UNIVERSITYW

"% B

%e& ()% S O S+, -, Jrolr o2 3.
& 43-/45 & 1% , & & &t 6 - $
&# + & $& +5&

* & 7 -8, 0%%6 9.,989

$ + 8/ &,-, -8,-1/

$ #9389 & 1;&& 5 # 3;,,<=4
$ # ' &> $# $ "1 && + $
+ * & % &
1 && +
0 $ # # ( #
& + $ + $ 3 $ 7
A White Rose

| .- university consortium

‘\ /‘ Universities of Leeds, Sheffield & York



Atmos. Meas. Tech., 12, 1325336 2019 Atmospheric
https://doi.org/10.5194/amt-12-1325-2019

© Author(s) 2019. This work is distributed under Measure_ment
the Creative Commons Attribution 4.0 License. Technlques

An improved low-power measurement of ambient NQ and O3
combining electrochemical sensor clusters and machine learning

Kate R. Smith?, Peter M. Edwards!, Peter D. Ivatt!, James D. Leé?, Freya Squires, Chengliang Dat,
Richard E. Peltier3, Mat J. Evans'2, Yele Surf, and Alastair C. Lewis!2

IWolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK

2National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK

3Environmental Health Science, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, USA
4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric
Physics, Chinese Academy of Sciences, Beijing, China

Correspondence:Peter M. Edwards (pete.edwards@york.ac.uk)

Received: 29 August 2018 — Discussion started: 10 September 2018
Revised: 4 February 2019 — Accepted: 9 February 2019 — Published: 28 February 2019

Abstract. Low-cost sensors (LCSs) are an appealing solutionclose to that of regulatory measurements (using the RMSE

to the problem of spatial resolution in air quality measure- metric) yet retained a very substantial cost and power advan-

ment, but they currently do not have the same analytical pertage.

formance as regulatory reference methods. Individual sen-

sors can be susceptible to analytical cross-interferences; have

random signal variability; and experience drift over short,

medium and long timescales. To overcome some of the perd Introduction

formance limitations of individual sensors we use a cluster-

ing approach using the instantaneous median signal from sikOw-cost sensors (LCSs) are an attractive prospect for use in

identical electrochemical sensors to minimize the random-complex urban environments where more atmospheric mea-

ized drifts and inter-sensor differences. We report here on gurements are required to build up a better-resolved map

low-power analytical device<(200 W) that is comprised of ~of highly heterogeneous pollution patterns. There are nu-

clusters of sensors for NQO,, CO and total volatile organic merous reports of low-cost, low-powered sensors commer-

compounds (VOCs) and that measures supporting parameially available for most of the criteria pollutants. Air pol-

ters such as water vapour and temperature. This was testddtion measurement has been historically a heavily regu-

inthe eld against reference monitors, collecting ambient air lated analytical environment. Many countries have extensive

pollution data in Beijing, China. Comparisons were made of programmes of air quality measurement, and measurements

NO, and Q clustered sensor data against reference methodare often situated within a legal framework with prescribed

for calibrations derived from factory settings, in- eld sim- methods of measurement. Air quality monitoring stations use

ple linear regression (SLR) and then against three machinéelatively power-intensive equipment, have a high start-up

learning (ML) algorithms. The parametric supervised ML al- cost and require skilled personnel for calibration and mainte-

gorithms, boosted regression trees (BRTs) and boosted linedrance. A consequence is that, even in wealthy countries, ob-

regression (BLR), and the non-parametric technique, Gausservations are sparse with sites often located 1-Fodart

sian process (GP), used all available sensor data to improveéMicKercher et al., 2017). Pollutants often exhibit steep spa-

the measurement estimate of j@nd Q. In all cases ML tial concentration gradients over short distances (Broday et

produced an observational value that was closer to referencal., 2017), and limited measurement locations mean hotspots

measurements than SLR alone. In combination, sensor clugre often missed (Mead et al., 2013).

tering and ML generated sensor data of a quality that was LCSs provide an opportunity to increase the density of
atmospheric measurements and reduce the uncertainty that

Published by Copernicus Publications on behalf of the European Geosciences Union.



1326 K. R. Smith et al.: An improved low-power measurement of ambient N@and Os

arises when interpolating between current reference moneoncentrations with a single deployed sensor device. Recent
itors. This has many uses, most notably allowing betterefforts using multivariate regression models (Zampolli et al.,
validation of atmospheric models (Broday et al., 2017).2004) and pattern recognition analysis (Jiao et al., 2016) have
The lower-power and size associated with LCSs, alongcharacterized these responses to the environmental condi-
with high-frequency measurements, makes them an attradions and provided insight into processes that generate the
tive prospect for mobile use and for personal exposure assensor signal (Zampolli et al., 2004; Hong et al., 1996). Thus
sessment (Williams et al., 2013). Many low-cost sensors ardar, there is no agreed standard calibration or correction pro-
commercially available, either as stand-alone sensors or asedures for sensor data, or indeed what data standards low-
multisensory platforms (Caron et al., 2016; Jiao et al., 2016)cost sensor data should work towards. For reference monitors
(for example, AQMesh; Broday et al., 2017). There has beerin the UK, NQ,, CO and Q instruments must produce repro-
a rapid expansion in the number of publications evaluatingducible measurements for 3 months that are within 5% of
such devices recently. Single devices containing sensors fahe average for a certain concentration in the eld and results
the measurement of criteria pollutants such as COy,Naal that are linear over a set range (EU, 2008). FokNi@s is 0—
volatile organic compound (VOC) ands@ost a fraction of 2000 ppb, for @ this is 0—500 ppb and CO this is 0—-50 ppm
the price (approximate sensor box cost is GBP 5000) of esto ensure that both rural and urban concentration ranges are
tablishing an equivalent measurement site with reference intaken into account. Although the target performance of low-
struments (Mead et al., 2013) (GBP 200 000). Perhaps moreost sensors is highly application dependent, these standards
importantly sensors can be placed in locations where powedo provide a guide for comparison and highlight the need not
is limited or can only be generated through solar resourcesonly for high-accuracy measurements but also reproducibil-
The operating costs of low-power devices are also a very atity over long (months) timescales. In order for low-cost sen-
tractive feature. sors to be used in atmospheric monitoring or research appli-
However, the literature contains many examples of wherecations the uncertainty and reproducibility must be quanti ed
LCS approaches can suffer from relatively poor analyticalacross a range of likely environmental conditions.
performance when compared against the reference instru- If regulatory reference methods are taken as the bench-
ments. Whilst such a comparison is perhaps not always apmark, the implication with current single sensors would be
propriate to make in such a highly regulated eld of measure-very frequent calibration, possibly hourly or daily. Previous
ment, the benchmark test of any new analytical device willwork shows that clustering sensors and using the median sen-
be against the regulatory reference. Signi cant uncertaintysor signal of the cluster can help minimize some of the effect
in measurements is introduced because individual sensorsf medium-term noise and limit the effects of inter-sensor
each have a unique response to simple environmental conariability (Smith et al., 2017). This practice was adopted
ditions such as humidity and temperature (Smith et al., 2017here during the building and development of a multi-sensor
Moltchanov et al., 2015). This can lead to a relatively high instrument deployed alongside reference instruments.
degree of inter-sensor variability and response drift (Lewis et
al., 2016; Spinelle et al., 2017) over durations as short as a
few hours (Jiao et al., 2016; Masson et al., 2015), rendering  Experiment
in-laboratory calibrations (where the interfering variables are
controlled or non-existent) ineffective (Smith et al., 2017). 2.1 Analytical description of the instrument
Electrochemical (EC) sensors can display some chemical
cross-interferences with other pollutants that are likely to beA range of different sensors were mounted into sealed
present (Mead et al., 2013; Lewis et al., 2016; Masson etow cells such that the sensing element of each was ex-
al., 2015), and accounting for these can be dif cult when theposed to a continually owing sample of air. The ow
relative concentration ratios of the target measurand and ineells were in turn installed inside in a 4U aluminium box
terferences change. Metal oxide sensors (MOSs) often lackL77mm H 460mm D 483 mmW), which had a metal
selectivity and provide only a rough bulk measure of a par-partition to keep the sensors shielded from electrical inter-
ticular pollutant class such as VOCs, and the responses geffierence from the pumps and power supplies (Fig. 1). The
erated can depend on the chemical content of the mixtur@umber of sensors and their type are shown in Table 1.
presented to the sensor. Two microcontrollers (Arduino Uno) were used to col-
Although some LCS vendors supply a factory calibration lect the data from the sensors. Each Arduino recorded 3 Hz
with their sensors, these are not always applicable in the realata from 25 sensors, and this was then averaged to 2 s and
world, where ambient conditions are substantially differentsent to a LattePanda mini-computer for formatting and stor-
to the calibration conditions in the factory. Previous stud-age. Two KNF pumps drew ambient air through a sample
ies have shown that sensors co-located with reference inline at atmospheric pressure over the sensors at a constant
struments can be used to reproduce typical pollution patterngate (ca. 4 Lmint). Two fans were installed on the box
(Jiao et al., 2016; Mead et al., 2013), but there is a signi cantpanels to pull air through the box in an attempt to reduce
challenge when attempting to calculate absolute pollutaninstrument overheating. The power supplies were selected
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Figure 1. Schematic representation of the gas ow paths and basic layout of the sensors and components within the device.

Table 1. Summary of sensors used within the instrument.

Measurand Sensor type Manufacturer Number of sensors  Number of
in each cluster clusters

Carbon monoxide (CO) Electrochemical CO-B4 Alphasense 6 1

Oxidizing gases (&) Electrochemical OX-B431 Alphasense 6 1

Nitrogen dioxide (NQ) Electrochemical NO2-B43F  Alphasense 6 1

Total VOC Metal oxide TGS2602 Figaro 8 4

Temperature and humidity ~ Transducer (HPP809A031)  TE Connectivity 1 2

for their low electrical noise, and Adafruit ADS1115 16- Instead, we have focused on data reliability as well as the ad-
bit ADC (analogue-to-digital converter) boards further min- vantages associated with electrical power consumption com-
imized this issue. A schematic of the instrument is shownpared against a suite of traditional reference instruments.
in Fig. 1. The overall power budget of the device when op- Figure 2 summarizes in simple terms how device costs and
erating was approximately 52 W, with a breakdown of com- power consumption compare between a single sensor device,
ponents as follows: 18 EC sensors, 9W; 32 MOSs and ina six-sensor clustered approach and a reference instrument,
ternal heaters, 9.4 W, two relative humidity and temperatureusing the example of ozone. The clustered approach, whilst
sensors, 0.01W; two diaphragm pumps, 16.8 W, two fansmore expensive than a single sensor, retains a very substan-
2.8W; two Arduino Uno microcontroller boards, 0.58W; tial power advantage over the reference, creating potential
LattePanda micro-computer, 10W; three power suppliesfor deployment in remote or off-grid locations, or in devel-
3W. oping countries where electrical supplies can be both costly
We note that this type of approach differs from the ma-and unreliable. The next key question therefore is whether
jority of LCS air quality instruments described in the litera- a more complex and expensive clustered sensor instrument
ture and that are commercially available. In most cases thean meet similar data quality as reference instruments and
emphasis in LCS design has been minimizing cost and sizetherefore offer a direct alternative but with lower power and
Clearly an instrument that contairs40 individual sensors  operational costs.
is not optimized with cost or size as its main design goals.

www.atmos-meas-tech.net/12/1325/2019/ Atmos. Meas. Tech., 12, 13336 2019
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10 000 B Cost (GBP) 2.3 Data analysis approaches

Bl power (W)

The approach of clustering low-cost sensors was used to
improve sensor reproducibility as previously discussed in
(Smith et al., 2017), whereas the simple linear regression
(SLR) and machine learning (ML) techniques were ap-
plied to improve sensor accuracy by correcting for cross-
sensitivities.

The median voltage signal from of each of the sensor clus-
ters was calculated automatically by the built-in computing
device and software, and then that value converted to con-
centration units using four different numerical techniques:

1ECO, 6ECO, 0, TEI49 UV (i) SLR, (ii) boosted regression trees (BRTs), (iii) boosted
sensor sensors  absorption linear regression (BLR) and (iv) Gaussian process (GP).
ML techniques (methods ii—iv) are powerful tools for iden-
Figure 2. Cost (blue) and power (purple) competitiveness for a sin- ifying relationships between variables and have been shown
gle O« EC sensor device, a clustered six-sensor device and a refef, g, hort improved concentration estimates that correct in-
ence UV ozone monitor. terferences in low-cost sensors (Geron, 2017; Zimmerman et
al., 2018; Lin et al., 2018; Esposito et al., 2016; Hagan et al.,
2.2 Sensor test deployment in Beijing 2018).
The full dataset from all sensors (chemical and environ-
The multi-sensor instrument described in Sect. 2.1 was demental) was used in the ML algorithms with a subset of the
ployed alongside research-grade reference instruments itime series (2—-8 June 2017) treated as training data. Follow-
Beijing, China, during a large air quality experiment betweening training, the ML algorithms were then applied to the test-
29 May and 26 June 2017. Beijing has well documented ising dataset (8—26 June 2017), outputting a corrected con-
sues with air quality (Zhang et al., 2016) meaning concen-centration value. The median of each sensor cluster of CO,
trations of pollutants were anticipated to be elevated and tdNO2, Oz, VOC, plus humidity and temperature, were used
show a large dynamic range. Beijing also experiences warmby the three different ML algorithms to determine the viabil-
humid summers (Chan and Yao, 2008); during the deploy-ity and relative performance of supervised, self-optimization
ment reported here, air temperature uctuated between 15.@echniques as a method for correcting for cross-interferences.
and 41.2 C and absolute humidity ranged between 3.82 andExamples of both parametric (BLR and BRT) and non-
17.83gm 3. In combination these conditions provide a ro- parametric (GP) techniques were assessed. BRT was chosen
bust and wide-ranging test of instrument performance. as a numerical method since it provides diagnostics about

Both sensors and reference instruments were located at tHeow the decision trees are constructed, essentially identify-
Institute of Atmospheric Physics (IAP) site (latitude 39.978, ing which sensor signals are used in the calculation (Chen
longitude 116.387), which is situated to the north of centraland Guestrin, 2016; Geron, 2017). The results can then be
Beijing. All instruments were housed in converted sea con-compared to known relationships from previous laboratory
tainer laboratories for this study. Reference instruments forstudies, ensuring that the prediction is in large part a mea-
NO, and G were co-located and sampled from the samesurement rather than a model value. GP was used because of
3 m high inlet, with sample bypass ow provided by a com- its proven ability to handle noisy data and it ability to pro-
mon diaphragm pump. The N@eference measurement was vide the estimations of uncertainty for each data point in the
by cavity-attenuated phase shift (CAPS) spectroscopy (Teletesting data (Geron, 2017; Rasmussen and Williams, 2006).
dyne T500U, Teledyne, California), with a 100 ppb N
N2 calibration source. The N{reference measurements had
5% uncertainty and 0.1 ppbv precisiong @ference was 3 Results and discussion
measured at 1 min averages by a Thermo Scienti ¢ UV ab-
sorption photometer (Model 49i), traceable for calibrationto 3.1 How clustering improves performance
the UK National Physical Laboratory primary ozone stan-
dard with an uncertainty of 2%, and a precision of 1 ppb. Previous laboratory studies (Smith et al., 2017) have shown
The sensor instrument collected continuous data as part dhat clustering sensors was one potential technical approach
the Beijing campaign (Edwards et al., 2017). to reduce the effects of hour to day drift in individual sen-
sor response and limit the effects of inter-sensor manufac-
turing variability. The median sensor signal was shown to be
a more reliable predictor of the true pollutant value (vs. the
mean), and the effect of deteriorating or highly variable sen-

1000

100

10

Cost (GBP) and power (W
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23 reference instrument. The cluster vs. reference comparison
using simple factory calibration can be seen in Fig. 4a.

2.2 3.2 Simple linear regression (SLR)

The rst data calibration approach used was SLR, applied

21 to calibrate the median sensor signal using the reference in-
strument concentration from the rst 5 days of the experi-
ment (the training period). The sensor concentrations were

2.0 corrected using linear parameters from training period cali-
bration, and subsequent sensor performance was assessed by
comparing against the co-located reference instrument. Us-

One

1.9 ing the NQ EC sensor cluster as an example, linear param-
eters in the form of D mx C ¢ were determined using a lin-
ear least-squares t between the BIOAPS reference instru-

Two  Three Four  Five ment and the median NCEC sensor for the rst 5 days of

Number of sensors averaged the sensor instrument deployment. Once trained in this man-

Figure 3. Comparison of slopes of concentrations derived from ner, these linear Ca“.brat'on factors based on SLR were used

clusters of NQ EC sensors against a reference instrument for ambi-© Callbra_te the median N{_}ensor and were unchanged for

ent Beijing air. As the number of sensors used increases, the spredfi® remainder of the experiment.

in data narrows, as seen through the difference in slope. If data from The different pollutant clusters showed variable perfor-

three out of six sensors are used there are 20 possible permutatiomgance against their respective reference over the 21 days. We

of sensors. The average signal of each was calculated, then plottedise root-mean-square error (RMSE) here as a metric to eval-
against the reference NGCAPS measurements, and the gradient uate the performance of various clusters and different data
was extracted. The 20 gradients of these correlation plots (sensicalibration approaches. We also calculate the RMSE between
tivities) are then plotted in the qu plots above, with the median, yyo approximately co-located NOreference-grade instru-
25th pe_rcentlle, and_75th percentile in the box and the 5th and 95tr}nents (4.3 ppb) during the same eld deployment to quan-
percentile on the whiskers. tify what might be considered the “optimum comparison”
that could be expected between the sensors and the refer-
ence approach. During the campaign a localized source of
sors was minimized. This approach has been extended helO and NG was emitted into the vicinity downwind of the

to eld observations and to a wider range of different chem- second N@ CAPS instrument and hence not observed by

ical species. The EC sensors output two voltages: one fronit. For a fair comparison of the two NQreference measure-

the working electrode (WE) and one from the auxiliary elec- ments the data between 10 and 14 June, when the localized
trode (AE). The standard calibration procedure subtracts themissions of NO and N£occurred, were removed. Unfor-
effect of the auxiliary electrode from the working electrode tunately, there was not a co-located CO reference instrument

(the electrode exposed to the ambient air and oxidizing com-or multiple co-located reference observations gfe@ailable

pounds) effectively helping to correct for some of the tem- for this study. The CO sensor median was still included with

perature and humidity effects. The manufacturer supplies inthe total VOC median, relative humidity and temperature in
dividual conversion factors and equations for each sensor anthe sensor variables for training and testing the ML algo-
these were applied to each sensor prior to use within the clusdthms, but we were unable to make a comparison.

ter. Each sensor within a cluster was initially normalized to  Applying SLR, the NQ sensor cluster gave a RMSE of

give a common voltage output. 10.42 ppb and RMSE of 10.44 ppb for thg ©luster me-

We use the raw sensor voltages and the manufacturer's calian signal with the sum of the NG O3 reference mea-

ibration values to gain an initial concentration. One methodsurements. The ambient N@oncentrations varied over a

of determining the improvement in the concentration esti-wide range from below 2 ppb to in excess of 200 ppb, and

mated by the sensors is to compare the range of slopes olthe clustered N@package performed well at capturing this

tained against reference instrument for a range of differentange of observed concentrations but with substantial dis-
numbers of sensors. This is shown for the rst time for an crepancies between the median NEC sensor and the NO
electrochemical N@sensor in Fig. 3. As the number of sen- CAPS reference instrument when the reference sidhcen-
sors in a cluster is increased, the observed range of valuesations were below 10 ppb. This nding ts well with previ-

for the unique permutations of the groups narrows consid-ous work that shows the impact of cross-sensitivities on EC

erably, greatly improving measurement precision. The slopesensors is most important at low target compound concentra-

does not, however, converge oI since there is a differ- tions (Lewis et al., 2016). The Alphasense OX-B431 sensors
ence in the factory calibration of the sensors compared to theletected both @and NG. They respond proportionately but

Slopes of [NO,] reference vs. sensors

www.atmos-meas-tech.net/12/1325/2019/ Atmos. Meas. Tech., 12, 132336 2019
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Figure 4. (a) Comparison of the median NGsensor using individual factory calibratior{s) the NGO, GP prediction 2 , (c) NO, BRT
prediction andd) NO» BLR prediction ML techniques. The purple shaded area shows the data used to train the ML algorithms. The black
line in all subplots is the York N© CAPS measurement, which was used as a reference. Rgreflows the relative humidity (%) and
temperature (C) during the sensor instrument deployment. Note that pgbgléc) and(d) are plotted with a logarithmig axis.

independently to concentrations og@nd NQ; hence, the  (Geron, 2017). To tune the ML algorithm hyperparameters a
O« EC sensors were calibrated with and compared to theb-fold cross-validation of the training set was used to build
sum of the @ and NQ reference measurements. The me- the classi cation models, with a randomization seed of 42
dian value from the Q cluster showed the best correlation each time. The seed randomizes the data, so the value of the
with the respective reference measurementsR®D 0:95, seed does not matter, just that it is consistent for the cross-

NO> R2 D 0:86). validation. During the cross-validation process, the algorithm
trained on one of the ve subsets of the training dataset and
3.3 Using machine learning (ML) algorithms to made a prediction based on these learnt relationships over
calibrate the median sensor cluster the other four subsets of data to test out the associated rules

) ) ] it has found. The hyperparameters were decided by minimiz-
Each ML algorithm was trained and then tested using theing the mean absolute error (MAE) between the predicted
same 1 min average sensor data as the SLR in Sect. 3.2, splihsets of data and the training label (Shi et al., 2017). Once
into the same training and testmg sets each time. The trainingaciged, these hyperparameters were xed and the algorithm
data were the rst 8490 data points of the measurement peghe tested on data that it has not yet seen, i.e. the testing
riod, and the testing set was the remaining 25 956 data pointgy5taset.
For BRT and BLR the Python XGBoost implementationwas  grT yses gradient-boosted regression trees to integrate
used to train, cross-validate and test the models. This scakyge numbers of decision trees, and this improves the over-
able learning system is open source, computationally ef - 5| herformance of the trees (Rasmussen and Williams, 2006;
cient apt_j has performed well on other platforms _(Rasmusse@riedman, 2001). Through a process where many decision
and Williams, 2006). Both BRT and BLR have different hy- (rees are working on the training dataset, the algorithm gen-
perparameters that allow the ML angnthm to be tungd SOerates a set of rules by which the training data are linked
that the algorithm can detect trends within the data, withouty he training label (Shi et al., 2017). By discarding trees
over tting. Hyperparameters, such as the learning step, cafpat do not have much impact on the MAE, the algorithm is

be increased or decreased to allow a good t to the train-yqre ef cient at determining the relationships between vari-
ing data and to optimize the performance of the algorithm

Atmos. Meas. Tech., 12, 13258336 2019 www.atmos-meas-tech.net/12/1325/2019/
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ables. The nature of decision trees means BRT is not limfour main periods where the GP prediction appeared low, and
ited to identifying linear functions, unlike BLR. During the the uncertainty was high: 15:00 UTC on 8 June, 17:00UTC
same cross-validation process as described for BRT, BLRon 9 June, 14:00 UTC on 15 June and 14:00 UTC on 16 June.
identi es the linear relationships between the sensor vari-These over-extrapolated data points all occurred when the
ables and uses these correlations to predict the compoun@mperature reached 4G and exceeded the maximum tem-
response during the testing period. BLR is simpler than BRTperature recorded during the training period (3%8, coin-
but works well when there are multiple linear trends betweenciding with when the N@ concentration and relative humid-
variables. GP uses the Gaussian distribution over functiongty were low (Fig. 4e). Machine learning techniques all have
and can be a powerful tool for regression and prediction pur-dif culty making predictions when the testing and training
poses (Rasmussen and Williams, 2006). Itis a exible modeldatasets cover different variable space, but the calculation
which generalizes the Gaussian distribution of the functionsof a prediction uncertainty highlights when this could po-
that make up the properties of each variables function (Rastentially be an issue and could be used to inform calibration
mussen and Williams, 2006). GP can be used as a supervisesirategies.
learning technique once suitable properties for the covari-
ance functions (kernels) are found; then a GP model can b8.4.2 Boosted regression trees (BRT)
created and interpreted (Roberts et al., 2013). For this study
there were two kernels used to train and predict the sensofhe BRT prediction (Fig. 4c¢) was very good during periods
data. These were matern32Lj and linear K2) functions.  when the test data did not exceed concentrations of d&@n
They were added togethé1(C k2) to enable both lineakp) in the training data ( 79 ppb). However, the classi cation
and non-linearK1) relationships between the variables to be nature of the BRT algorithm means it is incapable of extrap-
detected, as it was observed in the laboratory that the relaslation, so the prediction cannot capture the high concentra-
tionships between the variables could be either (Lewis et al.tions of NG that were observed between 10 and 14 June (the
2016; Smith et al., 2017). The hyperparameters were themNO, CAPS instrument recorded a maximum pN€dncentra-
self-optimized using the training data by the open-sourcetion of 222.2 ppb during the testing period). During this time
Python package running the algorithm, GPy. The GP-, BRT-a localized source of NO and NQvas emitted. Overall, the
and BLR-predicted responses were then compared to the reRMSE between the BRT Nfprediction and the N9QCAPS
erence data over the testing period, and a RMSE was calcueference measurement was 7.2 ppb, an improvement on SLR
lated to investigate how well the ML algorithm performed. (10.4 ppb) of 30 % despite its inability to capture N@on-
centrations outside of those experienced during the training
3.4 Sensor cluster data with ML processing — N@ data period. This improvement for the lower concentrations
cluster of NO; is due to the BRT model's ability to better correct
for some cross-sensitivities on the sensor signals, such as the
Figure 4 shows the predicted N@me series using the me- effect of humidity. With the dates omitted for the localized
dian cluster value and the three ML calibrations comparedsource of NO and N@(described in Sect. 3.2) the RMSE
with the reference measurement. The median sensor with infor BRT prediction was 6.1 ppb, showing that the BRT pre-
dividual factory corrections (Fig. 4a) clearly detects the ma-diction does well at capturing the trends in N@hen ex-
jor trend in NG concentration but often under-predicts at trapolation is not required.

times when the N@ concentration is low. At higher con- The BRT algorithm outputs a gain feature called gain,
centrations the median sensor over-predicts the Bi@nal,  which can be used to identify how much each variable con-
leading to a RMSE of 86.7 ppb. tributes to the predicted sensor response and these are shown
in Fig. 5a. The median N®sensor signal was (encourag-
3.4.1 Gaussian process (GP) ingly) the largest contributor to the Nzoncentration pre-

diction, followed by data from the CO cluster and the relative
The GP ML algorithm predicted the N@oncentration with  humidity sensor. This is consistent with previous laboratory
a RMSE of 5.2ppb compared to the reference measureresults, where it was observed that theN¥@nsor signal had
ment, the lowest for all the different ML techniques. The a CO interference and was affected by changing humidity
Matern32 kernel is adept at capturing the more typical (sub(Lewis et al., 2016).
50 ppb) NG concentrations, due to its ability to model cross-
sensitivities on the sensor signals but struggled to extrapolat8.4.3 Boosted linear regression (BLR)
to highest concentrations. One advantage of using GP to pre-
dict compound concentrations is that an uncertainty on theThe BLR-predicted N@ concentration was comparable to
predicted values is also calculated. This uncertainty is showrthe GP prediction, with a RMSE of 6.6 ppb. When the NO
in Fig. 4b (light yellow shading), as 2 standard deviations and NQ localized source was removed the RMSE did not
on the predicted data points. It is clear that there are periodshange substantially (6.3 ppb) suggesting that this technique
when there is more uncertainty in the prediction. There arewas good at extrapolating to the N©oncentrations outside
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sensor values for four equally spaced reference concentra-
tion bins. The ML techniques produced the greatest improve-
ments in the concentration estimates for the lower concen-
Median O, trations of the target measurand where the effect of cross-
(923 %) , interferences is more signi cant. The BRT and GP in partic-
ular displayed large improvements for the lower Ni@fer-
ence observations. At the higher concentrations op Nfoe

ML algorithms displayed less improvement, where the con-
ditions were outside those of the training data variable space.
This was very noticeable for the BRT algorithm due to its

(b)

Median NO,
(78.89 %)

Gain contribution for the Gain contribution for the . o
BRT NO, prediction BRT Oy prediction inability to extrapolate.
Key: . .
= Median O, (ppb) = Median O, ( med. O, — med. NO,) (ppb) 3.5 Sensor cluster data with ML processing — @
= Median NO, (ppb) =1 Relative humidity (%) cluster
= Median CO (ppb) mm Temperature (°C)

= Median VOC (V) The data from the median,Gsensor vs. the NOC Os ref-

Figure 5. Breakdown of contribution from each variable used by the erence measurements are shown in Fig. 6, along with the
BRT algorithm to predict the clusterdd) NO, sensor andb) Ox best performing ML data-processing method. During peaks
concentrations. in Ox concentration the factory-calibrated sensor values tend
to produce overestimates of thg @oncentrations (e.g. max-
imum Oy concentration observed by reference was 253 ppb,
the range of the training data. BLR assumes purely lineaithe median @ sensor 426 ppb). The ML technique with the
trends between variables, meaning it does not represent nomewest RMSE, BRT, brought the ,Gconcentration estimate
linear relationships, but the linear nature of the relationshipamuch closer to the reference observations (see Fig. 6); how-
allows BLR to extrapolate trends beyond the ranges seen iever, during peaks in Qconcentration, the BRT-predicted
the training data. Figure 5d shows the predicted BLR;NO Oy concentration estimate was under-predicted due to BRT's
signal fully capturing the maximum N{concentrations be- inability to extrapolate.
tween 10 and 14 June. Overall, the RMSE between the BLR A summary of RMSE improvements implemented for all
prediction and N@ reference measurement was slightly bet- methods can be found in Fig. 7b. BLR and BRT performance
ter than the BRT, suggesting that the inter-sensor relationwas near identical indicating thg.8ensors have largely lin-
ships were often approximately linear over the variable spacear relationships governing their performance, at least over
observed. The similarity between the GP and BLR predic-the variable space observed. The 30% of the data used to
tions is not surprising given the use of the linear kernel intrain the ML algorithms included a range of; @oncentra-
the GP algorithm. The BLR also over-extrapolated the pre-tions much more representative of the total observation pe-
dicted NG concentration during the same periods as the GPriod than was the case for NQand so only limited extrap-
prediction, suggesting that the linear kernel contributed sub-olation beyond the training dataset was needed. The BRT al-
stantially to the GP prediction but that the training data weregorithm gain was again used to determine the largest con-
not adequate to capture deviations from this linearity. tributing variables to the BRT Oprediction, Fig. 5b. The
Figure 7a summarizes how a progressively improvedmedian Q sensor value made the largest contribution to
RMSE can be achieved, as N@ensors are rst used in a the BRT Q prediction (92 %). The median CO sensor con-
cluster, and then the various different numerical methods ardributed 1.5 % to the prediction. The NRMSE was calculated
applied to calibration, ultimately producing a performance for four equally sized referenceyQconcentration bins for
that is close to the reference vs. reference RMSE. Figure 7a@ach analytical method used, in a similar manner to Table 2
also highlights the evidence that the uncertainty in the senfor NO,. The NRMSE improved for SLR and the ML algo-
sor concentrations is greatly reduced if the sensors are calithms across all concentration ranges, with BLR and BRT
brated in eld (using SLR) or if ML procedures are applied. optimal for reducing the error estimate the most. The error
The GP prediction was the ML calibration technique that was the highest at the highery@oncentrations for BRT,
was closest to the RMSE between the two reference instruwhich was expected due to BRT's inability to extrapolate.
ments. The RMSE and normalized root-mean-square error
(NRMSE) were calculated after the application of SLR and3.6 A measurement vs. a sensor model
ML for different reference concentration ranges to indicate
where the greatest improvement of the sensor data occurrelllL algorithms are skilful at detecting patterns within a
(see Table 2). The RMSE and NRMSE (calculated by divid- dataset, and the work shown in this study is evidence that
ing the RMSE by the mean of the concentration bin) werethey can improve the performance of LCSs, as measured by
determined between the reference Nibservations and the areported concentration value compared to a reference. Each
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Table 2. The NRMSE and RMSE between the hi@ference and sensor datasets at different concentration ranges. For each calibration
method used in the paper, the data were binned into 25 % of the observed reference concentration. The RMSE and the NRMSE were
calculated for each concentration bin and the results fop Bi@ Q are summarized in the table below. The NRMSE was calculated by
dividing the RMSE between the reference observations and the sensor values by the mean reference concentration for the respective bin.

NRMSE of reference vs. Nfconcentration
estimate (RMSE/ppb)

Concentration range as a % of the Median SLR BLR BRT GP
maximum concentration of reference NO

0%—25% 1.04(20.7) 0.59(11.7) 0.32(6.3) 0.28 (5.6) 0.29(5.8)
25%-50 % 0.69 (47.5) 0.19(13.3) 0.12(8.2) 0.22(15.2) 0.11(7.9)
50 %—75% 0.72(94.9) 0.23(30.8) 0.26(34.6) 0.55(72.5) 0.26(33.5)
75 %-100 % 0.85(153.1) 0.10(17.4) 0.10(18.8) 0.67(120.0) 0.10(18.2)

Figure 6. Factory-calibrated median sensor concentration (grey), referesiCé\Q, data (black) and BRT Qprediction (blue) for a cluster
of Oy sensors. The reference measurements that were used as the training label are displayed in red. Inset: the correlation plot for the testin
dataset, comparing the reference data and the BRT-predigtsé@or signal.

of the sensor predictions made by the ML algorithms couldmade from the same sampling line as the sensor instrument
be justi ed by previous experience with working with sim- and this was used to make a NO prediction using BRT, based
ilar EC sensors in the laboratory and from reported studieson information gathered by the other chemical sensors. From
For example, the predicted NGensor response was formed previous laboratory studies it is known that NO is a cross-
based upon decision trees that were primarily in uenced byinterference on the NPand Q, EC sensors (Lewis et al.,
the median NQ sensor value, and then small adjustments2016), and therefore we could expect that an NO prediction
were made to the prediction using the median CO EC andwvould use these two variables. However, ambient NO con-
humidity data. This is reasonable based on previous laboeentrations are closely linked to the concentrations 0bNO
ratory experiments showing NGensors responding to CO and G via steady-state interconversion, and this underlying
and changing humidity. When using the sensors to correcthemistry might also be identi ed by the algorithm and used
cross-interferences and changing meteorological conditiongo predict NO.
the prediction is an optimized version of the sensor response Using a BRT model and sensor cluster median values from
that essentially calibrates for identi ed cross-sensitivities.  the sensor instrument deployment, it was possible to cor-
However, ML algorithms can also be used to make pre-rectly identify when the major NO peaks would occur and
dictions of compounds, for example, nitric oxide (NO), that predict NO concentrations with a RMSE of 10.5 ppb, even
are simply correlated to other air pollution variables but thatthough our instrument did not actually contain a NO sensor.
are not physically measured by a speci ¢ sensor. As an ex-This corresponds to a NRMSE of 0.37. For comparison, the
ample, in this study a reference-grade NO measurement wadRMSE for the BRT NQ and Q predictions were 0.11 and
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were able to further improve the sensor performance because
they could correct multiple trends between the sensor vari-
ables eliminating some cross-interferences. BLR and BRT
were seen to be most powerful at predicting the compound
response and used information content from other variables
that was reasonable based on previous lab studies. The GP
approach was advantageous in that a standard error could be
calculated for each predicted data point. Therefore, this iden-
ti ed regions within the data where the prediction was more
uncertain, for example, if the testing data signi cantly devi-
ated from the variable space observed during training. BLR
was the simplest technique and worked well when the func-
tions between the sensor variables were linear, for example,
during the Q sensor prediction. The time required to train
and run the model was reduced when using BLR and BRT
over GP. A longer period of data collection, of at least a few
months to a year of sensor data, is needed to establish how
long such algorithms accurately predict the reference obser-
vations. It appears that as a minimum the use of ML cali-
bration techniques would increase the time required between

- 7 e )  the RMSE calculated for el hemical physical calibrations and allow the use of sensor instruments
gure 7. Comparison of the calculated for electrochemical ;"o of 5 network or allow it to run in isolated environ-

sensor signal data treatment including individual sensors and a clus- . .
o o . _ments, after the instrument was calibrated over as large a
ter of six using factory calibration, SLR and three ML techniques; f diti hat it is likel . .
when available, a reference vs. reference RMSE is also included'@19€ Of conditions, that it is likely to experience, as possi-
(a) NO»; (b) Ox. ble. Data that occur outside the training data ranges can then

be agged and treated with a higher level of uncertainty.

0.08, respectively, and the two NQeference instruments
gave a NRMSE of 0.06, so the NO prediction contains a highPata availability. Sensor data for this research have been sub-
degree of uncertainty although appears to be quite good iniMitted to the PURE repository and have received the fol-

. . . lowing DOI: https://doi.org/10.15124/1a0c64hb0-433b-4eec-b5¢c7-
tially. \év?ﬁ rltvt\/ﬁ mter:qu? te theldemsllort])treedmodterll, ho;/]vevt_ar,64d3d60a0351 (Edwards et al., 2017). The reference data can be
we n at the prediction 1S largely based on the Chemi- ¢, .,y 4 the CEDA website under the Atmospheric Pollution and

cal r?'?‘t_iP”ShiP betwee'n NCand C}land not on any Cross-  pyman Health in a Developing Megacity (APHH) project.
sensitivities of sensor signals. In this rather extreme example

it could be claimed that this NO prediction is not a measure-

ment but a model (Hagler et al., 2018) and highlights the aythor contributions.KRS and PME designed and developed the

challenge of interpreting low-cost sensor measurements thajensor instrument. KRS, PME, PDI and CD contributed to the anal-
exist in something of an analytical grey area due to their re-ysis of sensor data. FS, JDL and YS provided reference data. All

liance on complex calibration algorithms. authors contributed to the writing of the manuscript.
4 Conclusions Competing interestsThe authors declare that they have no con ict
of interest.

Using a combination of clustering sensors and ML data pro-

cessing, a lower-cost and relatively low-power air quality in-

strument has made measurements obM@d Q, that were  Special issue statementhis article is part of the special issue
close to the RMSE of reference instruments (over the pe-In-depth study of air pollution sources and processes within Bei-
riod of study). Clustering of sensors adds little to the over-ing and its surrounding region (APHH-Beijing) (ACP/AMT inter-
all power budget of an instrument but is a very easy way toJournal SI)". It is not associated with a conference.
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