/0.2 0.1/0.1 0.1/0.2 0.7/0.8 –

Scenario number: 26
True RMST:
Control: 228
Experimental: 269
Mean switch: 57%
True ave. HR: 0.78
True ave. AF: 1.30
Mean censored: 18%

No switching 0.0 5.7 5.7 95.6 100

ITT 6.2 5.6 8.4 85.4 100

TSE 0.3 7.1 7.1 95.2 100

TSEnr 1.5 6.4 6.6 95.3 100

TSEipcw 1.8 8.3 8.5 95.2 100

min/max MC error 0.2/0.3 0.1/0.2 0.1/0.3 0.6/1.2 –

Note: RMST restricted mean survival time, HR hazard ratio, AF acceleration factor, SE standard error, RMSE root mean squared error, MC Monte-Carlo; ITT intention

to treat, TSE two-stage estimation, TSEnr two-stage estimation without re-censoring, TSEipcw two-stage estimation with inverse probability of censoring weights
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Fig. 3 Percentage bias across all scenarios. Note: ITT: intention to treat; TSE: two-stage estimation; TSEnr: two-stage estimation without re-

censoring; TSEipcw: two-stage estimation with inverse probability of censoring weights

Fig. 4 Empirical standard error across all scenarios. Note: ITT: intention to treat; TSE: two-stage estimation; TSEnr: two-stage estimation without re-

censoring; TSEipcw: two-stage estimation with inverse probability of censoring weights. SE: standard error
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and Scenarios 25, 26 and 28 reflect the findings in

scenarios in which disease severity was high (Scenarios

25–32 and 41–48). Disease severity did not have an

important effect on the performance of the TSE and

TSEnr methods, but had a large impact on the TSEipcw

method. When disease severity was low, resulting in a rela-

tively high degree of censoring (approximately 40–50%),

TSEipcw consistently produced more bias and considerably

higher empirical SE and RMSE than TSE and TSEnr. In

these scenarios, the mean coefficient of variation in the

inverse probability of censoring weights ranged between 4.7

and 16.9, the proportion of simulations in which the

maximum weight was greater than 100 ranged between

37.7 and 77.4%, and the proportion of simulations in which

the maximum weight was greater than 1000 ranged

between 8.1 and 44.1%. In contrast, when disease severity

was high, resulting in relatively low censoring proportions

(approximately 17–25%), TSEipcw often produced similar

or lower levels of bias than TSE and TSEnr. In these

scenarios, TSE produced least bias in 8 scenarios,

TSEnr produced least bias in 2 scenarios and TSEipcw

produced least bias in 6 scenarios. TSEnr continued to

consistently produce the lowest empirical SE and

RMSE. TSEipcw produced lower empirical SE and

RMSE than TSE in approximately half of these scenar-

ios. The mean coefficient of variation in the inverse

probability of censoring weights ranged between 0.7

and 5.5 in these scenarios, whilst the proportion of sim-

ulations in which the maximum weight was greater

than 100 ranged between 1.5 and 53.5%, and the pro-

portion of simulations in which the maximum weight

was greater than 1000 ranged between 0.0 and 11.6%.

Whilst TSEipcw consistently produced low levels of

bias in scenarios in which disease severity was high

(resulting in low coefficients of variation in the inverse

probability of censoring weights, and few simulations

with very high maximum weights), it did not consist-

ently do better than TSE and TSEnr in these scenarios –

often similar levels of bias were produced by each of the

methods. As shown in our previous study [18], TSE and

TSEnr are prone to higher levels of bias when the treat-

ment effect and/or the switching proportion is high.

Generally, TSEipcw produced lower percentage bias than

TSE and TSEnr when there was a moderate or complex

survivor function and a high treatment effect, provided

disease severity was high, as demonstrated by Scenario

28. When the treatment effect was low, TSE consistently

produced least bias, with TSEnr and TSEipcw producing

similar, marginally higher levels of bias – as demon-

strated by Scenarios 25 and 26.

Stabilised vs Unstabilised weights

Percentage bias, empirical standard error and RMSE

results for applications of TSEipcw with and without sta-

bilised weights across Scenarios 17–20 and 25–28 are

presented in Additional file 1: Appendix J. Applications

of TSEipcw that used stabilised weights generally pro-

duced marginally lower percentage bias than those that

Fig. 5 Root mean squared error across all scenarios. Note: ITT: intention to treat; TSE: two-stage estimation; TSEnr: two-stage estimation without

re-censoring; TSEipcw: two-stage estimation with inverse probability of censoring weights. RMSE: root mean squared error
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used unstabilised weights in scenarios with a low disease

severity – that is, in the scenarios where TSEipcw per-

formed poorly with unstabilised weights. However,

whilst RMSE and mean coefficients of variation in the

weights were substantially reduced in these scenarios

(with mean coefficients of variation ranging from 5.6 to

16.8 for applications with unstabilised weights and 1.8 to

12.0 for stabilised weights), percentage bias and RMSE

remained relatively high compared to TSE and TSEnr.

The proportion of simulations with maximum weights

over 100 was reduced in these scenarios when stabilised

weights were used, but remained high (ranging from

44.6 to 77.4% with unstabilised weights and from 15.1 to

60.9% with stabilised weights).

In scenarios with a high disease severity, TSEipcw ana-

lyses that incorporated stabilised weights generally pro-

duced similar levels of percentage bias compared to

applications that incorporated unstabilised weights, and

RMSE were relatively unaffected. Mean coefficients of

variation were reduced (ranging from 0.9 to 5.4 for applica-

tions with unstabilised weights, and from 0.1 to 0.9 for sta-

bilised weights), as was the proportion of simulations with

maximum weights over 100 (ranging from 4.7 to 53.5%

with unstabilised weights and from 0.0 to 7.3% with stabi-

lised weights). This did not translate to appreciably im-

proved performance except in Scenario 28, which was the

scenario in which the greatest mean coefficient of variation

and proportion of simulations with maximum weight

greater than 100 was observed with unstabilised weights

(coefficient of variation: 5.4, compared to 0.9 with stabilised

weights; proportion of simulations with maximum weight

over 100: 53.5%, compared to 7.3% with stabilised weights).

Notably, in Scenarios 25–27 the mean coefficient of

variation of the weights was always less than 1.5 and

the proportion of simulations with maximum weight

greater than 100 was always less than 14.0%, even

with unstabilised weights.

Impact of variation in weights on TSEipcw performance

Across all scenarios we consistently found that TSEipcw

performed relatively well in scenarios where the mean

coefficient of variation in the weights in the group in

which switching was possible (i.e. amongst control group

patients) was low, producing percentage bias similar to

that produced by TSE and TSEnr. Figure 6 illustrates

the relationship between the mean coefficient of vari-

ation in the inverse probability of censoring weights,

percentage bias, and RMSE. When the mean coefficient

of variation was less than 1.5, TSEipcw produced per-

centage bias that was generally positive and ranged be-

tween − 0.6 and 3.0%. As the mean coefficient of

variation increased, there was a general trend towards

more negative bias, with percentage bias ranging be-

tween approximately − 6.0 and 2.0%. However, whilst

TSEipcw more often produced very low percentage bias

when the mean coefficient of variation was less than 1.5,

it still resulted in relatively high percentage bias (up to

3.0%) in some of these scenarios, and only resulted in

percentage bias that was consistently worse when the

mean coefficient of variation was greater than 6.0. There

appears to be a positive correlation between the mean

coefficient of variation in the inverse probability weights

and RMSE. However, again, whilst TSEipcw more often

resulted in very low levels of RMSE when the mean co-

efficient of variation was less than 1.5, it still resulted in

relatively high RMSE in some of these scenarios, and

RMSE only became consistently worse when the mean

coefficient of variation was greater than 6.0.

There also appears to be a relationship between the

size of the maximum weight and the performance of

TSEipcw. In scenarios in which TSEipcw produced rela-

tively high percentage bias and RMSE, the proportion of

simulations that had maximum weights of greater than

100 and 1000 was high. To investigate this further we

re-estimated percentage bias, empirical SE and RMSE

for TSEipcw in all scenarios, only including simulations

where the maximum weight was (i) ≤ 20; (ii) ≤100; (iii)

≤1000. Results are presented in Additional file 1: Appen-

dix K. Often these analyses resulted in excluding large

numbers of simulations and so they must be interpreted

with caution – for instance, in Scenario 20, only 29 of

the 1000 simulations had maximum weights less than

20; 226 had maximum weights less than 100, and; 565

had maximum weights less than 1000. Patterns in per-

centage bias remained similar to the overall results in

each case. The empirical SE and RMSE associated with

TSEipcw decreased when simulations with maximum

weights of greater than 1000 and greater than 100 were

excluded, especially in scenarios in which TSEipcw pre-

viously exhibited very high empirical SEs (such as

Scenarios 20 and 36), but other changes were minimal.

Discussion
Our study demonstrates the value of combining the

two-stage adjustment method with IPCW to correct for

informative censoring in counterfactual datasets derived

when adjusting for treatment switching in clinical trials.

We have demonstrated that the TSEipcw approach gen-

erally performs well when the estimated weights have a

low coefficient of variation. Previous research has dem-

onstrated that adjustment analyses that use re-censoring

to address the informative censoring problem are likely

to produce biased estimates of long-term control group

mean survival time in situations where the survivor

function is complex, with important changes in the haz-

ard function over time [18]. For instance, when hazards

decrease towards the end of trial follow-up (as simulated
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in the majority of scenarios in the present study),

re-censoring is likely to cause this trend to be missed,

resulting in under-estimates of long-term mean survival.

In contrast, analyses that do not apply re-censoring are

likely to produce over-estimates of long-term control

group mean survival time (hence under-estimates of the

treatment effect) [18]. Given this, using IPCW in com-

bination with the TSE adjustment method represents a

valid additional option for an analyst attempting to avoid

the pitfalls of either re-censoring or not re-censoring. In

the right circumstances, the TSEipcw approach can be

used to enhance analyses presented to decision-makers

who are interested in estimating long-term treatment ef-

fects in trials confounded by treatment switching.

The TSEipcw method produced lower percentage bias

than the re-censoring and non-re-censoring options in 11

of the 48 scenarios, and in 9 of these it produced bias that

was intermediate in relation to the negative bias produced

Fig. 6 Impact of mean coefficient of variation in weights on TSEipcw performance: (a) percent bias; (b) Root mean squared error. Note: TSEipcw:

two-stage estimation with inverse probability of censoring weights
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by TSE and the positive bias produced by TSEnr. TSEipcw

was most likely to produce lower bias than TSE and

TSEnr when the treatment effect was high – in these sce-

narios re-censoring results in a large amount of lost infor-

mation, whilst not re-censoring results in more important

informative censoring bias. In several other scenarios

TSEipcw produced percentage bias that was of a similar

size to that produced by TSE and TSEnr. It may be argued

that TSEipcw has theoretical advantages over TSE and

TSEnr, given the HTA context where the objective is to

estimate long-term survival. Re-censoring is sub-optimal

because it leads to a loss of longer-term information,

whilst a failure to re-censor means that results are prone

to informative censoring bias. TSEipcw does not involve a

loss of information and protects against informative cen-

soring bias, provided the no unmeasured confounding as-

sumption is satisfied.

However, we found that TSEipcw has important limita-

tions in several of the scenarios that we simulated.

TSEipcw was the worst performing adjustment method in

scenarios where the mean coefficient of variation of the

weights was high and where a large proportion of simula-

tions had very high weights (greater than 100). Our results

suggest that if the coefficient of variation is less than

approximately 1.5, TSEipcw is likely to perform consist-

ently and well. When the coefficient of variation is higher,

the method becomes more inconsistent and prone to

higher levels of bias and RMSE, and should not be relied

upon. Notably, this coefficient of variation is measured

only across patients in the control group, as these were

the only patients to which weights were applied in our

study. The coefficient of variation would be substantially

reduced if we included experimental group patients in its

estimation, because all these patients received weights of 1

across all time-periods. Our findings are in line with previ-

ous research, which has shown that IPCW methods be-

come prone to substantial error when observations are

assigned extreme weights [11, 12, 33]. In this study, high

weight variation was often observed in scenarios with low

disease severity (and thus a high censoring proportion),

but this was not always the case. In fact, high weight vari-

ation was only observed when disease severity was low

and the simulated disease mechanism was such that a sub-

stantial proportion of patients censored at the end of the

study had not experienced disease progression. Import-

antly, we conclude that TSEipcw will not necessarily

perform poorly in the presence of a high censoring pro-

portion – rather, it becomes prone to bias when the coeffi-

cient of variation in the weights is high, irrespective of the

reason for the large range in the estimated weights.

We also found that the performance of TSEipcw was

relatively poor in scenarios with a high proportion of

simulations that resulted in very high maximum weights.

However, we are unable to conclude what size maximum

weight is “too large” – in scenarios in which TSEipcw

performed poorly it generally continued to perform

poorly even when simulations with maximum weights of

greater than 20 were excluded. In practice, choosing an

optimal weighting model is not straightforward. Previous

research has shown that changing the model specifica-

tion can result in drastically different weights [46]. It

therefore follows that various model specifications

should be explored. Weight truncation could be consid-

ered, though this should be used with caution as it may

re-introduce bias [46].

Given our suggestion that replacing re-censoring

with IPCW represents a valid option, the limitations

of this approach should be considered. In particular,

in this context IPCW is applied to a counterfactual

dataset. IPCW analyses rely upon the ‘no unmeasured

confounding’ assumption, and therefore require infor-

mation on baseline and time-dependent covariates

that are prognostic for survival and predict censoring.

In the context where TSE is used to adjust survival

times to account for treatment switching, and then

IPCW is applied to the resulting counterfactual data-

set, observations on time-varying characteristics (such

as biomarker values) beyond the point of switching

are of questionable use because they may have been

affected by the treatment switch. In our simulations,

we had perfect information on such variables, because

we simulated their values prior to applying treatment

switching – reflecting a situation where time-varying

values beyond the switch point could be perfectly

predicted, adjusted for switching. In reality, structural

mean models may be required to estimate these

values, further complicating the analysis. To test the

sensitivity of the TSEipcw method to violations of the

no unmeasured confounding assumption, we included

a version of the TSEipcw analysis that assumed that

no information was available on the time-varying bio-

marker, and hence the only time-varying information

included in the weighting model was progression time

– which represented time-varying information that

was not affected by treatment switching because

switching only happened after disease progression.

This approach performed almost identically to the ap-

proach that incorporated full information on the

time-varying biomarker, because there was a strong

association between the biomarker and progression

time in our simulated datasets. This may not always be

the case – in practice, clinical expert knowledge and

causal pathways should be examined to identify whether

values of time-dependent variables need to be predicted

beyond the switching time-point in order to adequately

satisfy the no unmeasured confounding assumption.

A further limitation of the IPCW approach in this

context is that random entry into the study combined
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with a calendar-date study end time-point may result in

very low numbers at risk at the end of the study

follow-up period, resulting in large weights for the

remaining observations. We did not attempt to address

this issue in our simulation study, and TSEipcw still per-

formed well in several scenarios. In reality a small

amount of re-censoring could be applied to avoid this

problem if it was identified as the reason for obtaining

large weights. This would involve the loss of some

longer-term information, but substantially less than

under the full re-censoring approach.

Our study has limitations. As previously described, a

simulation study can never be exhaustive in relation to

the scenarios investigated, alternative methods could be

used to generate the simulated datasets, and alternative

endpoints could be considered important for different

contexts [18]. We believe that our simulation mechan-

ism allowed us to generate realistic datasets, and our

endpoint of restricted mean survival is relevant given

our focus on analyses used to inform HTA analyses,

whilst avoiding the problems associated with extrapola-

tion that would have arisen had we have chosen to focus

on even longer term (perhaps lifetime) mean survival.

It may be considered to be a limitation that we would not

expect any of the adjustment methods to work perfectly in

our simulated scenarios, because underlying survival times

were simulated using a mixture Weibull model incorporat-

ing a time-dependent covariate, whereas we used flexible

parametric spline-based models to estimate the RMST as-

sociated with each method adjustment. We included the

correct variables within the adjustment models and there-

fore the no unmeasured confounders assumption held, but

the underlying survival models were different. This was

intentional because in reality true underlying survival

models are unknown. Common practice in HTA is to use a

flexible parametric model if the observed hazards are com-

plex (i.e. with turning points) [41, 42] and therefore we took

this approach in this study.

Perhaps the most important limitation of our study is

that in most scenarios we simulated a complex hazard

function which first increased and then decreased within

the study period. This is a key driver of the results associ-

ated with the application of TSE that applied re-censoring,

because the associated loss of longer-term information

was important – an important change in the trend in the

hazard was missed when longer-term information was

lost, resulting in biased estimates of mean survival time

restricted to the end of the simulated trial follow-up

period. As previously stated, we believe that the haz-

ard and survival functions that we simulated are real-

istic, but in some cases such trends in the hazard

may not be observed; turning points or changes in

slope of the hazard function may occur beyond the

end of the trial, or may not occur at all. In such

cases, re-censoring should not result in bias due to

lost longer-term trial information.

It is also relevant to note that we only incorporated the

two-stage adjustment method in this study – we did not in-

clude the rank preserving structural failure time model

(RPSFTM) [47]. The RPSFTM has the same problems asso-

ciated with censoring as the two-stage method, and there-

fore combining the RPSFTM with IPCW represents an

alternative to re-censoring in the same way that it does for

TSE. We did not assess RPSFTM combined with IPCW be-

cause doing so is not straightforward: inverse probability of

censoring weights would need to be estimated for every

value of ψ included within the g-estimation process. This

would be computationally intensive, especially within a

simulation study where thousands of analyses are con-

ducted. Therefore, we focussed our investigation on the

two-stage method. In theory, we would expect IPCW to

perform similarly when combined with RPSFTM as when

combined with TSE, because in both cases it is simply being

applied to a counterfactual dataset in which adjustments

have been made for treatment switching.

Conclusions
Incorporating IPCW within two-stage adjustment ana-

lyses represents a credible alternative to re-censoring or

not re-censoring, provided that estimated weights are

not extreme in size and have relatively low variation.

The characteristics of the trial and treatment under in-

vestigation and the objectives of the research are import-

ant to consider: if the objective is to estimate long-term

treatment effects and there is likely to be important

changes in the hazard function and the treatment effect

over time, re-censored analyses are prone to bias due to

lost longer-term information, and non-re-censored ana-

lyses are prone to informative censoring bias. These

problems are particularly important when the treatment

effect is high. Provided the no unmeasured confounding

assumption is reasonable and that estimated weights

have low variation, we recommend presenting TSEipcw

alongside adjustment analyses with and without

re-censoring to provide decision-makers with enhanced

information on the range in which the true treatment ef-

fect is likely to lie. If weights have high variation

TSEipcw should not be relied upon, and we recommend

considering the characteristics of the trial and the results

of previous research [18] to help determine whether

re-censoring or not re-censoring represents the ap-

proach likely to result in least bias.
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