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ABSTRACT:	Arabidopsis thaliana NUDT1 (AtNUDT1) belongs to the Nudix family of proteins, 

which have a diverse range of substrates, including oxidized nucleotides such as 8-oxo-dGTP. 
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The hydrolysis of oxidized dNTPs is highly important as it prevents their incorporation into 

DNA, thus preventing mutations and DNA damage. AtNUDT1 is the sole Nudix enzyme from A. 

thaliana shown to have activity against 8-oxo-dGTP. We present the structure of AtNUDT1 in 

complex with 8-oxo-dGTP. Structural comparison with bacterial and human homologues reveals 

a conserved overall fold. Analysis of the 8-oxo-dGTP binding mode shows that the residues 

Asn76 and Ser89 interact with the O8 atom of the substrate, a feature not observed in structures 

of protein homologs solved to date. Kinetic analysis of wild-type and mutant AtNUDT1 

confirmed that these active site residues influence 8-oxo-dGTP hydrolysis. A recent study 

showed that AtNUDT1 is also able to hydrolyze terpene compounds. The diversity of reactions 

catalyzed by AtNUDT1 suggests that this Nudix enzyme from higher plants has evolved in a 

manner distinct to those from other organisms.   

INTRODUCTION 

Nudix (nucleoside diphosphates linked to some moiety x) proteins are a class of 

pyrophosphohydrolases characterized by the conserved amino acid sequence 

GX5EX7REVXEEXGU, where U is a hydrophobic residue.1 These proteins are found in more 

than 250 species throughout eukaryotes, bacteria and archaea.2 Nudix enzymes catalyze the 

hydrolysis of a wide variety of substrates including ribo- and deoxyribonucleoside triphosphates 

(and their oxidized forms), dinucleotide polyphosphates, nucleotide sugars, NADH, coenzyme A 

and ADP-ribose.3-5 Nudix proteins are critical for regulating the concentrations of these 

compounds, which are either toxic, constitute metabolic intermediates or are important cell 

signaling molecules.1 Most Nudix hydrolases require divalent cations such as Mg2+ or Mn2+ for 

full activity.6 The Nudix motif conserved in these proteins contains the residues required for 

metal binding and substrate hydrolysis. However, the regions of these proteins that confer 
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specificity for individual substrates display high sequence variation.7 Nudix enzymes play an 

important role in sanitization of oxidized nucleotide pools in various organisms.4, 5 Reactive 

oxygen species (ROS) produced as a byproduct of cellular metabolism are capable of oxidizing 

free nucleotides within the cell.8 7,8-dihydro-8-oxo-guanine (8-oxo-G) is one of the most 

predominant oxidized nucleotides9, 10 and pairs with both adenine and cytosine, resulting in 

transversion mutations.11, 12 Removal of these damaged nucleotides from the nucleotide pool by 

Nudix proteins is essential to prevent their incorporation into DNA and RNA. This class of 

Nudix enzymes has been studied extensively in bacteria and humans,7, 13-15 however little is 

known about the structure and function of their homologues in plants.  

Nucleotide pool sanitizing enzymes play an important role in plants where even under optimal 

conditions metabolic processes including photosynthesis produce ROS.16 Additionally, 

environmental stresses such as drought, high salinity and low temperature further increase ROS 

levels.17-19 In Arabidopsis thaliana there are 29 proteins coding for putative Nudix hydrolases, 

which are located in the cytosol, mitochondria and chloroplasts.6 Of these, only A. thaliana 

NUDT1 (AtNUDT1) has been shown to display activity against oxidized nucleotides.20-22 

AtNUDT1 hydrolyzes canonical dNTP substrates but the highest reported activity is towards 8-

oxo-dGTP.21 Expression of AtNUDT1 in an E. coli mutT
- strain devoid of its own 8-oxo-

(d)GTPase activity significantly suppresses the misincorporation of 8-oxo-GTP into mRNA,21, 22 

confirming that the enzyme is a functional homologue of E. coli MutT. The levels of 8-oxo-

guanosine in genomic DNA are also significantly increased in A. thaliana nudt1 knockout plants 

when compared with the wildtype under both normal and ROS inducing conditions.22 This 

supports a function of AtNUDT1 in the cellular defense against DNA and RNA damage through 

the sanitization of oxidized free (d)NTPs in A. thaliana. However, in addition to this important 
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role, AtNUDT1 has also been shown to have activity towards other substrates such as NADH23 

and DHNTP.20 Recent studies have also reported that AtNUDT1 hydrolyzes non-nucleotide 

monoterpene substrates.24, 25 Monoterpenes are volatiles compounds, which in plants play 

important roles in scent production, plant-plant interactions, communication with the 

surrounding environment, and in the defense against pathogens.26, 27 The structures of AtNUDT1 

in complex with the terpene substrates GPP24 and IPP28 were recently solved. The apo structure 

of AtNUDT1 was also reported alongside the IPP bound structure.28 

Here we present the structure of AtNUDT1, in complex with the oxidized nucleotide 8-oxo-

dGTP. Although AtNUDT1 demonstrates the same overall fold observed in closely related 

Nudix enzymes, the active site revealed previously unobserved hydrogen bonds to the 8-oxo-

atom. A thorough activity screening of canonical and non-canonical nucleotide substrates 

demonstrated NUDT1 to have a clear preference for guanine nucleotides. Analysis of AtNUDT1 

mutants indicated active site residues which influence 8-oxo-dGTP recognition. These results 

taken in light of recent terpene metabolism studies indicate that AtNUDT1 has evolved to have a 

broader function than its homologues from both humans and bacteria.  

 

MATERIALS AND METHODS 

Protein overexpression and purification of AtNUDT1. A. thaliana nudt1 cDNA optimized 

for E. coli expression was purchased from Eurofins and subcloned into pET28a(+) (Novagen). 

AtNUDT1 was expressed in E. coli Rosetta 2 (DE3) pLysS at 17 °C for 16 hours following 

induction with 1 mM IPTG. Cells were harvested by centrifugation and resuspended in ice-cold 

lysis buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 10 % (v/v) glycerol, 0.5 mM TCEP, 10 mM 

imidazole, 25 U/mL benzonase, 1 μl/mL Roche protease cocktail inhibitor), and then lysed via 
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high-pressure homogenization. The lysate was cleared using centrifugation followed by filtration 

through a 0.2 μm membrane filter. The sample was loaded onto a 1 mL HisTrap HP column (GE 

Healthcare) pre-equilibrated with running buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 10 % 

glycerol (v/v), 0.5 mM TCEP, 10 mM imidazole). His-tagged AtNUDT1 was eluted by an 

increasing gradient of 0-300 mM imidazole. Fractions containing AtNUDX1 were pooled and 

loaded on to a Superdex 200 16/600 Size-exclusion column equilibrated with 20 mM HEPES pH 

7.5, 500 mM NaCl, 0.5 mM TCEP and 5 % (v/v) glycerol.  Protein purity was assessed using 

SDS-PAGE and mass spectrometry. Approximately 20 mg of pure AtNUDT1 was obtained per 

liter of culture. 

Production of AtNUDT1 mutants. The mutations N76A, S89A and N76A/S89A were 

introduced by site-directed mutagenesis with Phusion polymerase using the method described by 

Li et al.29 PCR was performed using the following primers: 5´-

ACAAACGCGGTCTTCAAAGAAGCACCATC-3´ (AtNUDT1N76AFor), 5´-

GAAGACCGCGTTTGTAACAGTCAAAAGCTT C-3´ (AtNUDT1N76ARev), 5´-

TACGTCGCGGTTTCGATACGTGCGGTG-3´ (AtNUDT1S89AFor) and 5´-

CGAAACCGCGACGTAGTGTGATGGCG-3´ (AtNUDT1S89ARev). Successful mutagenesis 

was verified by sequencing. AtNUDT1(N76A), AtNUDT1(N89A) and AtNUDT1(N76A/S89A) 

mutants were expressed and purified as described above for the wild type enzyme.  

Crystallization and data collection. Purified AtNUDX1 (26 mg/mL) pre-incubated with 10 

mM 8-oxo-dGTP and 10 mM MgCl2 then crystallized via sitting drop vapor diffusion in 40 % 

(v/v) PEG300, 0.1 M sodium acetate/acetic acid pH 4.5 and 0.2 M NaCl. Protein crystals were 

flash frozen directly in liquid nitrogen without adding additional cryo-protectant solution. A 

native AtNUDT1 data set was collected at the European Synchrotron Radiation Facility on the 
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ID29 beamline ID29 equipped with a PILATUS 6M detector. A total of 200° of data was 

collected at 100 K at a wavelength of 1.07 Å using an oscillation angle of 0.1° and an exposure 

time of 0.02 s per image.  

Structure determination and refinement. Data reduction and processing were carried out 

using XDS30 and programs from the CCP4 suite31. The structure of AtNUDX1 was solved via 

molecular replacement with MolRep32 using the monomer of E. coli MutT (PDB ID: 3A6S),7 to 

which it has a sequence identity of 30 %, as the search model. This was performed assuming two 

monomers per asymmetric unit, in accordance with the calculated Matthews coefficient.33
 

Arp/wARP34 was used to build the initial model. After several rounds of manual model building 

using Coot35 and refinement using Refmac5,36 the electron density improved and waters, 

magnesium ions and finally 8-oxo-dGTP were incorporated into the structure. The final model 

was validated using PROCHECK,37 with the resulting Ramachandran plot indicating that 98.5 % 

of the residues are in the most favored regions, with the remaining 1.5 % in additionally allowed 

regions. Data processing and refinement statistics are listed in Table 1. The coordinates and 

structure factors for the AtNUDX1 structure presented in this paper were deposited into the PDB 

under code 6FL4.  

Substrate screen of AtNUDT1 proteins with nucleoside triphosphates. To investigate the 

substrate selectivity of AtNUDT1, enzyme activity was tested against a variety of canonical and 

oxidized adenine and guanine nucleotides (ATP, 2-OH-ATP, dATP, 2-OH-dATP, GTP, 8-oxo-

GTP, dGTP, 8-oxo-dGTP). Each assay reaction consisted of reaction buffer (100 mM Tris-

acetate pH 8.0, 40 mM NaCl, 10 mM Magnesium acetate, 1 mM DTT), 20 nM purified 

AtNUDT1 and 100 μM nucleotide substrate (listed above). An excess of E. coli pyrophosphatase 

(0.2 U/mL), produced in house,38 was included in the assay mixture to convert formed 
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pyrophosphate (PPi) into inorganic phosphate (Pi) Reaction mixtures were incubated at 25 °C for 

20 minutes after which. the Pi formed was detected by the addition of malachite green reagent39
 

followed by measurement of the absorption at 630 nm. To understand the function of the active 

site residues of Asn76 and Ser89, the mutants AtNUDT1(N76A), AtNUDT1(N89A) and 

AtNUDT1(N76A/S89A) were tested against the same panel of substrates using the same reaction 

conditions as described above.  

Kinetic analysis of AtNUDT1 and AtNUDT1(N76A/S89A). To determine initial reaction 

rates 2 nM AtNUDT1 or AtNUDT1(N76A/S89A) was incubated in assay buffer (100 mM Tris-

acetate pH 8.0, 40 mM NaCl, 10 mM Magnesium acetate, 1 mM DTT) containing either dGTP 

(0-300 μM) or 8-oxo-dGTP (0-60 μM) as the substrate. Reactions were carried out at 25 °C and 

several time points were measured over a 30 minute period. Formed pyrophosphate was detected 

using the PPi Light Inorganic Phosphate Assay from Lonza according to the manufacturer’s 

recommendations. A PPi standard curve was included on each assay plate and used to calculate 

the concentration produced PPi.  Kinetic parameters were determined by fitting the Michaelis-

Menten equation to initial rate data using non-linear regression and the GraphPad Prism software 

(GraphPad Prism, La Jolla, CA). Experiments were performed twice with data points monitored 

in duplicate. 

Substrate screen of AtNUDT1 with nucleotide and monoterpene substrates. Hydrolysis 

activity of 100 nM AtNUDT1 was tested with 100 µM dGTP (Sigma-Aldrich), 8-oxo-dGTP and 

8-oxo-GTP (TriLink BioTechnologies), 8-oxo-dGDP (Jena Bioscience), Geranyl-PP, 

Isopentenyl-PP and Farnesyl-PP (Sigma-Aldrich), Dimethylallyl-PP (Cayman Chemicals and 

Sigma-Aldrich) and NADH (Sigma-Aldrich). The reactions were performed at 22°C in reaction 

buffer consisting of 100 mM TrisAcetate pH 8.0, 40 mM NaCl and 10 mM MgAcetate. Samples 



 8 

with dGTP, 8-oxo-dGTP and 8-oxo-GTP contained an excess of E. coli PPase (0.2 U/mL) to 

convert the reaction product PPi into Pi. After 30 minutes formed Pi was detected by addition of 

malachite green reagent followed by incubation with shaking for 15 minutes after which 

absorbance was read at 630 nm. Absorbance was converted to concentration formed Pi by using 

a Pi standard curve.  

 

Table 1. Data collection and refinement statistics 

PDB code 6FL4 

Data collection  

Space group I222 

Cell dimensions:  

    a, b, c (Å) 64.9, 77.4, 122.4 

    α, β, γ (°) 90, 90, 90 

No. of  observations 300101 (13865) 

No. of unique reflections 41032 (1950) 

Resolution (Å) 38.7-1.6 (1.69-1.60) 

Rsym or Rmerge 0.12 (0.68) 

CC(1/2) (%) 99.7 (83.4) 

I / σI 9.0 (1.9) 

Completeness (%) 99.5 (98.4) 

Redundancy  5.7 (5.6) 

Refinement  

Resolution (Å) 38.7-1.6 

No. of reflections 41078 

Rwork / Rfree 17.9/21.4 
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No. of atoms:  

    Protein 2231 

    Ligand/ion 68 

    Water 251 

ADPs (Å2):  

    Protein 17.4 

    Ligand/ion 28.4 

    Water 27.6 

R.m.s. deviations:  

    Bond lengths (Å) 0.011 

    Bond angles (°) 1.69 

Values in parenthesis are for the highest resolution shell. 

 

RESULTS 

Overall structure of AtNUDT1. The structure of AtNUDT1 in complex with 8-oxo-dGTP 

was solved to 1.60 Å resolution. A structural similarity search was performed using the DALI 

web server,40 which verified that AtNUDT1 is most structurally similar to other enzymes of the 

Nudix superfamily. The enzyme displayed high Z-scores with human MTH1 and the E. coli 

homologue MutT, which was the first of these enzymes to be structurally and kinetically 

characterized and found to catalyze the hydrolysis of 8-oxodGTP.7 The tertiary structure of 

AtNUDT1 is a homodimer (Figure 1). This dimeric tertiary structure is consistent with 

biochemical studies of AtNUDT1, which have verified the protein to be dimeric in solution.23 

This observation contrasts with human MTH1 and MutT, which are both monomeric in 

solution.7, 13 Analysis of the AtNUDT1 dimer interface with PISA (Protein interfaces, surfaces 

and assemblies) of the EBI webserver41 demonstrates a solvation-free energy gain of 18.5 kcal 
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mol-1 and a P value upon dimer formation of 0.015, with an interface area of 921.8 Å2. There are 

24 residues from each monomer, which contribute to the dimer interface of AtNUDT1.  

The AtNUDT1 monomer is composed of two α-helices (α1 and α2) and six β-strands (β1 to 

β7) and has an α/β/α sandwich structure conserved amongst members of the Nudix family 

(Figure 1A).7, 13  The individual monomers of AtNUDT1 are very similar to one another with a 

low rmsd value of 0.31 Å for the corresponding Cα-atoms. The highly conserved Nudix motif 

(GX5EX7REUXEEXGU) is located on α-helix 1 and β-strand 4 and contains the residues 

required for metal binding and substrate hydrolysis. There is one 8-oxo-dGTP ligand and two 

magnesium ions per substrate binding site, the latter of which exhibits octahedral coordination to 

the ligand, several water molecules, and the Nudix motif (Figure 1B). The structure of apo 

AtNUDT1 (PDB ID: 6DBY) was recently reported.28 Comparison of this structure with the 8-

oxo-dGTP bound enzyme indicates that there are no major conformational changes induced upon 

ligand binding, nor are there significant changes in the active site binding pocket (Supplementary 

Figure 1).  
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Figure 1. Crystal structure of the AtNUDT1 8-oxo-dGTP complex. (A) Crystallographic 

structure of dimeric AtNUDT1. Individual monomers are shown as ribbon representations, 

colored blue and green. The Nudix motif of each monomer is colored magenta. The 8-oxo-dGTP 

(8DG) ligands are depicted as ball-and-stick models; C atoms are colored black, O atoms red, N 

atoms blue and P atoms orange. Magnesium ions involved in ligand coordination are shown as 

gray spheres. The surface representations for individual monomers are shown in blue and green. 

(B) Ribbon representation of the AtNUDT1 monomer. The color-scheme and depictions of the 

Nudix motif, 8DG and magnesium ions are the same as those used in Figure 1A. The secondary 

structure elements, α-helices (1-2) and β-strands (1-7) are labeled. The main-chain atoms of 

Gly40 and side-chains atoms of Glu56 and Glu60 involved in magnesium ion co-ordination are 

shown as sticks, with O and N atoms colored red and blue, respectively.  

8-oxo-dGTP recognition by AtNUDT1. The AtNUDT1 structure shows clear density for 8-

oxo-dGTP, which binds the enzyme in the syn glycosidic conformation (Figure 2). During 

refinement there was clear electron density for the α-phosphate of dGTP, however the β-

phosphate and γ-phosphate of the ligand were placed at partial occupancy (90 and 75 %, 

respectively). This was achieved by refinement of the atoms at different occupancies followed by 

visual inspection of the resulting electron density maps. The ADP values for the α- β- and γ-

phosphates were 23.0, 25.5 and 39.7 Å2, respectively. These values are higher than the average 

ADP value of 15.4 Å2 observed for the surrounding protein side chains (Figure 2). The values for 

the α- and β-phosphate were comparable to the base (20.2 Å2) and deoxyribose moieties (23.4 

A2) of 8-oxo-dGTP, whereas the ADP value observed for the γ-phosphate was significantly 

higher. This observation could be due to partial hydrolysis of the substrate and/or radiation 

damage. The β- and γ-phosphates of the nucleotide are not always completely cleaved in the 
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crystal structures of these enzymes, as there are structures of human MTH1 in the protein 

databank in complex with 8-oxo-dGTP.42, 43 Both magnesium ions in the AtNUDT1 structure 

exhibit ideal octahedral coordination to several water molecules, 8-oxo-dGTP and residues of the 

Nudix motif. Specifically, Mg1 hydrogen bonds the side chain of Glu56 and Glu60, two water 

molecules and an oxygen atom from both the β- and γ-phosphate of 8-oxo-dGTP. Mg2 is 

coordinated with the side chain of Glu60, the main chain oxygen of Gly40, two water molecules 

and an oxygen atom from both the α- and β-phosphate of the ligand (Figure 2). In addition to 

magnesium ion coordination, the α-phosphate is within bonding distance (closer than 3.1 Å) to 

the side chain of Arg27, two water molecules and to the N3 atom of the 8-oxo-guanine base. The 

β-phosphate is within range of the side chains of Lys110 and His42, a water molecule, and the 

main chain oxygen of Gly40. The γ-phosphate also hydrogen bonds to the side chain of Glu56, 

the main chain nitrogen atom of His42, and three water molecules. The deoxyribose moiety of 8-

oxo-dGTP is positioned by a C-H⋅⋅⋅π interaction with Tyr87 and the O3’ atom is also within 

bonding distance of a water molecule and the side chain of Arg27. The 8-oxo-guanine base of 

the ligand makes several hydrogen bond interactions with three water molecules, the main chain 

nitrogen and oxygen atoms of Leu38, and the side chains of Asn76, Ser89 and Arg27 (Figure 2). 

The hydrogen bonding between Ser89 and Asn76 with the O8 atom of 8-oxo-dGTP is a 

particularly interesting feature. The structures available for related enzymes such as E. coli MutT 

and human MTH1 in complex with the ligand show no such interactions at this position.7, 13, 42, 43 

Based on this observation we made single and double mutants at these positions to assess the role 

Asn76 and Ser89 play in the recognition of oxidized and non-oxidized nucleotides by AtNUDT1. 

Structures of human, mouse, dog and zebrafish MTH1 (NUDT1) have been determined, they all 
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display highly similar substrate binding pockets, clearly distinct from the AtNUDT1 complex 

presented here.13, 14, 44, 45  

 

Figure 2. The recognition of 8-oxo-dGTP by AtNUDT1. The active site hydrogen bond 

network of AtNUDT1 with 8-oxo-dGTP bound in the syn glycosidic conformation. Amino acids 

contributing to ligand binding are depicted as sticks; C atoms are colored white, O atoms red and 

N atoms blue. 8-oxo-dGTP is presented as a stick model; C atoms are colored yellow, O atoms 

red and N atoms blue, P atoms orange. Magnesium ions involved in ligand coordination are 

shown as magenta spheres. Important water molecules that are alluded to in the text are shown as 

red spheres. Hydrogen bond interactions are shown as dashed lines. The 2Fo - Fc electron density 
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map around 8-oxo-dGTP contoured at 1.5 σ and the Fo - Fc electron density map is contoured at 

3.0 σ.  

Nucleotide substrate preferences of wild-type and mutant AtNUDT1. To investigate the 

substrate selectivity of AtNUDT1, enzyme activity was tested against a variety of canonical and 

oxidized adenine and guanine nucleotides (ATP, 2-OH-ATP, dATP, 2-OH-dATP, GTP, 8-oxo-

GTP, dGTP, 8-oxo-dGTP). AtNUDT1 demonstrated a clear preference for guanine nucleotides, 

having similar activities for 8-oxo-GTP, dGTP and 8-oxo-dGTP, but less activity towards GTP 

(Figure 3A). AtNUDT1 also displayed significant activity towards dATP as has been observed 

previously21 but did not hydrolyze any of the other adenosine nucleotide substrates tested. In 

contrast to its E. coli homologue MutT,12 AtNUDT1 did not show a strong preference for 8-oxo-

dGTP over the non-oxidized form. When compared to the human homologue MTH1, the activity 

of AtNUDT1 for the substrates tested was shown to be significantly lower, and was much less 

specific for oxidized nucleotides (Supplementary Figure 2). As detailed above, in our AtNUDT1 

structure we noted hydrogen bond interactions between Ser89 and Asn76 with the O8 of 8-oxo-

dGTP, a feature not observed in other MutT homolog structures solved to date.7, 13, 42, 43 Single 

and double mutants of these residues were produced and tested against the same panel of 

nucleotides as performed for wild-type AtNUDT1 (Figure 3B). When examining the hydrolysis 

of guanine nucleotides by the single mutants, the S89A mutant had slightly more of an effect on 

catalysis than N76A, which generally retained activity almost identical to wild-type AtNUDT1. 

The double mutant showed a minor decrease in activity compared to the wild-type and N76A 

single mutant. Although, the slight drop in activity observed for the double mutant was often 

comparable to the S89A single mutant alone (Figure 3B). Interestingly, when examining the 

hydrolysis of canonical and oxidized adenosine nucleotides, the S89A mutant showed a slight 
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increase in activity compared to the wild-type enzyme for ATP, dATP and 2-OH-dATP. 

However, the single N76A and the double AtNUDT1 mutant generally retained activity similar 

to the wild-type protein (Figure 3B).  
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Figure 3. Substrate screen of AtNUDT1 and AtNUDT1 mutants. (A) The activity of wild-

type AtNUDT1 tested against a panel of canonical and oxidized adenine and guanine 

nucleotides. (B) Comparison of activities between wild-type AtNUDT1 and AtNUDT1 active 

site mutants, with the same panel of substrates shown in A. Assays were performed in duplicate 

at 25 °C. Formed Pi was detected using Malachite green reagent and absorbance values were 

measured at 630 nm. Data are presented as v (hydrolyzed substrate (µM) per minute) per 

[enzyme] (µM).    

Kinetics of wild-type and mutant AtNUDT1 with 8-oxo-dGTP and dGTP. Overall, the 

single and double mutants did not cause a dramatic decrease in activity for any of the nucleotides 

tested, likely due to the substrate saturating conditions used in these assays (Figure 3). In order to 

properly understand the role of the N76A and S89A active site mutants in the specificity of 

AtNUDT1 for oxidized guanine nucleotides, a more careful kinetic analysis was performed. 

AtNUDT1 wild-type and the N76A and S89A double mutant were assayed against various 

concentrations of dGTP and 8-oxo-dGTP, and kinetic constants were determined (Figure 4A). 

The Km values of wild-type AtNUDT1 for 8-oxo-dGTP and dGTP were analogous, indicating no 

difference in affinity for the two substrates. The values for kcat/Km however, which represents the 

catalytic efficiency of a reaction, indicated a 1.5 fold higher catalytic efficiency with 8-oxo-

dGTP compared to dGTP (Figure 4B). A previously published study showed AtNUDT1 to have 

a roughly 8-fold lower Km value for 8-oxo-dGTP compared to dGTP, something that was not 

observed in this analysis. The catalytic efficiency of AtNUDT1 calculated in that study was 

roughly 2.5-fold higher for the oxidized nucleotide, a value slightly higher than what is reported 

here.21 The Km values for the AtNUDT1 double mutant showed a 2.6 and 2.3-fold increase 

compared to the wild-type protein for 8-oxo-dGTP and dGTP, respectively (Figure 4A) 
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indicating that removal of the hydrogen bond donors as in the double mutant does not have a 

major impact on binding of the 8-oxo-dGTP substrate specifically. However, the relative 

catalytic efficiency of the double mutant for 8-oxo-dGTP was 3-fold lower than for the wild-type 

enzyme, whereas being only 1.3-fold lower for dGTP (Figure 4B) implying that these mutations 

do have an effect on the relative catalytic efficiencies of these substrates.  

 

Figure 4. Enzyme kinetics of wild-type and mutant AtNUDT1 with dGTP and 8-oxo-dGTP. 

(A) Saturation curves of wild-type AtNUDT1 (AtNUDT1WT) and AtNUDT1 mutant 

(N76A/S89A) mediated hydrolysis of dGTP (left) and 8-oxo-dGTP (right). Each enzyme (2 nM) 

was incubated with concentrations of dGTP and 8-oxo-dGTP ranging from 0-300 µM and 0-60 

µM, respectively. Substrate hydrolysis was determined by measuring PPi formation, which was 

detected using the PPiLight Inorganic Pyrophosphate Assay (Lonza). Data are presented as v 

(hydrolyzed substrate (µM) per minute) per [enzyme] (µM). Initial reaction rates were 
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determined in duplicate. (B) Kinetic parameters of AtNUDT1WT and the 

AtNUDT1(N76A/S89A) mutant for dGTP and 8-oxo-dGTP hydrolysis. Kinetic values were 

determined by fitting the Michaelis-Menten equation to the initial reaction rates using GraphPad 

Prism. Data presented are the average ± s.d. from two independent experiments.  

Structural comparison of AtNUDT1 with related Nudix enzymes. Comparison of the 

AtNUDT1 monomer with homologues from humans and bacteria indicates that these enzymes 

share the same overall structure (Figure 5A). Following Cα atom superposition, AtNUDT1 

displays similar r.m.s.d values when compared to E. coli MutT (1.74 Å) and human MTH1 (1.81 

Å) with which it shares a similar level of sequence identity (30 % and 26 %, respectively). The 

Nudix motifs, containing residues critical for metal binding and substrate hydrolysis, located on 

α-1, β-4 and the connecting loop region, superimpose well (Figure 1, Figure 5A). In general, the 

core secondary structure elements of the enzymes overlay nicely. The exceptions are a few loop 

regions distant to the active site, but more importantly, the position of α-helix 2 (Figure 5A). The 

positioning of this α-helix in AtNUDT1 differs most with human MTH1 reflecting the 

differences in nucleotide binding within the active sites. As noted in the previous section, 

AtNUDT1 has much lower activity compared to both E. coli MutT and human MTH1, and is 

much less specific towards oxidized nucleotides. A major difference between these proteins is 

their tertiary structure, human MTH1 and E. coli MutT both being monomeric in solution7, 13 

whereas AtNUDT1 forms a homodimer in solution.23 However, this difference is unlikely to be 

responsible for the kinetic differences, as mutational studies of the AtNUDT1 dimer interface 

have indicated that its disruption does not affect catalysis.24 Additionally, it is evident from the 

AtNUDT1 structure, that the location of the dimer interface is distant to the substrate-binding 

site (Figure 1A). When comparing the active site of AtNUDT1 to E. coli MutT and human 
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MTH1 following Cα atom superposition, the plant enzyme was shown to be much more similar 

to the bacterial enzyme (Figure 5B,C). In the AtNUDT1 structure the 8-oxo-dGTP ligand binds 

in the syn glycosidic conformation. This is the same conformation as observed for 8-oxo-dGTP 

bound E. coli MutT (Figure 5B) and contrasts to human MTH1 where the ligand binds the 

protein in the anti glycosidic conformation (Figure 5C). As noted previously, a key difference 

between AtNUDT1 and these structures is the hydrogen bond interactions between Asn76 and 

Ser89 with the O8 position of 8-oxo-dGTP (Figure 2). Such a direct interaction with the oxidized 

component of the ligand is not observed in the bacterial and human homologues.7, 13 In E. coli 

MutT the residues equivalent to Asn76 and Ser89 of AtNUDT1 are Tyr73 and Leu82, neither of 

which are within hydrogen bonding distance to O8. The hydroxyl group of the tyrosine points in 

the opposite direction of 8-oxo-dGTP, and no atoms from the main chain of either amino acid are 

within binding range to the ligand (Figure 5B). This is a similar observation to the human MTH1 

structure where the equivalent positions are occupied by two hydrophobic residues (Phe73 and 

Val83), which form part of a hydrophobic pocket (Figure 5C).  

Comparison of the AtNUDT1 and E. coli MutT active sites indicates that the base and 

deoxyribose moieties of the 8-oxo-dGTP ligand superimpose well. The amino acids involved in 

substrate recognition also adopt similar overall positions, however their chemical properties 

differ significantly (Figure 5B). For example, there are several hydrophobic residues in 

AtNUDT1, namely Ile31, Ala37 and Leu130, which are hydrophilic residues in E. coli MutT 

(His28, Glu34 and Asn119, respectively). There is also a C-H⋅⋅⋅π interaction between Tyr87 in 

AtNUDT1 and the deoxyribose moiety of 8-oxo-dGTP, which is absent in MutT where there is a 

hydrophobic residue (Ile80) located at the equivalent position (Figure 5B). 



 20 

However a pi-stacking interaction is observed in the human MTH1 structure between Phe72 

and the base of the nucleotide (Figure 5C). When analyzing the superposition of AtNUDT1 with 

human MTH1 it is evident that in spite of their similar overall structures, their active site 

hydrogen bond networks differ significantly (Figure 5C). An important difference is the 

movement of α-helix 2 in human MTH1, which positions two aspartate residues (Asp119 and 

Asp120) for nucleotide binding. These amino acids play important roles in human MTH1 

substrate specificity.43, 46 The human MTH1 enzyme has a broader substrate selectivity for 

oxidized nucleotides and can in contrast to AtNUDT1 also effectively hydrolyze oxidized 

adenosine nucleotides such as 2-OH-dATP in addition to its 8-oxo-dGTP activity 

(Supplementary Figure 2). Previous mutational and crystallographic studies have proposed that 

human MTH1 recognizes 8-oxo-dGTP via protonated Asp119 and deprotonated Asp120, which 

switches in order to enable the recognition of 2-OH-dATP.43, 46  There are no equivalent residues 

at these positions in AtNUDT1. However, despite differences in binding of the base and 

deoxyribose moieties of 8-oxo-dGTP, the positions of the phosphates and metal ions in these 

structures are comparable (Figure 5B,C). Therefore, the site of hydrolysis is conserved between 

these enzymes even if the regions determining substrate specificity are not. The residues Gly40, 

Glu56 and Glu60, involved in metal ion coordination (Figure 2), superimpose particularly well 

between the structures. These amino acids are part of the highly conserved Nudix motif 

characteristic of this family of enzymes.  
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Figure 5. Comparison of AtNUDT1 with closely related Nudix enzymes. (A) Cα-atom 

superposition of whole monomers visualized as ribbon representations. AtNUDT1 (green), E. 

coli MutT (purple) and human MTH1 (pink). The 8-oxo-dGTP ligand of AtNUDT1 is depicted 

as a ball and stick model; C atoms colored black, O atoms red, N atoms blue and P atoms orange. 

The magnesium ions of AtNUDT1 are shown as gray spheres. (B) Comparison of the AtNUDT1 

active site (green) with E. coli MutT (purple). The 8-oxo-dGTP of AtNUDT1 and 8-oxo-dGMP 

of MutT are shown in the syn glycosidic conformation. (C) Overlay of the AtNUDT1 active site 

(green) with 8-oxo-dGTP in the syn conformation and hMTH1 (pink) with 8-oxo-dGMP in the 

anti conformation. In panels B-C, the metal ions of AtNUDT1 and MutT are depicted as spheres. 

Amino acids are depicted as sticks; O atoms red, N atoms blue and the carbon atoms of 

AtNUDT1, MutT and hMTH1 shown in green, purple and pink, respectively.  
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Comparison of AtNUDT1 activities and structures involving terpenes. We tested the 

activities of AtNUDT1 with previously described substrates of AtNUDT1 under the same assay 

conditions (Figure 6A). Based on published Km values21, 25  the used substrate concentration of 

100 µM is well above the Km values resulting in the enzyme being saturated with substrate. 

Under these conditions 8-oxodGTP, dGTP as well as 8-oxoGTP, are hydrolyzed to 

approximately the same extent and are clearly turned over faster than the monoterpene substrates 

and NADH. However, since the monoterpene substrates display lower Km values compared to 8-

oxo-dGTP25 the catalytic efficiency for 8-oxo-dGTP is approximately the same as for the 

monoterpene substrates. Aiming to explain the difference in binding affinity between 8-oxo-

dGTP and the monoterpene substrates to AtNUDT1 reflected in the lower Km values for the 

monoterpene substrates, we compared our structure with AtNUDT1 in complex with 8-oxo-

dGTP with the published structures of AtNUDT1 in complex with GPP24 and IPP.28 GPP 

belongs to the monoterpene family of volatiles, which play important roles in the defense against 

pathogens, pollinator attraction, plant-plant interactions and communication with the surrounding 

environment in plants.26, 27 In addition to their roles in plants, derivatives of monoterpenes have 

widespread use in fragrances, flavors and in the pharmaceutical industry.47  

Superposition of the individual AtNUDT1 monomers bound with 8-oxo-dGTP, GPP and IPP 

indicates that there are no major conformational differences between these structures (Figure 

6B). Comparison of our AtNUDT1 8-oxo-dGTP complex with the AtNUDT1 GPP (PDB ID: 

5GP0) bound structure shows the two substrates utilize the same binding site (Figure 6C). These 

structures are highly similar as indicated by the low r.m.s. differences of 0.578 Å for their 

individual monomers. The GPP bound structure contains the mutation Glu56A which renders the 

enzyme completely catalytically inactive.24 Interestingly, GPP adopts two alternate 
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conformations in the active site. In the first orientation, the geranyl component of GPP occupies 

a similar position to the base and deoxyribose moiety of 8-oxo-dGTP. In the second 

conformation the geranyl part of the ligand is directed towards a hydrophobic cavity consisting 

of residues Leu38, Phe78, Pro129 and Phe127. Overall the residues of the AtNUDT1 GPP active 

site superimpose very well with those of the 8-oxo-dGTP structure (Figure 6C). In contrast to the 

extensive hydrogen bond network shown in the 8-oxo-dGTP complex (Figure 2), only three 

amino acids (Arg27, His42 and Tyr87) form hydrogen bond interactions with GPP. Mutations to 

any of these three residues largely abolished GPP activity.24 In addition, the pyrophosphate 

component of GPP is significantly shifted when compared to the positioning of the 8-oxo-dGTP 

phosphates. This is accompanied by the slight movement of Tyr87 and the flipping of His42 

which allows for hydrogen bonding to the terminal phosphate of GPP (Figure 6C). There are no 

metal ions bound in AtNUDT1 GPP active site.  

Superposition of the AtNUDT1 8-oxo-dGTP structure with IPP bound AtNUDT1 (PDB ID: 

6DBZ) shows the structures are highly similar, as indicated by the low r.m.s. difference of 0.340 

Å for their individual monomers. In contrast to what was observed for GPP, IPP adopts a single 

conformation in the active site. The terpene substrate superimposes perfectly with the α- and β-

phosphates and deoxyribose moiety of 8-oxo-dGTP (Figure 6D). There are 3 magnesium ions in 

the active site of the IPP complex, one more than was observed for the 8-oxo-dGTP bound 

structure. The additional magnesium ion occupies the same position as the γ-phosphate in the 

AtNUDT1 8-oxo-dGTP structure. The three magnesium ions all exhibit ideal octahedral 

coordination (Figure 6D).  The residues involved in metal ion coordination superimpose very 

well with the exception of Lys110 which in the 8-oxo-dGTP bound structure directly interacts 
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with a magnesium ion. In the AtNUDT1 IPP structure Lys110 hydrogen bonds to a water 

molecule, which in turn interacts with the equivalent magnesium ion (Figure 6D).  

 

Figure 6. Comparison of AtNUDT1 activities and structures involving terpenes. (A) 

Substrate screen of AtNUDT1 at 100 µM substrate performed at 25°C and pH 8.0. Data are 

presented as v [hydrolysed substrate] (µM) per [Etot] (µM) per minute. (B) Cα-atom superposition 

of whole monomers visualized as ribbon representations. AtNUDT1 8-oxo-dGTP (white), 

AtNUDT1 GPP (green) (PDB ID:5GP0) and AtNUDT1 IPP (blue) (PDB ID:6DBZ). The 8-oxo-

dGTP ligand is depicted as a ball and stick model; C atoms colored black, O atoms red, N atoms 
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blue and P atoms orange. The magnesium ions which coordinate 8-oxo-dGTP are shown as 

magenta spheres. The secondary structure elements, α-helices (1-2) and β-strands (1-7) are 

labelled.  (C) Cα-atom superposition of AtNUDT1 8-oxo-dGTP (white) with AtNUDT1 GPP 

(green). GPP is shown as a stick model; C atoms are colored yellow, O atoms red, P atoms 

orange. Hydrogen bond interactions involved in GPP binding are shown as dashed lines. The 

magnesium ions of the AtNUDT1 8-oxo-dGTP structure are shown as magenta spheres. (D) Cα-

atom superposition of AtNUDT1 8-oxo-dGTP (white) with AtNUDT1 IPP (blue).  IPP is shown 

as a stick model; C atoms are colored yellow, O atoms red, P atoms orange. Hydrogen bond 

interactions involved in IPP binding are shown as dashed lines. The magnesium ions of 

AtNUDT1 8-oxo-dGTP (magenta) and AtNUDT1 IPP (green) are depicted as spheres. In panels 

C-D amino acids are shown as sticks; O atoms red, N atoms blue, P atoms orange and the carbon 

atoms of AtNUDT1 8-oxo-dGTP, AtNUDT1 GPP and AtNUDT1 IPP are shown in white, green 

and blue, respectively.  

DISCUSSION 

Nudix enzymes play an important role in the removal of mutagenic dNTPs such as 8-oxo-

dGTP, which prevents their incorporation into DNA. These enzymes generally prefer oxidized 

nucleotides but can also hydrolyze normal dNTPs, which are far more abundant in vivo. We have 

determined the structure of AtNUDT1 in complex with 8-oxo-dGTP and carried out substrate 

screening and characterization with various nucleotides. To date, AtNUDT1 is the only Nudix 

enzyme from A. thaliana reported to have activity against oxidized guanosine nucleotides. 

Analysis of the AtNUDT1 active site revealed a previously unobserved feature, hydrogen 

bonding between Asn76 and Ser89 to the O8 atom of 8-oxo-dGTP. Such a direct interaction has 

not been observed in the structures of the homologues human MTH1 and E. coli MutT, both of 
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which display high specificity towards oxidized nucleotides. Interestingly, the kinetic analysis of 

wild-type AtNUDT1 presented here showed only a 1.5-fold higher catalytic efficiency for 8-oxo-

dGTP compared to the non-oxidized form. This does not indicate a strong preference for 8-oxo-

dGTP to be compared with the preference for 8-oxo-dGTP over dGTP for the E. coli MutT 

protein that was reported to be roughly 34,000-fold.48, 49  Neither did we observe the 8-fold lower 

Km for the oxidized nucleotide that has been described previously21. This suggests that 

AtNUDT1 is likely to have evolved to fulfill other roles in the plant cell apart from sanitizing the 

cell from 8-oxo-dGTP. We produced AtNUDT1 single and double mutants of Asn76 and Ser89 

to further probe their role in substrate specificity. The Km value of the AtNUDT1 double mutant 

for 8-oxo-dGTP and dGTP was decreased by roughly 2.5 fold in both cases, which indicates that 

these residues do not dramatically affect substrate binding. The relative efficiency of reaction 

however, was decreased more for 8-oxo-dGTP than for dGTP, indicating that Asn76 and Ser89 

do play a role in the catalysis of 8-oxodGTP hydrolysis in A. thaliana. The lack of amino acid 

residues able to form hydrogen bonds to O8 in in the corresponding positions in MutT and 

human MTH1 suggest that these residues are of minor importance for efficient catalysis of 8-

oxo-dGTP. 

Comparisons of AtNUDT1 with the structures of closely related E. coli MutT and human 

MTH1 demonstrated a shared overall fold. The active site residues from the characteristic Nudix 

motif, responsible for metal ion coordination and substrate hydrolysis, displayed strong 

conservation. Overall, the active site of AtNUDT1 showed more structural similarity to E. coli 

MutT with 8-oxo-dGTP binding in the syn conformation rather than the anti conformation 

observed for human MTH1. The 8-oxo-dGTP ligands superimposed particularly well between 

AtNUDT1 and MutT. However, while the overall positions of amino acids involved in substrate 
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recognition were similar, their chemical properties differed considerably. In particular, there 

were several hydrophobic residues in AtNUDT1 which were replaced by hydrophilic residues in 

the E. coli enzyme. This feature was more marked in comparisons with human MTH1, where the 

hydrogen bond network for 8-oxo-dGTP was drastically different to AtNUDT1. It is interesting 

that E. coli MutT and human MTH1 display a much stronger preference for 8-oxo-dGTP than 

AtNUDT1, in spite of their lack of direct interactions with the oxidized O8 atom of the 

nucleotide. 

Crystal structures of E. coli MutT determined in the presence and absence of 8-oxo-dGMP 

show significant ordering of flexible loop regions surrounding the ligand.7 The syn glycosidic 

conformation is thought to be preferred by oxidized nucleotides.7 There are no major structural 

changes that occur upon 8-oxo-dGTP binding in the human MTH1 structure.13 The specificity of 

human MTH1 for 8-oxo-dGTP is thought to be influenced by the stabilization of the 6-enol-8-

keto tautomer of the nucleotide.50 However, these factors do not fully explain the selectivity 

MutT and human MTH1 display for 8-oxo-dGTP over dGTP. 

In the current study AtNUDT1 showed a clear preference for guanine nucleotides and in 

contrast to human MTH1, was not active against oxidized adenine species such as 2-OH-

dATP.51, 52 Mutational and crystallographic studies have proposed that human MTH1 recognizes 

8-oxo-dGTP and 2-OH-dATP by the exchange of protonation states between Asp119 and 

Asp120.43, 46 AtNUDT1 lacks these residues, which in human MTH1 are located on an α-helix, 

the position of which is significantly shifted compared to the plant enzyme. These factors could 

contribute to the inability of AtNUDT1 to hydrolyze oxidized adenine nucleotides. AtNUDT1 

was also significantly less active than human MTH1 against several oxidized nucleotides 

(Supplementary Figure 2) and activity towards 8-oxo-dGTP is poor compared to that of the 
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human MTH1 enzyme. MTH1 is the primary sanitizer of oxidized nucleotides in humans and is 

over-expressed in numerous cancers.14, 53 Inhibitors targeting human MTH1 provide a highly 

effective anti-cancer strategy, as the enzyme is essential for cancer cell survival, but is non-

essential in normal cells.14, 54 The low observed activity of AtNUDT1 with 8-oxo-dGTP suggests 

that AtNUDT1 has evolved to fulfill other roles in the cell apart from sanitizing the cell from 

oxidized nucleotides. Alternatively, the activity of AtNUDT1 may be regulated and increased by 

protein modifications and/or changes in cellular conditions.  

Interestingly, AtNUDT1 has been shown to alter its substrate preference depending on the 

environmental concentration and species of metal ions.6 In the presence of manganese chloride 

AtNUDT1 has low activity against NADH23 whereas in the presence of magnesium, AtNUDT1 

has activity against nucleotide substrates and DHNTP20, which is involved in plant folate 

biosynthesis. However, at the normal physiological concentrations of metal ions present in 

plants, AtNUDT1 prefers magnesium for catalysis.6 This feature may allow the enzyme to adapt 

to fluctuations of metal ions and substrates within the cell. It is possible that the enzyme is not as 

constrained to its role in oxidized nucleotide sanitization compared to E. coli MutT and human 

MTH1 as plants have developed other mechanisms that offer protection against ROS. These 

include anti-oxidative enzymes and large numbers of antioxidants such as tocopherol, ascorbate 

and glutathione.55-57 The diversity of substrates for AtNUDT1 was further expanded by recent 

reports that AtNUDT1 is active against non-nucleotide monoterpene substrates.24, 25 

Studies of Rosa hybrid cultivar Nudix1 (RhNUDT1) were the first to report that the plant 

Nudix enzymes can hydrolyze monoterpenes, a reaction previously shown to be carried out by 

monoterpene synthases.58 Monoterpenes constitute up to 70 % of the scent compounds present in 

rose petals,58 and thus their identification in Arabidopsis was somewhat unexpected due to the 
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general lack of scent in these plants.59 No comparisons have been made between the levels of 

monoterpene scent compounds in roses and Arabidopsis to our knowledge. The largest numbers 

of monoterpene compounds produced by A. thaliana have been detected in floral tissues, which 

do not include flower petals. These volatiles, in addition to their roles in scent production, have 

other important cellular functions such as plant-plant interactions, communication with the 

surrounding environment, and the defense against pathogens.26, 27 Interestingly RhNUDT1 was 

shown to have a low Km value (140 nM) for the monoterpene precursor GPP, but was shown to 

have extremely poor activity against 8-oxo-dGTP and dGTP.58 The kinetic parameters of 

AtNUDT1 with the monoterpene substrates DMAPP, IPP, GPP and FPP were recently 

reported.25 In that study AtNUDT1 did not display a dramatic preference for monoterpene 

substrates, with the catalytic efficiency of these reactions being only marginally better or the 

same as for 8-oxo-dGTP.25 

Recently the structures of AtNUDT1 in complex with GPP24 and IPP28 were reported.  The 

geranyl group of the GPP bound structure occupied two alternate conformations. One of these 

orientations was in a similar position to the base and deoxyribose moiety of 8-oxo-dGTP in our 

structure, whereas in the second, the geranyl group is directed towards a hydrophobic region of 

the binding pocket. Mutations of residues in this hydrophobic region reduced the activity of 

AtNUDT1 for GPP by up to 50 %.24 These hydrophobic interactions may therefore play a role in 

the recognition of non-nucleotide substrates by AtNUDT1. The most striking difference between 

the GPP and 8-oxo-dGTP bound structures was the difference in the binding modes of the 

phosphate groups. Related Nudix enzymes have a conserved phosphate binding site, as evident 

in our comparisons of AtNUDT1 with human MTH1 and E. coli MutT.  The AtNUDT1 GPP 

bound structure contains a mutation in one of the residues involved in the Nudix motif 
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(Glu56Ala) which completely abolishes enzyme activity.24 This lack of activity can be explained 

by our 8-oxo-dGTP bound structure which shows that Glu56 contributes to the hydrogen bond 

network involved in coordinating the magnesium ions critical for the correct positioning and 

activation of the phosphate group. Extensive mechanistic studies of E. coli MutT have shown the 

enzyme requires two magnesium ions for activity.60, 61 These divalent cations exhibit octahedral 

coordination involving conserved glutamate residues and a glycine from the conserved Nudix 

motif, the phosphate group of the substrate and additional water molecules.62 Catalysis occurs by 

nucleophilic substitution by water at the internal the β-phosphate atom, generating the 

mononucleotide form  of the substrate and pyrophosphate.63 The reaction is accelerated by a 

glutamate residue form the Nudix motif which acts as a general base to activate the attacking 

water molecule.64 The existing structures of MutT in the Protein Data Bank with its preferred 

substrate 8-oxo-dG are all the monophosphate product (8-oxo-dGMP). However, the proposed 

mechanism is supported by a solution NMR structure of MutT in complex with the non-

hydrolysable analogue AMPCPP (PDB ID: 1TUM).62, 65 The metal ions in the structure are 

critical for orienting the attacking catalytic water molecule, activating the phosphate group for 

nucleophilic attack and facilitating the departure of the anionic leaving group.66 Mutations to the 

glutamate residues involved in magnesium coordination dramatically decreases the turnover of 

the enzyme,24, 67 indicating that properly positioned metal ions contribute significantly to 

catalysis.                                                                      

As the substrate has not been completely hydrolyzed in our structure, we can speculate 

regarding the catalytic mechanism of AtNUDT1. In 8-oxo-dGTP bound AtNUDT1 the two 

magnesium ions coordinate the oxygen atoms of the phosphate group, activating the β-phosphate 

for nucleophilic attack by an incoming water molecule. In addition, the residues His42 and 
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Lys110 are likely important for positioning the phosphate group as well as stabilizing the 

transition state. The interaction between Arg27 and the α-phosphate of the substrate may also 

enhance the departure of the nucleotide monophosphate (Supplementary Figure 3A). In our 

structure the water molecules in closest proximity to the β-phosphate of 8-oxo-dGTP are W180, 

W86 and W246 (Supplementary Figure 3A). However, it should be noted that all of these waters 

are positioned at least 3.7 Å from the β-phosphate atom. While W180 is positioned the closest 

out of these candidates (3.7 Å) it is not in the correct position for an in-line attack on the 

phosphate atom (Supplementary Figure 3A). The angle between W246, the β-phosphate and the 

leaving group is 160° degrees placing this water in an optimal position for an in-line attack.66, 68 

However, W246 is located at a distance of 5.3 Å from the β-phosphate, making it an unlikely 

candidate for the attacking nucleophile. W86 is likely a better candidate for the attacking water 

molecule. While the attack angle (138°) is less ideal than for W246, it is located significantly 

closer to the β-phosphate (4.0 Å) and coordinates with a magnesium ion (2.4 Å) also Glu60 (3.1 

Å) and Glu107 (2.6 Å) either of which could potentially act as a base to activate W86 for 

nucleophilic attack (Supplementary Figure 3A). These comments are however speculative, and 

we cannot definitively claim from our structural data that it is in fact W86 which is the attacking 

nucleophile.  

In IPP bound AtNUDT1 there is a water molecule at approximately the same position as 

W86 in our structure (Supplementary Figure 3B). This water molecule (W301) is 4.1 Å from the 

β-phosphate of the IPP substrate and coordinates with a magnesium ion (2.3 Å) and is in close 

enough proximity for activation by either Glu60 (2.7 Å) or Glu107 (2.3 Å)28 (Supplementary 

Figure 3B). In addition, there is another water molecule (W392) in the IPP bound structure 
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which could be a candidate for the attacking nucleophile. W392 is 4.3 Å from the β-phosphate of 

the substrate and coordinates with a magnesium ion (2.8 Å). This magnesium ion in the IPP 

bound structure is located in the same position as the γ-phosphate in the 8-oxo-dGTP bound 

enzyme. The angle between W392, the β-phosphate and the leaving group is 170°, which more 

significantly more favorable for an in-line nucleophilic attack when compared to W301 (where 

the angle between the water, phosphate and leaving group is 133°). However, W392 is 

significantly further away from the residues Glu59 (4.1 Å) and Glu107 (4.2 Å) which would be 

required for activating the water molecule (Supplementary Figure 3B). Based on the available 

data it cannot be conclusively stated which of these water molecules carries out the hydrolysis 

reaction in the IPP bound structure.   

The structures of AtNUDT1 bound with 8-oxo-dGTP and IPP are more likely to represent 

productive substrate binding modes compared to the GPP bound mutant enzyme. As noted 

previously, the Glu56Ala mutation would severely affect the coordination of the magnesium ions 

required for phosphate binding. In the IPP bound structure Glu56 actually coordinates two 

magnesium ions (rather than one in the 8-oxo-dGTP bound structure), both of which coordinate 

the β-phosphate of the substrate,28 making this mutation particularly detrimental to metal 

coordination involving terpene substrates (Supplementary Figure 3). The Km value of 8 µM for 

monoterpenes25 is likely closer to the cellular concentration of these compounds.69 Km values of 

AtNUDT1 for 8-oxo-dGTP are around 30 µM, a lot higher than the cellular concentration of 8-

oxo-dGTP.70 As enzymes have usually evolved to have Km values for their substrates that are 

close to their actual cellular concentration,71 this may suggest that the major role of AtNUDT1 is 

terpene metabolism. The significance of the diverse variety of substrates catalyzed by AtNUDT1 

clearly requires further investigation. The AtNUDT1 of Arabidopsis has likely evolved to utilize 
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a broader range of substrates than its homologues from humans and bacteria, due to the specific 

environmental selection pressures and distinct cellular processes relevant to plants.  
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