
This is a repository copy of Modeling Glycan Processing Reveals Golgi-Enzyme 
Homeostasis upon Trafficking Defects and Cellular Differentiation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/143616/

Version: Published Version

Article:

Fisher, Peter, Spencer, Hannah, Thomas-Oates, Jane orcid.org/0000-0001-8105-9423 et 
al. (2 more authors) (2019) Modeling Glycan Processing Reveals Golgi-Enzyme 
Homeostasis upon Trafficking Defects and Cellular Differentiation. Cell reports. pp. 1231-
1243. ISSN 2211-1247 

https://doi.org/10.1016/j.celrep.2019.03.107

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Article

Modeling Glycan Processing Reveals Golgi-Enzyme
Homeostasis upon Trafficking Defects and Cellular
Differentiation

Graphical Abstract

Highlights

d Developed a stochastic model of N-glycosylation coupled

with Bayesian fitting

d Validated predicted changes of Golgi organization in

trafficking mutants

d Model pinpointed functionally relevant glycan alterations in

osteogenesis

Authors

Peter Fisher, Hannah Spencer,

Jane Thomas-Oates, A. Jamie Wood,

Daniel Ungar

Correspondence

jane.thomas-oates@york.ac.uk (J.T.-O.),

jamie.wood@york.ac.uk (A.J.W.),

dani.ungar@york.ac.uk (D.U.)

In Brief

A biologically relevant model of glycan

processing was developed for predicting

changes in enzyme organization within

the Golgi. Fisher et al. predict and

experimentally validate changes in Golgi-

enzyme levels and localizations due to

perturbation to intra-Golgi trafficking, and

they describe a functionally important

change in glycan-branching activity

during osteogenesis.

Fisher et al., 2019, Cell Reports 27, 1231–1243

April 23, 2019 ª 2019 The Authors.

https://doi.org/10.1016/j.celrep.2019.03.107



Cell Reports

Article

Modeling Glycan Processing Reveals Golgi-Enzyme
Homeostasis upon Trafficking Defects
and Cellular Differentiation

Peter Fisher,1,2 Hannah Spencer,1,2 Jane Thomas-Oates,2,* A. Jamie Wood,1,3,* and Daniel Ungar1,4,*
1Department of Biology, University of York, York YO10 5DD, UK
2Department of Chemistry and Centre of Excellence in Mass Spectrometry, University of York, York YO10 5DD, UK
3Department of Mathematics, University of York, York YO10 5DD, UK
4Lead Contact

*Correspondence: jane.thomas-oates@york.ac.uk (J.T.-O.), jamie.wood@york.ac.uk (A.J.W.), dani.ungar@york.ac.uk (D.U.)

https://doi.org/10.1016/j.celrep.2019.03.107

SUMMARY

The decoration of proteins by carbohydrates is

essential for eukaryotic life yet heterogeneous due

to a lack of biosynthetic templates. This complex car-

bohydrate mixture—the glycan profile—is generated

in the compartmentalized Golgi, in which level and

localization of glycosylation enzymes are key deter-

minants. Here, we develop and validate a computa-

tional model for glycan biosynthesis to probe how

the biosynthetic machinery creates different glycan

profiles. We combined stochastic modeling with

Bayesian fitting that enables rigorous comparison

to experimental data despite starting with uncertain

initial parameters. This is an important development

in the field of glycan modeling, which revealed bio-

logical insights about the glycosylation machinery

in altered cellular states.We experimentally validated

changes in N-linked glycan-modifying enzymes in

cells with perturbed intra-Golgi-enzyme sorting and

the predicted glycan-branching activity during os-

teogenesis. Our model can provide detailed informa-

tion on altered biosynthetic paths, with potential for

advancing treatments for glycosylation-related dis-

eases and glyco-engineering of cells.

INTRODUCTION

Glycosylation is a ubiquitous post-translationalmodification in eu-

karyotes. It plays roles ranging fromprotein stability (Waetzig etal.,

2010) through cell adhesion (Zhao et al., 2008) to complex physi-

ological traits like antibody-dependent cellular cytotoxicity (Fer-

rara et al., 2006;Shields et al., 2002).N-linkedglycosylation is initi-

ated in the endoplasmic reticulum (ER), with subsequent glycan

processing during transport through the Golgi. Within the Golgi,

an interplay of glycosidase-mediated mannose trimming and

monosaccharide additions via glycosyltransferases (Figure 1A)

generates N-glycans classed as oligomannose (five to nine man-

noses), hybrid (at least one N-acetylglucosamine [GlcNAc]-initi-

ated antenna and five mannoses), and complex (up to five

GlcNAc-seeded antennae). The GlcNAc-seeded antennae in

complex glycans can be extended through galactosylation and

capped by the often-functional sialic acid (Christie et al., 2008;

Scott and Panin, 2014). Another functionally important modifica-

tion is fucosylation,whichcanoccuron thechain-initiatingGlcNAc

(core fucosylation) or the antennae (Hemmerich et al., 1994). In the

absence of a template, and due to the limited time spent in the

Golgi, competition among enzymatic modifications generates a

heterogeneous glycan mixture (Stanley and Sudo, 1981).

Glycosylation enzymes are non-uniformly distributed between

Golgi cisternae (Dunphy and Rothman, 1983; Rabouille et al.,

1995). The levels and distributions of enzymes are cell type spe-

cific, and together they determine a given cell’s glycan profile

(Fisher and Ungar, 2016). Enzyme distributions are maintained

through sorting via COPI-coated retrograde vesicles (Harris

andWaters, 1996) that must be correctly targeted to the relevant

cisterna or cisternae. The conserved oligomeric Golgi (COG)

complex is involved in COPI-vesicle targeting at the Golgi appa-

ratus through its ability to self-assemble (Willett et al., 2016) and

interact with other trafficking proteins (Fukuda et al., 2008; Miller

et al., 2013; Willett et al., 2013). COG defects have been shown

to result in aberrant glycosylation in model systems (Abdul Rah-

man et al., 2014; Bailey Blackburn et al., 2016; Belloni et al.,

2012; Pokrovskaya et al., 2011; Struwe and Reinhold, 2012;

Whyte and Munro, 2001) and in an expanding group of genetic

disorders known as congenital disorders of glycosylation

(CDGs) (Kodera et al., 2015; Zeevaert et al., 2008).

Mesenchymal stromal cells (MSCs) are a valuable model for

studying glycan function. They can differentiate into several

cell types, and the Y101 immortalized human MSC line readily

differentiates into osteoblasts under suitable growth conditions

(James et al., 2015). The glycan profile of Y101-derived osteo-

blasts is markedly different from that of the parent MSC lines

(Wilson et al., 2016). Glycosylation has been shown to modulate

the ability of thisMSC line to undergo osteogenesis (Wilson et al.,

2018). Specifically, inhibition of mannosidase I (MAN1), which

limits N-glycans to their oligomannose form, increases differen-

tiation. Yet it is unclear which glycan structures are modulating

differentiation (Wilson et al., 2018).

Established kinetic models of glycosylation, based on ordinary

differential equations (ODEs) (Krambeck and Betenbaugh, 2005;
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Krambeck et al., 2009; Umaña and Bailey, 1997), assume that

the essential dynamics of glycan biosynthesis are appropriately

captured by this deterministic approach. Other models based on

ODEs have explored the role of multiple compartments in glycan

biosynthesis (Hossler et al., 2007; Liu et al., 2008). For example,

Hossler et al. (2007) modeled glycosylation in the context of ve-

sicular transport and cisternal maturation of the Golgi apparatus

and concluded that cisternal maturationwasmore likely to be the

true mechanism, although it has been suggested that better

approximations regarding modeling of the cisternal maturation

process could have been made (Krambeck et al., 2017). These

models of glycosylation are based on ODEs; however, the signif-

icant heterogeneity in glycan structures suggests that stochastic

models (e.g., Spahn et al., 2016), explicitly incorporating molec-

Figure 1. Modeling N-Linked Glycosylation

in Mammalian Cells

(A) Example of the sequential nature of theN-linked

glycosylation pathway in mammalian cells. MAN1

trims oligomannose glycans before conversion to

the hybrid class through the action of MGAT1.

Before galactose is added to the complex branch

of the hybrid structure, the removal of two

mannose residues by MAN2 can convert hybrid

into complex glycans. Fucosylation on the

antennae of complex glycans (ant Fut) can be

catalyzed by several fucosyltransferases that are

grouped for the simulation of glycosylation re-

actions. The sialylation rate for the different

branches of bi-antennary glycans was modeled

separately to account for potentially different rates.

(B) Schematic representation of the stochastic

simulation algorithm (SSA) used to simulate

glycosylation reactions. The propensity for each

competing reaction is used to calculate the

probability of each reaction occurring. Time is

then advanced by dt, which is drawn from an

exponential distribution with a mean equal to

1=total propensity. An example of the linear nota-

tion used to define a glycan structure, which was

used for substrate recognition and modification

following a reaction by the modeling software, is

also included. Each monosaccharide residue is

defined, along with the link as a linear string.

Brackets represent separate branches, and colons

represent the terminus of each branch. These

strings can be recognized by enzyme rules in the

SSA. The conventional notations for the glycan

structures are shown for comparison.

See also Figure S1 and Table S1.

ular noise, may offer greater insight. This

has been recognized in other aspects of

biology (Eldar and Elowitz, 2010). Here

we report development of a stochastic

model of N-linked glycan processing

and use Bayesian fitting (Csilléry et al.,

2010) to measured glycan profiles to pre-

dict changes in Golgi-enzyme organiza-

tion in three human model cell lines. In

our model, we started with the assump-

tion that the enzymatic rates are not sub-

strate specific, only enzyme specific, in contrast to ODEmodels.

Substrate specificity for a limited set of reactions was introduced

when required as typical of deterministic models. Our model

makes experimentally testable predictions about the altered

levels and localizations of enzymes in COG mutants and pro-

vides a testable hypothesis for the functional role of specific

glycans during cell differentiation.

RESULTS

Model Development

A cell’s highly heterogeneous N-glycan profile depends on the

levels, enzymatic rates, and distributions of individual enzymes

in the Golgi cisternae. We simulate the glycosylation reactions

1232 Cell Reports 27, 1231–1243, April 23, 2019
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using a stochastic simulation algorithm (SSA) (Figure 1B) (Gibson

and Bruck, 2000; Gillespie, 1976), in contrast to the differential

equation approach used previously (Krambeck andBetenbaugh,

2005; Krambeck et al., 2009). The SSA captures all possible re-

actions as discrete events, determined by a set of rules for each

enzyme (Table S1) that dictate which substrates it is converting

to which products. Each glycan is acted upon by a changing

set of enzymes constrained by their available target sites; as

new monosaccharides are added, acceptable target sites also

change (Figure 1B). These reactions happen at random times

and in a random order depending on the enzymatic rate and

amount of each enzyme but independent of how the glycan sub-

strate was generated.

The enzymatic reactions are implemented using string substi-

tutions to add or remove monosaccharides on the glycans

represented in a form of linear notation to build new structures

(Figure 1B). The linear notation is similar to those previously

used (Krambeck and Betenbaugh, 2005) and has been devel-

oped for computational convenience. All simulated glycan pro-

files are compared with experimental glycan profiles obtained

mass spectrometrically from permethylated glycans. The use

of MALDI mass spectrometry (MALDI-MS) of permethylated gly-

cans has been demonstrated and accepted to provide relative

quantification of glycans (Mehta et al., 2016; Orlando, 2010;

Wada et al., 2007). To generate a computational glycan profile

to be compared to experimental mass spectra, we simulate a

large number (n = 10,000) of input glycans entering the Golgi

one at a time. The glycans entering the simulated Golgi are

drawn from a distribution of structures known to exit the ER

(Man8, Man9, and Man9Glc). As the glycan is processed by the

SSA, it undergoes successive modifications until a time limit is

reached and it passes to a new cisterna.

To determine a set of appropriate rates for the SSA based on

the relative effective enzymatic rates of the glycan-modifying en-

zymes and their unique localizations within the Golgi stack, our

computational method is parameterized using a Bayesian frame-

work (Figure S1) (Marjoram et al., 2003). Throughout this work,

we have adopted the term ‘‘effective enzymatic rate’’ to describe

the composite nature of the parameter used in the modeling. We

define the effective enzymatic rate as the product of the en-

zyme’s protein level, the availability of its nucleotide-monosac-

charide substrate, and its inherent chemical enzymatic rate.

The effective enzymatic rate parameters are not direct measure-

ments of enzyme rate constants but rather a composite of

enzyme features. Only changes in these parameters are consid-

ered, not their absolute values; therefore, only relative, rather

than absolute, glycan quantification is required for the modeling.

The unique advantage of using a Bayesian framework is that it

allows us to incorporate existing knowledge, no matter how

tentative or precise, to construct a series of prior distributions

for our parameters. This results in a broad distribution for largely

unknown parameters or a sharp distribution centered around a

single value for well-characterized parameters. This allows us

to not require exact, well-defined enzymatic rates, protein levels,

and localizations.

We challenge this modeling framework by comparing its

output to experimental glycan profiles. This results in a fitting

process whereby our initial prior distributions are systematically

updated to give a new set of parameter distributions called pos-

teriors. The shift between the priors and the posteriors both re-

flects clarifications of our existing knowledge during initial fitting

and can capture real biological changes during empirical pertur-

bation between cellular states.

Our experimental glycan profiles were collected from whole-

cell lysates that contain a significant proportion of oligomannose

glycans. Significant sources of these may be endo-lysosomal

glycoproteins or recycled ER-resident proteins. Endo-lysosomal

glycoproteins are predominantly decorated with oligomannose

glycans due to the Man-6-phosphate (Man6P) targeting tag

that prevents conversion to hybrid and complex glycans (Bieber-

ich, 2014). ER-resident glycoproteins that are recycled from the

Golgi may also contain oligomannose glycans that do not

undergo further processing. Therefore, we included a parameter

(oligomannose [OM] quench) that prevents oligomannose

glycans from being further processed. The OM quench param-

eter is effectively a combination of the GlcNAc-1-phosphotrans-

ferase enzyme that initiatesMan6P biosynthesis and the removal

of ER glycoproteins from the Golgi via retrograde traffic to the

ER. Modeling started with rules covering the set of reactions

able to generate all possible glycans in a profile. To achieve

high-quality fits to experimental glycan profiles, rules (detailed

later) had to be refined and modified, justified by the existing

literature. These refinements represent internal properties of

the enzymes (e.g., substrate-specific rates) and were therefore

modeled as scale factors that alter the effective enzymatic rates

(Figure S2; Table S2).

Modeling N-Glycosylation in Mammalian Cell Lines

We first tested the model on the simple HeLa cell glycan profile

(>90% oligomannose) and the more complex HEK293T glycan

profile. The HeLa glycan profile could be reproduced in silico

with amodel distributing enzymes into three cisternae (Figure 2A;

Table S4), theminimumnumber of cisternae required.Minimizing

the cisterna number prevents excessive use of computational

Figure 2. Model Development for WT Mammalian Cell Lines

(A and B) Observed and simulated glycan profiles of whole-cell WTHeLa cells (A) and HEK293T cells (B). The glycan profile is simulated three times using the SSA,

with the mean parameter values from all individual fitting runs used to generate an average glycan profile with error bars. For glycan profiles, the error bars are

SEM for n = 3.

(C) Prior parameter distribution values for the MAN1 enzyme contrasted with posterior values following optimization of the MAN1 effective enzymatic rates.

Initially, MAN1 was modeled as a cis-Golgi enzyme.

(D) Predicted distributions of selected enzymes following fitting. Error bars are SD for n = 20 (HeLa) and n = 15 (HEK293T) individual fitting procedures.

(E) Airyscan confocal micrographs of GM130 and MAN1 or endo-mannosidase in nocodazole-treated WT HEK293T cells. Scale bar is 5 mm.

(F) Pearson’s correlation coefficients for GM130-MAN1 and GM130-endo-mannosidase. Pearson’s correlation coefficients were calculated for each Golgi stack,

and error bars are SD for n = 55 (MAN1) and n = 62 (endo-mannosidase) stacks. ***p < 0.001 for a Student’s t test.

1234 Cell Reports 27, 1231–1243, April 23, 2019



time. To fit the oligomannose glycan distribution, a scale factor

was necessary to modify the rate for converting Man6GlcNAc2
to Man5GlcNAc2 as published (Bause et al., 1992; Lal et al.,

1998); this was then used throughout the study (Figure S2;

Table S2).

Our initial assumption based on the literature was thatMAN1 is

predominately cis-Golgi localized (Dunphy and Rothman, 1983;

Marra et al., 2001). However, after fitting, the model predicted

it spread over the whole stack, with a weak medial-Golgi prefer-

ence (Figure 2C). Although often considered a cis-Golgi marker,

MAN1 localization has been shown to vary across cell types

(Velasco et al., 1993), consistent with our in silico finding.

Furthermore, confocal microscopy revealed that MAN1 localizes

adjacent to the cis-Golgi marker GM130 in HEK293T cells, in

contrast to Golgi-endo-mannosidase that colocalizes with this

marker (Figures 2E and 2F). This is consistent with our model’s

prediction that MAN1 is positioned away from the cis side and

thus closer to the medial Golgi than the endo-mannosidase in

the modeled cell lines (Table S4).

Fitting theHEK293Tglycan profiles started from the fittedHeLa

parameters, allowing comparison of the two cell lines. However,

for a good HEK293T profile fit, a fourth model cisterna was

required (Figure 2B; Table S5), likely due to this cell line’s more

complex glycan profile. Moreover, to achieve this fit, separate

rates for the sialylation of galactoses on the 3.1Man and 6.1Man

antennae (Barb et al., 2009; Joziasse et al., 1987), and galactosy-

Figure 3. Validation of Fitting Methodology

with Drug Treatment of Mammalian Cells

(A and B) Observed and simulated glycan profiles

of HeLa cells (A) and HEK293T cells (B) following

treatment with the MAN2 inhibitor swainsonine

(SW). Error bars for glycan profiles are SEM

for n = 3.

(C) Predicted total effective enzymatic rate of the

MAN2 enzyme in both cell lines with and without

swainsonine treatment normalized to the total

MAN2 effective enzymatic rate modeled in the

untreated cell lines.

(D) Prior and posterior distributions of the MAN2

effective enzymatic rate in the second cisterna of

HEK293T cells.

(E) Total effective enzymatic rate changes upon

swainsonine treatment for selected enzymes.

Error bars are SD for n = 13 (HeLa) and n = 16

(HEK293T) individual fitting procedures.

(F) Observed swainsonine-treated HEK293T

glycan profile and simulated glycan profile using

the parameters fitted for untreated cells but with

the MAN2 effective enzymatic rate set to 0.

See also Tables S4 and S5.

lation of bi- versus tri- and tetra-antennary

glycans (Ramasamy et al., 2005), had to

be introduced. These additions were pre-

sumably not required for fitting the HeLa

cell data, because they mainly affect

hybrid- and complex-type glycans, which

are in low abundance in HeLa cells. In

HEK293T cells, MAN1 is predicted to

have a predominantly early-medial localization (Figure 2D; Table

S5), in contrast to its medial location in HeLa cells, which is likely

a consequence of the additional cisterna introduced to process

more complex glycans.

To demonstrate that our model can make rational predictions,

we treated both HeLa and HEK293T cells with the mannosidase

II (MAN2) inhibitor swainsonine (Elbein et al., 1981). This results in

strongly increased hybrid N-glycan content and generation of

fucosylated Man5GlcNAc2. To allow for this fucosylation reac-

tion, albeit at a lower rate than with other substrates (Crispin

et al., 2006; Lin et al., 1994; Yang and Wang, 2016; Yang et al.,

2017), a scale factor was added for fucosyltransferase 8

(FUT8) modifying Man5GlcNAc2 (Figure S2; Table S2). Starting

with the parameter values obtained from fitting the glycan

profiles of untreated cells, we fitted to the glycan profiles of

swainsonine-treated HEK293T and HeLa cells by optimizing

parameter values within the established modeling framework

(Figures 3A and 3B). The model obtained predicts the expected

large decrease in the effective enzymatic rate of MAN2 (Figures

3C and 3D).

The model also predicts an unexpected increase in effective

sialylation rate in both cell lines (Figure 3E). The requirement

for increased sialylation was confirmed by simulating a glycan

profile using the original HEK293T parameters but with the

MAN2 enzyme removed to account for the known effect of

swainsonine. The resulting simulated profile only partially

Cell Reports 27, 1231–1243, April 23, 2019 1235
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matched the drug-treated experimental glycan profile (Fig-

ure 3F), demonstrating that the fitting procedure is required to

capture novel features in glycan processing.

Predicting the Impact of Trafficking Defects

Several conditions, such as CDGs, cancers, and cellular differ-

entiation, can alter the levels and localizations of glycosylation

enzymes. Experimentally determining such changes, in partic-

ular altered cisternal localization, is difficult, especially when

dealing with a dozen or more enzymes. Perturbing COG sub-

units alters cellular glycan profiles (Abdul Rahman et al., 2014;

Bailey Blackburn et al., 2016; Skeene et al., 2017). Therefore,

to test the model’s ability to predict changes in enzyme levels

and localizations, we fitted the glycan profiles of a Cog4 knock-

down (Cog4KD) HeLa cell line and a Cog4 knockout (Cog4KO)

HEK293T cell line, in each case starting with the fitted parameter

set for the respective wild-type (WT) profile. The altered relative

intensities of oligomannose-type glycans in Cog4KD HeLa cells

could be replicated in silico (Figure 4A). The alteration to the

oligomannose abundance leads our model to predict MAN1 dis-

tribution to flatten out and shift to a more trans-Golgi localization

(Figure 4E). Moreover, a reduction in the overall effective MAN1

rate is predicted by the model (Figure 4C).

The Cog4KD HeLa cell model focuses on oligomannose gly-

cans and their modifying enzymes. In contrast, the Cog4KO

HEK293T cells show marked changes in complex glycans:

they show large decreases in the levels of fucosylation and sia-

lylation, in addition to redistribution of oligomannose glycans

(Bailey Blackburn et al., 2016) without a significant change in

the cell surface proteome (Figure S6; Table S3). To simulate

the glycan profile of these cells (Figure 4B), the model predicts

decreases in the total effective enzymatic rates of N-acetylglu-

cosaminyltransferase I (MGAT1), N-acetylglucosaminyltransfer-

ase V (MGAT5), MAN2, and galactosyltransferase (GalT) (Fig-

ure 4C; Figure S3). We validated the predicted decreases in

GalT andMGAT1 levels throughwestern blotting (Figure 4D). Un-

expectedly, the model predicts the effective enzymatic rate of

FUT8 to show no significant change upon Cog4KO, despite

the observed reduction in overall fucosylation levels (Bailey

Blackburn et al., 2016), a prediction also validated by western

blotting (Figure 4D).

Upon fitting the Cog4KO HEK293T profile, three enzymes ex-

hibited localization changes compared with WT (Figure 4F). The

distribution of MAN1 was shifted in the trans direction, although

to a smaller degree compared to Cog4KDHeLa cells. In contrast,

the proportions of MGAT5 in the third cisterna and GalT in the

fourth cisterna were reduced upon Cog4KO, indicating a shift

of these enzymes toward the cis side of the Golgi (Figure 4F).

This suggests that the overall loss of enzyme levels is largely

due to loss in the trans-Golgi. Confocal microscopy showed

increased colocalization between cis-Golgi marker GM130 and

exogenously expressed GalT-YFP in the Cog4KO cells (Figures

4G and 4H), a finding also reported in the literature (Climer

et al., 2018).

It was puzzling that neither the level nor the localization of

FUT8 was altered in the Cog4KO model. The action of FUT8

was investigated on flux maps showing all reactions needed

for generating the computed glycan profiles of WT and Cog4KO

HEK293T cells. The FUT8-catalyzed reactions with the highest

proportion of flux (i.e., the most prominent fucosylation steps)

cluster away from the most abundant fucosylated glycans

(compare blue and red dots in Figure 5A and Figure S4).

The main fucosylation reactions occur early during complex

N-glycan processing, while the most abundant fucosylated gly-

cans are mature complex glycans (Figure 5A; Figure S4). We

therefore compared the fluxes of the reactions competing with

the top six FUT8 reactions between WT and Cog4KO cells

(Figure 5B; Table 1). After weighting these fluxes using the total

fucosylation flux in the given cell line, the Cog4KO cell line

showed more preference to fucosylate Hex4HexNAc4 than WT

due to less competition by GalT and MGAT5. Overall, the

weighted ratios between the two sets of fluxes suggest that

the observed decrease in total fucosylation is due to a lower total

amount of complex N-glycans. However, when comparing WT

and knockout (KO) cells, flux distributions are altered in ways

that do not always lend themselves to simplistic explanation.

For example, Hex3HexNAc4 is galactosylated more in KO cells

at the expense of branching by MGAT5. In contrast, galactosyla-

tion of Hex4HexNAc4 is reduced in KO cells due to sialyltransfer-

ase (SiaT) and FUT8, which become dominant over GalT for the

Hex4HexNAc4 substrate. Thus, our model is able to predict unin-

tuitive changes in enzyme homeostasis and fluxes through

glycan processing reactions.

Previous work combining computational simulations of the

N-glycosylation reaction network and in vitro experiments in Chi-

nese hamster ovary (CHO) cells has shown that the suppression

of GalT can lead to the formation of higher amounts of tri- and

tetra-antennary glycans (McDonald et al., 2014). We sought to

Figure 4. Predicting Organizational Changes in Trafficking Defective Cell Lines

(A and B) Observed and simulated glycan profiles of Cog4KD HeLa cell lines (A) and Cog4KO HEK293T cell lines (B). Error bars for glycan profiling are SEM

for n = 3.

(C) Total effective enzymatic rate changes predicted by the model following fitting as a result of Cog4 perturbation. The x axis is on a log scale. Error bars for total

effective enzymatic rates and distributions are SD for n = 20 (Cog4KD HeLa) and n = 21 (Cog4KO HEK293T) individual fitting procedures.

(D)Western blot analysis of endogenousMGAT1, GalT, and FUT8 and quantification normalized toWTHEK293T. Error bars for western blot quantification are SD

for n = 3. ns, not significant; *p < 0.05 for a Student’s t test.

(E) Predicted relative distribution of MAN1 following the fitting of WT and Cog4KD HeLa glycan profiles.

(F) Predicted relative distributions of selected enzymes in WT and Cog4KO HEK293T cells in each cisterna normalized to the total predicted effective enzymatic

rate for each enzyme for each cell line.

(G) Airyscan confocal microscopy of GM130 and exogenous GalT-YFP in nocodazole-treated WT and Cog4KO HEK293T cell lines.

(H) Pearson’s correlation coefficient for WT and Cog4KO HEK293T cells. Pearson’s correlation coefficients were calculated for each Golgi stack, and error bars

are SD for n = 4 cells with 151 (WT) and 131 (Cog4KO) stacks. ***p < 0.001 for a Student’s t test.

See also Figures S3 and S6 and Table S3.
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test whether this effect is also produced using our stochastic

model of glycosylation in WT and Cog4KO HEK293T cells. In

agreement with previous work (McDonald et al., 2014), varying

the effective enzymatic activity of only GalT can control glycan

branching. Increasing GalT activity decreased the abundance

of both tri- and tetra-antennary glycans as reported (Figures

5C and 5D) (McDonald et al., 2014). The maximum relative abun-

dance of highly branched glycans that could be reached at low

GalT activities was considerably lower for the Cog4KO cells

compared to WT cells.

MSCs

Glycosylation has been shown to affect MSC differentiation

potential (Wilson et al., 2018). To investigate the changes in

N-glycan biosynthesis during differentiation, we modeled glycan

profiles of Y101MSCs and their derived osteoblasts. To serve as

a starting point for fitting of the osteoblast profile, the glycan pro-

file of Y101 MSCs was modeled (Figure 6A; Table S6), starting

with the WT HEK293T parameters. Due to the used scoring

system’s reliance on the square of the difference between the

simulated and the observed relative glycan abundance, it was

possible to improve the fit by manually changing enzyme param-

eters without altering the overall score. Such manual fine-tuning,

which was used for the final fitting of the Y101 MSC model,

avoided the need to introduce multiple scoring systems with

different sensitivities to different features of themodel. We stress

that manual fine-tuning of the parameters was only undertaken

when we did not wish to directly compare the two cell line

models (e.g., WT HEK293T to Y101 MSCs).

The glycan profile of osteoblasts (Wilson et al., 2016) was then

fitted (Figure 6B; Table S7) starting from the Y101 MSCmodel to

reveal changes to the glycosylation machinery that occur during

osteogenic differentiation. Osteogenic differentiation results in

an increased complex-to-oligomannose glycan ratio, causing

the model to reduce the rate of OM quenching. The recycling

of ER glycoproteins was not expected to decrease significantly

during osteogenesis. This would suggest decreased lysosomal

content in osteoblasts compared to MSCs, yet we found the

opposite (Figure S5) (Nabavi et al., 2008; Taniguchi et al.,

2010). The increased amount of complex glycan observed

upon osteogenesis is the main cause for the reduced OM

quench effective rate. However, this shift to more complex

glycans could be due to the differentiating cells cumulatively

laying down the complex N-glycan-containing extracellular

matrix while turning over intracellular (including lysosomal and

ER) glycoproteins. Hence, we focused on predictions of the

model pertaining to complex glycans only. MGAT5 levels are

predicted to decrease and move away from medial cisternae in

Figure 5. Investigating Glycan Flux in HEK293T Cells

(A) Total flux map for all enzymatic glycan processing reactions for 10,000 input glycans occurring during the simulation of the WT HEK293T glycan profile. Blue

dots represent the substrates of the six reactions with the highest fluxes of all FUT8-catalyzed reactions. Red dots represent the most abundant fucosylated

glycans in the observed glycan profile of these cells.

(B) Weighted ratio of the Cog4KO flux to the WT flux for the top six substrates for FUT8. Red arrows highlight the fluxes of the FUT8 enzyme. Arrow thickness

denotes the ratio of flux for Cog4KO and WT HEK293T cells divided by the ratio of the total core fucosylation flux for Cog4KO and WT HEK293T cells.

(C and D) Simulated relative percent abundance of tri-antennary glycans (C) and tetra-antennary glycans (D) as it varies with the total effective enzymatic rate of

GalT in WT (black squares) and Cog4KO (gray circles) HEK293T cells. The percent total effective enzymatic rate of GalT is plotted on a log scale.

See also Figure S4.
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osteoblasts (Figures 6C and 6D). This correlates with a notice-

able shift from tri- to bi-antennary glycans in osteoblasts

compared to MSCs. Altered branching affects galectin binding

(Demetriou et al., 2001). Galectins in turn have been shown to

prevent the differentiation of pre-osteoblasts (Nakajima et al.,

2014). We hypothesized that a similar mechanism could operate

earlier than the pre-osteoblast stage in the differentiation pro-

cess, because inhibiting complex glycan formation was shown

to enhance the initial commitment of MSCs to osteogenic differ-

entiation (Wilson et al., 2018). Inhibiting galectin binding with

lactose during the first 7 days of a 21-day osteogenesis program

increased osteogenic differentiation (Figures 6E and 6F). This

implies that the reduction in N-glycan antenna number, which

is observed in osteoblasts and predicted to be a consequence

of alteredMGAT5 levels and localizations, is a contributing factor

in osteogenic differentiation.

DISCUSSION

This work has generated a computational model of Golgi-based

N-glycan processing through iteration of computation and ex-

periments. By using our in silico methodology to reproduce the

qualitative features, as well as to create high-quality quantitative

fits for glycan profiles, we can predict alterations in the enzyme

organization of cell lines that result from disruptions to the Golgi

trafficking machinery (Bailey Blackburn et al., 2016).

Nonetheless, modeling needs to be seen as a process of dis-

covery, rather than simply an end result. As the cycles of iterative

modeling progressed from HeLa cells to describe the more intri-

cate HEK293T and MSC glycan profiles, it became clear that

substrate specificity needed to be included for several enzymes.

Our fitting suggested the profiles were particularly sensitive to

GalT and SiaT, so substrate specificity was selectively intro-

duced by applying scaling factors that are consistent with the

substrate specificities of enzymes reported in the literature

(Barb et al., 2009; Joziasse et al., 1987; Ramasamy et al.,

2005). Our results also suggest that variable substrate specificity

could be particularly relevant for hybrid glycans that were often

poorly modeled when compared with complex glycans. Only a

small number of differences were found between cell surface

proteomes of WT and those of Cog4KO HEK293T cells (Fig-

ure S6), suggesting that alterations in the glycan profile due to

site-specific glycosylation (Losfeld et al., 2017) are likely to be

limited. However, we cannot eliminate the influence of site-

specific glycosylation on changes in the osteoblast glycan

profile. To improve the accuracy of modeling in the future, the

variability in the half-lives of subsets of glycoproteins could

also be considered.

Our primary goal in developing our modeling technique was to

understand the perturbations of the glycosylation enzymes

caused by defects in theCOGcomplex. Defects in this trafficking

complex cause several CDGs by altering the recycling, and

consequently the levels and localizations, of glycosylation en-

zymes (Oka et al., 2004; Steet and Kornfeld, 2006). For the com-

parison of cell lines with a disrupted COG complex (e.g., WT

HEK293T versus Cog4KO HEK293), we made the assumption

that the enzymatic rate constants do not change between the

cell lines we compared. This is because disruption to the COG

complex alters enzyme sorting, not the physical state of the

enzyme. Therefore, in these COG mutant cases, predictions of

the changes in enzyme activity parameters represent changes

in the amount of enzyme available within specific cisternae.

This is the main prediction on which we have focused our

validations.

Our model provides an excellent tool to predict all alterations

to the effective enzymatic rates of the glycosylation enzymes

and their localizations, and thereby shed light on glycan biosyn-

thetic details in Golgi trafficking-defective cell lines.Modeling the

Cog4KD HeLa cell profile has led us to predict a shift in the trans

direction of the MAN1 enzyme. Because complex glycan levels

are low, we can only make confident predictions regarding the

enzymes acting on oligomannose glycans in this system. In

contrast, modeling the glycan profile of Cog4KO HEK293T cells

predicted shifts in the levels and/or localizations of several en-

zymes acting on complex glycans. This included decreased

levels and a shift toward the cis-Golgi for GalT and MGAT5 as

a result of Cog4KO. Other enzyme levels, such as those of

FUT8, are predicted to be less sensitive to Cog4KO, and several

of these predictions, including the altered GalT localization,

agree with previous reports (Climer et al., 2018) and/or were vali-

dated experimentally.

Themodel allowedus togeneratefluxmapsdescribing thevari-

ation in glycan biosynthetic pathways as a consequence of the

mutation. This information highlights which reactions could be

best targeted to correct the glycan profile of a patient or to

glyco-engineer recombinant therapeutic proteins. For example,

by isolating the most abundant fucosylation reactions in silico,

we found that Hex4HexNAc4 was a more favorable substrate for

Table 1. WT and Cog4 KO Fluxes

Glycan Source

Normalized

KO/WT Glycan Target Enzyme

Hex3HexNAc3 0.83 Fuc1Hex3HexNAc3 FUT8

Hex3HexNAc3 0.67 Hex3HexNAc4 MGAT2

Hex3HexNAc4 0.79 Hex4HexNAc4 GalT

Hex3HexNAc4 0.81 Fuc1Hex3HexNAc4 FUT8

Hex3HexNAc4 0.37 Hex3HexNAc5 MGAT5

Hex3HexNAc5 0.49 Fuc1Hex3HexNAc5 FUT8

Hex3HexNAc5 0.17 Hex4HexNAc5 GalT

Hex4HexNAc4 0.82 Hex5HexNAc4 GalT

Hex4HexNAc4 1.53 Fuc1Hex4HexNAc4 FUT8

Hex4HexNAc4 2.64 NeuAc1Hex4HexNAc4 SiaT

Hex4HexNAc4 0.31 Hex4HexNAc5 MGAT5

Hex5HexNAc3 0.97 Fuc1Hex5HexNAc3 FUT8

Hex5HexNAc3 0.71 Hex3HexNAc3 MAN2

Hex5HexNAc4 0.60 Fuc1Hex5HexNAc4 FUT8

Hex5HexNAc4 0.61 NeuAc1Hex5HexNAc4 SiaT

Normalized flux between glycan substrate and glycan product. The

normalization is calculated by taking the ratio of flux between each sub-

strate and product for Cog4KO andWTHEK293T cells andmultiplying by

the ratio of the total core fucosylation flux for Cog4KO and WT HEK293T

cells. Normalized KO/WT fluxes over 1.0 reflect a preference for this

pathway in the Cog4KO HEK293T cell line, and vice versa.
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FUT8 in the Cog4KO cells than inWT. This was a consequence of

less competition from GalT and MGAT5 for this substrate. Thus,

although decreased fucosylation flux in the Cog4KO cells is due

to lower complex glycan levels (a consequence of reduced

MGAT1), simple overexpression of MGAT1 would result in

increased fucosylation but with an altered profile compared to

WT. Thismakes ourmodel a potentially powerful tool in the devel-

opment of treatments for COG-CDGs (Wu et al., 2004).

We also used our modeling methodology to predict adaptions

of the glycosylation machinery during the differentiation of MSCs

into osteoblasts. We observed an MGAT5-mediated shift from

tri- to bi-antennary glycans upon differentiation. The degree of

N-glycan branching has been linked to receptor endocytosis

that affects cell proliferation and differentiation (Lau et al.,

2007) via galectin binding (Demetriou et al., 2001). Inhibition of

galectin binding by lactose promoted osteogenesis even earlier

during differentiation in our hands than previously reported (Na-

kajima et al., 2014). Lactose was effective in the first week of the

3-week process. This is similar in timing to kifunensine, a drug

that abrogates complex branching, and promoted differentiation

Figure 6. Predicting Alterations in Glycan Processing as a Result of Osteogenesis

(A and B) Observed and simulated glycan profiles of MSCs (A) and MSCs following 21-day osteogenic differentiation (B).

(C) Total effective enzymatic rate changes predicted to occur upon differentiation derived following fitting of the osteoblast glycan profile. The x axis is shown on a

log scale.

(D) Distribution of MGAT5 in the Golgi stack, as predicted by the fitting of Y101MSC and osteoblast glycan profiles. Error bars for glycan profiling are SEM for n =

3. Error bars for total effective enzymatic rates and distributions are SD for n = 14 (MSC) and n = 20 (osteoblast) individual fitting runs.

(E) Representative alizarin red-stained Y101 MSCs following 21-day osteogenic differentiation in the presence of either sucrose or lactose during the first 7 days.

(F) Quantification of the eluted alizarin red stain for n = 10. ***p < 0.001.

See also Figure S5 and Tables S6 and S7.
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within the first week (Wilson et al., 2018). This suggests that a

switch from tri- to bi-antennary glycans releases an inhibitory ef-

fect on differentiation, likely by promoting the endocytosis of a

key receptor or receptors (Lau et al., 2007).

In summary, we have developed a computational workflow to

predict the architecture of the glycan biosynthetic machinery in

the Golgi based on an SSA and an approximate Bayesian

computation (ABC) fitting algorithm. Although other fitting meth-

odologies, such as genetic algorithms (Liu et al., 2008), a non-

linear least-squares (Marquardt-Levenberg) method (Krambeck

et al., 2017), and maximum likelihood estimation (Sou et al.,

2017), have been used in glycosylation modeling, our use of a

Bayesian fitting approach allows us to use prior knowledge of

the system to suggest solutions most compatible with both

data and existing knowledge. Through the use of Bayesian

fitting, we can make comparisons between cell lines in a high-

dimensional parameter space with uncertain quality of informa-

tion. This enables us to make progress, especially when under-

standing changes among biological settings. We show that our

methodology is capable of generating accurate and testable

hypotheses regarding enzyme levels and localizations by simu-

lating the glycan profiles of human cell lines perturbed through

drug treatments, genetic manipulation, and even a process

as complex as differentiation. Applying our approach to Golgi

trafficking-defective cell lines allowed us to predict which en-

zymes may be sensitive to Cog4KO, thus presenting an in silico

approach to the experimental identification of COG-sensitive

Golgi proteins (Oka et al., 2004). The ability to predict alterations

to Golgi enzymes, as well as to probe in silico-generated flux

maps to identify changes in glycosylation pathways, has

possible applications in the understanding and treatment of

COG-CDGs and the potential to be used in the glyco-engineer-

ing of biologics.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cog4KDHeLa cells were generated by the Ungar group by stable transfection of a Cog4 shRNA plasmid (Abdul Rahman et al., 2014).

HEK293T cells andCog4KOHEK293T cells were a kind gift fromVladimir Lupashin (Bailey Blackburn et al., 2016). Y101MSCswere a

kind gift from Paul Genever (James et al., 2015).

METHOD DETAILS

Cell culture and osteogenic differentiation

Cells were grown in Dulbecco’s modified essential medium (DMEM) (Life Technologies) in the presence of glutamax, penicillin/strep-

tomycin and 10% fetal bovine serum (basal medium). Cells were incubated and grown at 37�C with 5% CO2. Cells were passaged

when reaching 90% confluency by resuspension (HEK293T) or trypsinization (HeLa cells and MSCs).

For osteogenic differentiation, 80,000 MSCs were seeded in wells of a 24-well dish. Following overnight incubation, the medium

was replaced with osteogenic medium (basal medium supplemented with L-ascorbic acid-2-phosphate (50 mg/mL), b-glycero-

phosphate (5 mM) and dexamethasone (10 nM)). Cells were grown for 21 days with medium changes every 3-4 days with oste-

ogenic medium. For the conditions requiring treatment with lactose (100 mM) or sucrose (100 mM) medium was changed every

day for the first 7 days of osteogenesis and from then on, the cells were grown in osteogenic medium with medium changes every

3-4 days up to day 21.

Modeling framework

Linear notation

In order to perform string substitutions in silico, the complex structures of N-glycans needed to be represented in a form of linear

notation. Such an approach has been taken in previous work modeling N-glycosylation (Krambeck and Betenbaugh, 2005). Taking

the oligomannose glycanMan5GlcNAc2 and the complex glycan NeuAc1Gal2GlcNAc2Man3GlcNAc2 as examples, our linear notation

would represent these glycan as:

GlcNAc4.1GlcNAc4.1Man(3.1Man:)_m6.1Man(3.1Man:)_m6.1Man:@

GlcNAc4.1GlcNAc4.1Man(3.1Man2.1GlcNAc4.1Gal:)_m6.1Man2.1GlcNAc4.1Gal6.2Sia:@

In this example the linkage between residues is denoted by the numbers in a conventional manner. Residues enclosed in brackets

represent separate branches within theN-glycan. The underscore and lowercase letters represent the continuation from the previous

residue not enclosed within the brackets. The ‘‘’’: represents the termination of the branch and the ‘‘@’’ denotes the end of the N-

glycan string. We emphasize that this notation was adopted for computational reasons and should not be seen as an attempt to

create alternative glycan nomenclature or ontology.

Stochastic simulation algorithm

Enzymes necessary for the biosynthesis of the observed N-glycans were used to simulate the glycan profile, in addition to the pro-

portion of GlcNAc2Man8, GlcNAc2Man9, GlcNAc2Man9Glc entering the Golgi apparatus and the time spent in each cisterna. For the

HeLa cell modeling, this equated to 11 enzymes in three cisternae as the effective rate of each enzyme in each cisterna was repre-

sented by a separate parameter. Enzyme competition was implicitly simulated but glycan substrate competition was not, as the pro-

cessing of the precursor glycans occurred one at a time but with all enzymes present. This was repeated for 10,000 glycans in order to

generate a simulated glycan profile. Each glycan is represented using a form of linear notation and reactions are represented by string

substitution.

Glycan profiles were simulated using an SSA (Figure 1B) based on the Gillespie, or Gillespie-Doeb, algorithm (Doob, 1945; Gilles-

pie, 1976). For two competing enzymes (E1 and E2) the total rate is the sumof the two individual rate equations. A brief summary of this

methodology for a two-reaction system is as follows. For two reactions

A+E1/
k1
B+E1

A+E2/
k2
C+E2;

we can calculate a propensity, ri for each reaction, defined by

r1 = k1½A�½E1�

r2 = k2½A�½E2�;

As well as a total propensity, R,

R= k1½A�½E1�+ k2½A�½E2�:
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An event in the time period t to t+dt is determined by drawing randomly from an exponential distribution with the total rate as itsmean.

The probability P of this event being a given reaction occurring is then calculated by computing the probabilities:

pi =
ri

R
;

with

p1 +p2 = 1:

The time interval dt is then drawn from an exponential distribution.

Approximate Bayesian computation without likelihood (cf. Figure S1)

To initially parameterise the model for Bayesian fitting of the HeLa cell glycan profile we had to construct prior distributions for each

rate parameter. The total effective enzymatic rate was divided over the different cisternae, based on the enzymes’ proposed

localization e.g., 80% of the effective enzymatic rate of SiaT was placed in the third cisterna. 80% of the input glycan was

GlcNAc2Man8 and the time in each cisterna was 10 minutes. The shapes of the prior distributions for each enzyme parameter

were constructed as log-normal distributions if the enzyme was predominantly in that cisterna or exponential decay if not. Values

from the prior distributions were used to generate a simulated glycan profile using the methodology described above. The similarity

between the simulated and observed glycan profiles was quantified through a scoring system. The scoring system is defined by:

score=
Xn

i = 1

ðsemi � ðjobsi � simi j ÞÞ
2

If:

jobsi � simi j < semi

score= 0

Where semi is the standard error of the mean for the observed glycan i, obsi and simi are the relative abundances of glycan i in the

observed and simulated dataset respectively.

The prior distributions were sampled and the score reduced by 10% if the acceptance rate of parameter values was greater than

7% (Sherlock et al., 2015). The score was lowered until it reached a user defined threshold at which point the algorithm sampled in

that region until 10,000 parameter values for each variable had been accepted. Accepted parameter values were used to construct

the posterior distribution. This methodology is equivalent to the acceptance barriers in, for example (Toni and Stumpf, 2010).

Following fitting, the mean parameter values from < 10 individual fitting runs were used to generate simulated glycan profiles.

Glycans produced at a relative abundance under 0.1% were removed. Although glycan isoforms can be distinguished within the

model, isoforms were collated together to generate one value. Computational simulations were run in parallel on the York Advanced

Research Computing Cluster. To assess convergence of multiple Markov chains, the Gelman-Rubin R-Statistic was used (Gelman

and Rubin, 1992) and the chains visually assessed to confirm they did accumulate close to the bounds of the prior distribution. The

Gelman-Rubin statistic compares the in-chain variance with the between-chain variance providing assurance that the posterior

distribution has been explored to a satisfactory extent. For model development with the HeLa and HEK293T cell line data, the

oligomannose distribution was modeled initially in isolation before combining the fitting with complex and hybrid glycans.

Once a threshold was reached, the posterior distributions were assessed against the prior distributions. We are conscious that in

our method we have no means to access biological rate constants directly. Hypothetically, this could be achieved by assessing

mRNA expression, however, this does not necessarily give a reliable estimation of protein levels. In addition, while enzymatic

procession rates are based on reported measured values, these are typically from in vitro, not in vivomeasurements. To avoid large

amounts of time evaluating space in the tails of prior distributions in a high dimensional parameter space, we permitted ourselves to

move prior distributions between fitting runs where there was reasonable biological and numerical evidence to do so. A Mann-

Whitney U test was used to assign significance in means between the prior and posterior distributions for each parameter. Only if

the change in means was found to be significant was the prior distribution for that parameter altered, and the rejection algorithm

run again to a lower threshold. This is a statement of our lack of certainty regarding the composition of the prior distribution due

to the absence of direct measurements for the desired rates, and our need to avoid prior distributions that are flat, or nearly flat,

due to that large parameter space we are operating in.

Confocal Microscopy

WT and Cog4KO HEK293T cells were transfected with GalT-YFP (Cottam et al., 2014) using Xfect (Clontech) following the manufac-

turer’s instructions. 24 hours post-transfection 60,000 cells were seeded on poly-lysine-treated glass coverslips in a 24-well dish.

45 hours after transfection cells were treated with nocodazole (5 mM) for 3 hours. After nocodazole treatment the cells were washed

with PBS and then fixed in 4% paraformaldehyde (Thermo Scientific) for 15 minutes. Cells were then washed with PBS, then glycine

(20 mM glycine in PBS) and then incubated in blocking solution (2%BSA, 0.1% saponin, 20 mM glycine in PBS) for 30 minutes. Cells
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were stained as indicated with anti-GM130-Alexa647 (1/400, BD Biosciences), anti-MAN1 (1/100, Thermo), anti-endo-mannosidase

(1/100, Abnova) for 1 hour before being washed in blocking solution and mounted (Immunomount, Genetex) onto slides. Slides were

imaged on a Zeiss LSM 880 operating in Airyscan mode with a 633 oil objective. Pearson’s correlation coefficients were calculated

for each individual Golgi stack and averaged for each cell analyzed. Images were analyzed using ImageJ.

Alizarin red staining

Cells were first gently washed with PBS before fixation in 4% formaldehyde (Kautex) for 20 minutes. Formaldehyde was then

removed with three PBS washes prior to incubation with Alizarin Red S (40 mM, pH 4.2) for 20 minutes at room temperature. Cells

were thenwashed three timeswith PBS followed by excessive washes with tap water. Images were acquired on a stereomicroscope

fitted with an AxiocamMrC5 (Zeiss). After drying, the alizarin red stain was eluted into 200 mL 10% cetylpyridinium chloride for 1 hour

while shaking at room temperature. The supernatant was transferred into a 96-well plate and the absorbance read at 570 nm with a

microplate spectrophotometer (Multiskan G0, Thermo).

Western blotting

Cells from a 6-well plate at �90% confluency were gently washed twice with PBS before 200 mL of SDS-PAGE buffer (5% glycerol,

50 mM Tris pH 6.8, 50 mM DTT, 1% SDS, 0.74 mM bromophenol blue) was added to each well and incubated at 20�C for 5 minutes.

Samples were then transferred into a microcentrifuge tube and heated at 95�C for 5 minutes before storage at �20�C.

Aliquots of lysate samples (10-20 mL) were loaded into an SDS-PAGE gel and run at 100 V through the stacking gel and then 180 V

through the separating gel until adequate separation of the pre-stained ladder (All Blue, Bio-Rad) had occurred. Proteins were trans-

ferred onto a polyvinylidene fluoride membrane (Immun-blot, Bio-Rad) by semi-dry transfer. Following transfer, the membrane was

blocked in 5%milk powder in PBSwith 0.05% tween-20 for 1 hour. Primary antibodies were incubated with themembrane overnight

in blocking buffer at 4�C. Primary antibodies used in this study were anti-LAMP1 (1/100, gift from Paul Pryor, University of York),

anti-GalT (1/500, R&D Systems, AF3609), anti-MGAT1 (1/500, Abcam, ab180578), anti-FUT8 (1/1000, Abcam, ab191571) and

anti-GAPDH (1/500,000, Applied Biosystems). The membrane was washed four times with the blocking buffer before incubation

at 20�C for 1 hour with HRP conjugated secondary antibody diluted in blocking buffer. The membrane was then washed a further

three times with the blocking buffer and then two times with PBS containing 0.05% tween-20. The membrane was imaged on a

Syngene GeneGenius system following exposure to BM Chemiluminescence Western Blotting Substrate (Roche) and densitometry

carried out with ImageJ. Glycosylation enzyme bands were normalized to the levels of GAPDH. TheWT andCog4KO band intensities

were quantified from the same membrane.

N-glycan release

All glycan profiling data have been previously publishedwith the exception of those from the swainsonine-treated HEK293T cells. The

use of MALDI-MS for the analysis of permethylated glycans as applied here has been demonstrated to provide reliable relative

quantification (Wada et al., 2007). HEK293T cells were treated with swainsonine (Cayman Chemicals) at 10 mg/mL for 48 hours prior

to harvesting for glycan analysis. At�90%confluency cells were washed five timeswith PBS and harvested by scraping into amicro-

centrifuge tube and then centrifuged at 14000 g for 5 minutes at 4�C. The supernatant was removed and lysis buffer (4% (w/v) SDS,

100 mM Tris/HCl pH 7.6, 0.1 M DTT) was added at ten times the pellet volume. The sample was incubated at 97�C for 5 minutes and

centrifuged at 14000 g for 10 minutes. The supernatant was then stored at �80�C.

The thawed supernatant was diluted tenfold in urea solution (8 M urea in 100 mM Tris/HCl pH 8.5) and centrifuged in an ultrafiltra-

tion tube (Amicon Ultra-0.5, Ultracel-30 membrane, nominal mass cutoff 30 kDa, Millipore) in 400 mL increments at 15000 g for 10 mi-

nutes each until the complete sample passed through the filter. The membrane filter was washed with the urea solution three times,

before the addition of iodoacetamide solution (40 mM in 300 mL urea solution). The sample was incubated in the dark for 15 minutes

and then centrifuged at 14000 g for 10 minutes. Following this the sample was washed with urea solution once followed by ammo-

nium bicarbonate (300 mL, 50 mM pH 8) three times. The membrane filter was incubated at 37�C for 16 hours with 8 U of PNGase F in

100 mL ammonium bicarbonate (50 mM) solution. Released glycans were then eluted into a fresh collection tube by centrifugation of

the ammonium bicarbonate and an additional spin with 100 mL water (HPLC grade).

Permethylation

The elutedN-glycans were transferred to glass tubes and dried in a vacuum concentrator. The sample was twice washedwith 100 mL

water (HPLC grade) and dried each time. 20 drops of dimethyl-sulfoxide (DMSO) followed by two heaped microspatulas of finely

ground sodium hydroxide pellets were then added to the dried glycans. Iodomethane was then added to the sample as follows:

10 drops followed by 10 minute incubation; 10 drops followed by 10 minute incubation; 20 drops followed by 20 minute incubation.

Sodium thiosulfate (1 mL, 100 mg/mL) and dichloromethane (1 mL) were then immediately added to the sample. The organic and

aqueous phases were mixed by vortexing and then allowed to separate. The aqueous layer was removed and the organic layer

was washed with a similar volume of water (HPLC grade) three or four times. The organic layer was then dried in a vacuum

concentrator.
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Glycan mass spectrometry

Permethylated glycan sampleswere redissolved in 20 mL ofmethanol, and the glycan solutionwasmixed in a 1:1:0.5 ratio with 20mg/

mL 2,5-dihydroxybenzoic acid (DHB) in 70%methanol and sodium nitrate (0.5M). 2 mL of this mixture was then spotted onto aMALDI

target plate and allowed to air dry. Mass spectra were acquired on a 9.4 T SolariX FT-ICR mass spectrometer (Bruker Daltonics)

recorded over the m/z range 400-4000 in positive ion mode with 500 laser shots. 8 scans were averaged, and the laser power

was set between 30 and 60%. Spectra were calibrated externally using Bruker Peptide Mix II.

Crude membrane proteomics

Cells were grown to near confluency in a 10 cm tissue culture dish before being harvested by centrifugation at 800 3 g for three

minutes at room temperature. The resulting pellet was then washed twice with PBS and then twice in ice cold permeabilization buffer

(20 mM HEPES pH 7.4, 150 mM potassium acetate, 5 mM magnesium acetate, 5 mM DTT), before incubation in digitonin solution

(0.1% digitonin in permeabilization buffer) at 4�C with rotation for 30 minutes. Subsequently the total cell membrane fraction was

pelleted by centrifugation at 800 3 g, 4�C. The membrane pellet was then resuspended in urea lysis buffer (20 mM HEPES pH

8.0, 9 M urea, 1 mM sodium orthovanadate, 2.5 mM sodium pyrophosphate and 1 mM b-glycerophosphate) and lysed with a sonic

probe, before clearing the lysate through centrifugation at 20,000 3 g for 15 minutes and transferring the supernatant into a LoBind

microcentrifuge tube (Eppendorf).

Proteins were reduced with 5 mMdithiothreitol and incubation at 55�C for 30mins before alkylating with 15 mM iodoacetamide for

30 min at room temperature. Solutions were diluted to 2 M urea with aqueous 50 mM ammonium bicarbonate before digesting with

the addition of 1mg of trypsin/Lys-C proteasemixture (Promega) and incubation at 37�C. Digestion was stopped after 16 hwith addi-

tion of trifluoroacetic acid (TFA) to 0.1% (v:v). Peptides were desalted using Strata 50 mg C18 cartridges (Phenomenex). Cartridges

were prepared by passing through 3 mL acetonitrile, 2 mL aqueous 80% (v:v) acetonitrile 0.1% (v:v) TFA and 2 mL aqueous 0.1%

(v:v) TFA. Peptideswere loaded and cartridgeswashedwith 23 0.25 mL aqueous 0.1% (v:v) TFA. Peptideswere elutedwith aqueous

80% (v:v) acetonitrile 0.1% (v:v) TFA before drying in a vacuumconcentrator and reconstituting in aqueous 0.1% (v:v) TFA. A common

sample pool was created by taking equal aliquots of all samples.

Samples were loaded onto an UltiMate 3000 RSLCnano HPLC system (Thermo) equipped with a PepMap 100 Å C18, 5 mm trap

column (300 mm x 5 mm Thermo) and a PepMap, 2 mm, 100 Å, C18 EasyNano nanocapillary column (75 mm x 500 mm, Thermo). The

trap wash solvent was aqueous 0.05% (v:v) trifluoroacetic acid and the trapping flow rate was 15 mL/min. The trap was washed for

3 min before switching flow to the capillary column. Separation used gradient elution of two solvents: solvent A, aqueous 1% (v:v)

formic acid; solvent B, aqueous 80% (v:v) acetonitrile containing 1% (v:v) formic acid. The flow rate for the capillary column was

300 nL/min and the column temperature was 40�C. The linear multi-step gradient profile was: 3%–10% B over 8 mins, 10%–35%

B over 115 mins, 35%–65% B over 30 mins, 65%–99% B over 7 mins and then proceeded to wash with 99% solvent B for 4 min.

The column was returned to initial conditions and re-equilibrated for 15 min before subsequent injections.

The nanoLC system was interfaced with an Orbitrap Fusion hybrid mass spectrometer (Thermo) with an EasyNano ionisation

source (Thermo). Positive ESI-MS and MS2 spectra were acquired using Xcalibur software (version 4.0, Thermo). Instrument source

settings were: ion spray voltage, 1,900 V; sweep gas, 0 Arb; ion transfer tube temperature; 275�C. MS1 spectra were acquired in the

Orbitrap with: 120,000 resolution, scan range: m/z 375-1,500; AGC target, 4e5; max fill time, 100 ms. Data-dependent acquisition

was performed in top speed mode using a fixed 1 s cycle, selecting the most intense precursors with charge states 2-5. Easy-IC

was used for internal calibration. Dynamic exclusion was performed for 50 s post precursor selection and a minimum threshold

for fragmentation was set at 5e3. MS2 spectra were acquired in the linear ion trap with: scan rate, turbo; quadrupole isolation, 1.6

m/z; activation type, HCD; activation energy: 32%; AGC target, 5e3; first mass, 110 m/z; max fill time, 100 ms. Acquisitions were

arranged by Xcalibur to inject ions for all available parallelizable time.

Peak lists in .raw format were imported into Progenesis QI (Version 2.2., Waters) and LC-MS runs aligned to the common sample

pool. Precursor ion intensities were normalized against total intensity for each acquisition. A combined peak list was exported in .mgf

format for database searching against the human subset of the UniProt database. Mascot Daemon (version 2.6.1, Matrix Science)

was used to submit the search to a locally-running copy of the Mascot program (Matrix Science Ltd., version 2.6.1). Search criteria

specified: Enzyme, trypsin; Max missed cleavages, 2; Fixed modifications, carbamidomethyl (C); Variable modifications, oxidation

(M); Peptide tolerance, 3 ppm; MS/MS tolerance, 0.5 Da; Instrument, ESI-TRAP. Peptide identifications were passed through the

percolator algorithm to achieve a 1% false discovery rate and individual match filtered to require a minimum expect score of

0.05. The Mascot .XML result file was imported into Progenesis QI and peptide identifications associated with precursor peak areas.

Normalization was performed between acquisitions against total precursor intensities for a subset of known ER proteins. Relative

protein abundance was calculated using precursor ion areas from non-conflicting unique peptides. Statistical testing was performed

in Progenesis QI and ANOVA-derived p values were converted tomultiple test-corrected q-values using the Hochberg and Benjamini

approach.

Beta-hexosaminidase assay

Cells were seeded in a 24-well tissue culture plate, harvested in PBS, pelleted with centrifugation at 800 3 g, and resuspended in

citrate buffer (100 mL, 40 mM sodium citrate, 60 mM citric acid, 0.15% Triton X-100). The lysate (25 mL) was added to the bottom
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of a clear plastic tube, followed by 100 mL substrate solution (100 mM citrate buffer, pH 5.0, 0.5 mM 4-methylumbelliferyl-2-

acetamido-2-deoxy-beta-D-glucopyranoside, 0.27 M sucrose). After exactly three minutes the reaction was stopped with the

addition of 1 mL 1 M sodium carbonate. Fluorometric quantification was achieved by exciting at 360 nm wavelength and reading

emission at 445 nm.

QUANTIFICATION AND STATISTICAL ANALYSIS

Student’s t tests were used to assess significance between band intensities from western blotting and for comparison of Pearson’s

correlation coefficient. Band intensities and Pearson’s correlation coefficients are shown as mean ± standard deviation. Pearson’s

correlation coefficients were calculated using ImageJ.MannWhitney-U tests were used to determine statistical significance between

simulated parameters from independent fitting runs. P values are denoted by: ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Further details of statistical tests used can be found in the relevant figure legends.

DATA AND SOFTWARE AVAILABILITY

The software used for modeling and fitting glycan profiles can be requested by emailing Daniel Ungar (dani.ungar@york.ac.uk) or A.

Jamie Wood (jamie.wood@york.ac.uk).

The glycan profiling, imaging and western blot data have been deposited at https://doi.org/10.15124/97b5c373-e7ee-

4975-b82f-7147be59d197

The proteomics data used for Table S3 and Figure S6 have been deposited at https://doi.org/10.6019/PXD013211. The accession

number is PRIDE: PXD013211.
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