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Abstract  

This paper is concerned with the semantics associated with the statistical analysis of spatial 

data. It takes the simplest case of the prediction of variable y as a function of covariate(s) x, in 

which predicted y is always an approximation of y and only ever a function of x, thus, 

inheriting many of the spatial characteristics of x, and illustrates several core issues using 

‘synthetic’ remote sensing and ‘real’ soils case studies. The outputs of regression models and, 

therefore, the meaning of predicted y, are shown to vary due to 1) choices about data: the 

specification of x (which covariates to include), the support of x (measurement scales, 

granularity), the measurement of x and the error of x, and 2) choices about the model 

including its functional form and the method of model identification. Some of these issues are 

more widely recognised than others. Thus, the study provides definition to the multiple ways 

in which regression prediction and inference are affected by data and model choices. The 

paper invites researchers to pause and consider the semantic meaning of predicted y, which is 

often nothing more than a scaled version of covariate(s) x, and argues that it is naïve to ignore 

this. 
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1. Introduction  

There is a long and varied literature on the semantics associated with geographical 

information. Primarily this is concerned with how spatial phenomena are conceptualised, 



 

 

represented and encoded in spatial data (e.g. Harvey, 2000; Smith, 2001; Smith and Varzi, 

2000; Smith and Mark, 2003; Pires, 2005; Mark and Turk, 2003; Comber, 2005; Turk et al., 

2011; Derungs et al., 2013; Robbins, 2001). Much less attention has been paid to the 

semantics associated with the analysis of spatial data, that is, what we do with spatial data. 

In this paper, we describe how the specification of spatial models, and choices made therein, 

have an impact on the outcomes of a spatial analysis. For example, taking the simplest case of 

the prediction of y as a function of x with error e : 

 

y = f(x) + e 

y* = f(x) 

(1) 

 

and noting that the predicted y, i.e., y*, will only ever approximate y, it is evident that y* in 

Equation 1 is always, and can only ever be, a function of x. Thus, only f(x) is ever found and 

never y. This statement is axiomatic but often overlooked. It can lead to implicit or explicit 

claims about regression-based spatial outputs that are indefensible. For example, maps of 

disease incidence have been produced that are in effect simple transforms of covariates such 

as vegetation greenness (e.g., Beck et al., 2000; Anyamba et al., 2001; Hay et al., 2005; Lui et 

al., 2015). In these, the disease map is actually a map of vegetation greenness scaled by 

additive and multiplicative factors. The map inherits all the spatial characteristics of 

vegetation greenness and only those of disease incidence that relate indirectly through 

greenness. Thus, the key points that this paper makes are that y* can only ever be a function 

of x; that only f(x) is ever found and never y; and that models built on these paradigms, 

including those using spatial data, may result in naïve interpretations of the results and rather 

surprising consequences in some extreme cases.  

 

The semantic and characteristic variation in y*, as a function of how y is predicted, will arise 

due to core decisions about the data and the model. Decisions relating to the data include 

their specification, support, measurement and errors:   

- The specification of x: the x issue, on which covariates to include in the model. 

- The support of x: the v issue in which support effects are induced through the choice 

of measurement scales and granularity of x.  

- The measurement of x: the m issue, that is, how the desired x is measured. 

- The error of x: the e issue in which the accuracy with which we measure x, affects y*. 



 

 

 

Decisions relating to the model include its functional form, the method of model 

identification and the specification of y itself (a combined data and model issue). 

- The functional form of the model: the f issue, in which the specification of the model 

itself has a semantic effect on y*. 

- The method of model identification: the i issue, the statistical method of estimating 

the model parameters.  

- The specification of y: the y issue. For any model incorporating spatial effects, 

semantic and characteristic variation in y* will also arise as a function of the 

specification of y. The definition and sampling framework of y itself has a semantic 

effect on y* at locations other than y. 

 

This study illustrates the effects of data and model decisions through the x, v, m, e, f and i 

issues and their impacts on the semantics of the resultant spatial operations. Focus is placed 

on the imparted effects on y* through these issues (i.e., model prediction), and much less so 

the imparted effects on associated inferences (i.e., parameter uncertainty). The y issue is 

acknowledged, but not investigated, as its illustration is not straightforward and could not be 

captured adequately here (see Wang et al. (2012) and references therein). Although the stated 

issues are inherent to many statistical operations, we focus on regression, where the issues are 

illustrated through ordinary least squares (OLS) multiple regression, geographically weighted 

regression (GWR) (Brunsdon et al., 1996), and mixed models whose parameters are 

estimated via restricted maximum likelihood (REML) (e.g., Welham et al., 2004) or via 

maximum likelihood (ML). The next section describes the six issues in more detail before 

they are illustrated using a ‘synthetic’ case study of Landsat 5 remote sensing imagery 

(Section 3). The analysis is repeated using a ‘real’ case study of a soils dataset for the Loess 

Plateau, China. Finally, we conclude the study with key outputs and discussion points. 

 

2. Semantic issues in detail 

Regression seeks to model changes in y, the target variable, with changes in x, the covariates, 

where x is always (and naively) assumed free of measurement error. For this study, y is 

always fixed in fitting the regression, meaning that regardless of the issues described, the aim 

is always towards the same y, producing a y* with associated residuals (y - y*). As we are not 

presenting the issue y, only in-sample prediction of y is conducted and not out-of-sample. 



 

 

 

2.1 The x issue 

The x issue as relates to the number kx and choice cx of potential covariates to present to the 

regression. Covariate selection has a limiting effect on the possible value and semantic 

meaning of y*. Covariate selection can be a difficult task. For example, two or more 

covariates displaying similar predictive ability in relation to y can commonly be retained to 

increase the accuracy of y*, but at the same time can compromise model interpretability due 

to their collinearity. (Note that presence of such covariance amongst covariates can confound 

the semantics of any model due to uncertainty about whether the observed response is a result 

of x1 or of x2, imposing a further level of intra-x semantics on the model.) This duality can 

result in an i issue of whether to fit the model using, say, some penalized regression or not 

(e.g., Zou and Hastie 2005). Covariate availability, links to the f issue (and indirectly to the i 

issue), as missing covariates in a spatial study are often reflected in spatial effects (e.g., non-

stationary relationships and/or autocorrelated residuals), that would not be present if the 

regression were fully-specified (i.e., with a full set of covariates, such that a multiple 

regression fitted using OLS suffices) (see Cressie and Chan 1989). 

 

2.2 The v issue 

The support v of x is an important concept in geostatistics and quantitative geography. The 

support is the space on which an observation is defined, or on which a measurement is made 

and is defined by parameters such as size, shape, orientation, position etc. as well as the 

dimension of interest (e.g., 2D, 3D, 2D plus time). The support represents the lower limit of 

what we can know about the real world. In contrast, the spatial extent of the sample set 

defines the space of interest, while the sampling scheme (e.g., random, systematic grid) 

defines how that space is represented. Nothing can be known beyond the extent of the sample 

set and nothing can be known within the support (Atkinson and Tate, 2000). Indeed, all that 

can be known exists in the relations between the observations of the specific sampling 

scheme. As a result, data are always a function of the real world and the sampling framework, 

as well as conceptual and semantic choices defining measurable properties (such as ‘biomass 

per unit area’). The support has an important effect on the semantic meaning of any 

regression prediction: as the support increases, some of the potential variation in the property 

of interest is lost to within the support (i.e., it is integrated out) and all that is left is the 

variation between supports. Because of this, the measured variance collapses as the support 

size increases.  



 

 

 

Where spatial structure exists, neighbouring observations are commonly similar to each other 

(positive spatial correlation) or more rarely dissimilar (negative spatial correlation), entailing 

in both instances that decrease in variance is smaller as the support increases. This means that 

less variance is lost to within the support. This is also one aspect of the modifiable areal unit 

problem (Openshaw, 1984), where, as the areal size changes (up- or down-scaling), the 

correlation between a given pair of variables changes, conditional upon the scales of spatial 

variation that exist in the same variables. Gotway and Young (2002), Zhang et al. (2014) and 

Murakami and Tsutsumi (2015) describe the effects of varying support of the observation 

units.  

 

In terms of the v issue, y* and (y - y*) are a function, either directly or indirectly, of the 

sampling framework of x, specifically, the size, geometry, and orientation of the support over 

which the variables were measured. If the supports of the covariates x change, then the 

predictions y* will change and, thus, the semantics of the model or its predicted state will 

change. Most obviously, the variance of y* will change. 

 

2.3 The m issue 

The m issue can manifest itself in several ways. Measurements of a property will vary 

according to different options for how they are measured analytically. If these variables are 

then used separately as covariates to predict y, then clearly y* will vary according to which 

form of the covariate x is specified. Thus, the specific impact of any covariate x is dependent 

on its method of measurement, and each individual covariate may be affected in this manner 

in different ways.  

 

An interesting m issue consideration arises in remote sensing. The pixel values in a remotely 

sensed image are generally accepted to be integrals (e.g., of radiance or brightness) over the 

measurement support, which is approximated as a pixel. The measured values are integrals 

across different variables because the angle of view varies across the support. This may 

matter less for certain satellite-based observations, but it may be of greater consequence for 

airborne, drone or ground-based measurements. For example, when measuring the radiance 

of a crop using a ground-based instrument, a single measurement is likely to include the tops 

of the canopy at nadir, but also the sides of the canopy at the edge of the support. Thus, a 



 

 

single value is realised as the integral of fundamentally different variables. This semantic 

mixing in x will impact on y*. 

 

2.4 The e issue 

The e issue is concerned with measurement error and how the accuracy with which we 

measure x, affects y*. The x’s can never be known perfectly and while they might be error 

free, we can never know that. Thus, the error ex in x will propagate through the model 

transform to y*. Here ex may include systematic and random contributions of given 

magnitudes, will have its own distributional form, and may have a spatio-temporal character 

(e.g., autocovariance). It may also be related directly to x (i.e., heteroscedasticity). All of 

these properties will impact on y*, and regression models to account for them exist (e.g., 

Christensen, 2011). Most fundamentally, the larger the error ex relative to the signal in x (i.e., 

the smaller the signal-to-noise ratio in x), the more degraded is the semantic information 

content of y*. Observe that the error ex is different to the error or residual of y*. 

 

2.5 The f issue 

The f issue is concerned with model specification or choice.  For regression modelling this 

can include models that deal with non-linearity or heteroskedasticity, relationship non-

stationarity (e.g., GWR) and autocorrelated residuals (e.g., mixed models). For each model 

category there exist alternative models (or modelling paradigms) with broadly the same 

objective. For example, weighted regression can be used to deal with non-linearity or 

heteroskedasticity (e.g., Carroll and Rupert 1988), an expansion model can be used to model 

non-stationary relationships (Cassetti, 1972), and a simultaneous autoregressive model can be 

used to counter autocorrelated residuals (e.g., Anselin, 1990; Cressie, 1993). 

 

Model specification frequently includes secondary choices within the chosen model. These 

include the kernel function in GWR (e.g., Gaussian, bi-square, etc.) or the variogram model 

in a mixed model (e.g., exponential, spherical, etc.). All these choices can be directed based 

on model fitting, but only where the options have been explored by the investigator. This is 

analogous to the case for the data (the x issue) whereby the data selected by the model fitting 

can be chosen only from the set provided by the investigator: the chosen model can only be 

from the set of models investigated. 

 

2.6 The i issue 



 

 

Model identification concerns the statistical estimation method used for fitting a chosen 

model. Examples include weighted least squares (WLS) for addressing non-linearity or 

heteroskedasticity and partial least squares (PLS) for addressing collinearity (e.g., Frank and 

Friedman, 1993). The method of fitting can also determine the number kx and set cx of 

covariates to include in the model and the use of an intercept term (e.g., with stepwise, 

LASSO or elastic net approaches; see Zou and Hastie, 2005). The choice of adopting a 

Bayesian inference framework also falls mostly into this category, for example, through 

fitting options such as Markov chain Monte Carlo (MCMC) or Integrated Nested Laplace 

Approximation (INLA) methods (Rue et al., 2009). The choice of estimation method will 

determine the identification of the model and parameters specified and, thus, this choice will 

have an effect on y*, its semantic meaning and character. 

 

The method of identification strongly links with model specification. However, we do not 

attempt to illustrate more complex problems in which it can be difficult to isolate non-

linearity, non-stationarity and autocorrelation effects, for a given spatial dataset (e.g., 

Anselin, 2010; Basile et al., 2014; Harris, 2018) or illustrate those that additionally consider 

scale-dependent processes (e.g., Dong et al., 2015). Instead, we choose to illustrate routine 

methods of identification in mixed models with REML and ML, both of which separate trend 

(first-order effects) from autocorrelation (second-order) effects (see also, Armstrong, 1984). 

 

2.7 Summary 

It is clear that the semantic meaning of the regression-based prediction of y* is a function of 

the number kx and choice cx of covariates x (the x issue), the given supports (the v issue), the 

way that they are measured (the m issue), together with their (unknown) errors (the e issue). 

The fitted regression in terms of its specification (the f issue) and its identified parameters 

(the i issue) will also impact on y*. These issues and, in particular, their impact on the 

prediction of y* and model inference, are illustrated through two case studies with non-

spatial multiple regression models and GWR, and mixed models as spatial regression 

models. GWR and the mixed model represent the f issue, and the i issue is represented by 

OLS for multiple regression, together with REML/ML for the mixed models. All study 

regression models are described in the Appendix to this paper.  

 

3. Synthetic case study: Landsat 5 imagery 



 

 

In the first case study, remote sensing imagery is used to illustrate the semantic impacts of 

regression modelling on y* and model inference due to the x, v, m, e, f and i issues. Cloud-

free Landsat 5 imagery from 2011 was obtained for the East of England (path 201, row 023, 

30th October 2011) with a spatial resolution of 30 m. Three of the Landsat 5 spectral bands 

were used in the regression analyses, with the Blue band (0.45-0.52 µm) as the target variable 

(y), and the Red and Green bands (0.63-0.69 µm and 0.52-0.60 µm respectively) as the 

covariates x1 and x2, respectively. A 50 x 50 pixel area was selected randomly and extracted 

for use (Figure 1). 

 

 
Figure 1. The 50 x 50 pixel area of 2011 Landsat 5 imagery used in the study, showing bands 

3, 2 and 1 through the Red, Green and Blue channels. 

 

A total of eight regression analyses were undertaken to illustrate the semantic effects of the 

six issues, where in each case the aim was to predict the Blue band (y) using the Red band 

(x1) and in three instances, the Green band (x2) also.  The eight regression analyses were as 

follows: 

a) Reference: y = f (x1) with multiple regression; 

b) x issue: y = f (x1 + x2) with multiple regression; 

c) v issue: y = f (x1) with multiple regression, where the Red band (x1) is aggregated to 

60 m spatial resolution using a nearest neighbour algorithm; 

d) m issue: y = f (x1) with multiple regression, where the Red band (x1) is altered slightly 

by taking its square root; 

e) e issue: y = f (x1) with multiple regression, where a relatively small amount of random 

noise is added to the Red band (x1); 

f) first f issue: y = f (x1) with GWR; 



 

 

g) second f issue: y = f (x1 + x2) with a mixed model fitted by REML; 

h) i issue: y = f (x1 + x2) with a mixed model fitted by ML. 

 

Figure 2 maps the actual y’s (all the same), the different predicted y*’s, the covariates x1 and 

x2, and the residuals (y - y*) arising from the eight regression fits and the six semantic issues 

x, v, m, e, f and i. The distributions of y* are also shown via boxplots in Figure 3, along with 

the corresponding residuals (y - y*) in Figure 4. It is also possible to re-compare the residuals 

(y – y*) as in Figure 5, together with y*, with the covariate x1 through (x1 – y*) as in Figure 6, 

where maps from both figures use the same legend and class breaks. Model inference for 

each of the eight regression models is summarised in Table 1. 

 

a) Reference: multiple regression with the Red band as the single covariate 

 
b) The x issue: multiple regression with the Red and Green bands as covariates 

 
c) The v issue: multiple regression with the Red band aggregated to 60m 

 
d) The m issue: multiple regression with the Red band altered, by taking its square root 

 
e) The e issue: multiple regression where random noise is added to the Red band 



 

 

 
f) The first f issue: GWR with the Red band as the single covariate  

 
g) The second f issue: mixed model REML with the Red and Green bands as covariates 

 
h) The i issue: mixed model ML with the Red and Green bands as covariates 

 
Figure 2. Maps of the original and same target variable (y), different y*, covariates (x1 and x2) 

and model residuals (y – y*) arising from the six issues and eight regressions (a to h). 

 

 

 
Figure 3: Boxplot distributions of y* arising from the six issues and eight regressions (a to h) 

(outliers given with a small transparency term). 

 



 

 

 
Figure 4: Boxplot distributions of the regression residuals (y – y*) from the six issues and 

eight regressions (a to h). Outliers are given with a small transparency term. 

 

 

 
Figure 5: The residuals (y – y*) arising from the six issues and eight regressions (a to h). 

 

 
Figure 6: The differences between x1 and the y* values (x1 – y*) from the six issues and eight 

regressions (a to h).  



 

 

 

Table 1. Model summaries for the eight regression analyses applied to the image case study. 

Semantic issue and regression form Covariate Estimate t-value Pr. (>|t|) 

Reference: y = f (x1), multiple regression (MR) x1 0.943 548.022 0.000 

x issue: y = f (x1 + x2), MR x1 1.193 126.506 0.000 

 x2 -0.283 -26.889 0.000 

v issue: y = f (x1), MR, x1 aggregated to 60m x1 0.927 259.293 0.000 

m issue: y = f (x1), MR, square root of x1 x1 0.919 566.906 0.000 

e issue: y = f (x1), MR, random noise added to x1 x1 0.930 321.496 0.000 

first f issue: y = f (x1), GWR*                  Min. - 0.919 298.183 0.000 

                        1st Quartile - 0.935 431.140 0.000 

                        Median x1 0.943 484.059 0.000 

                        3rd Quartile - 0.951 523.779 0.000 

                        Max. - 0.992 572.124 0.000 

second f issue: y = f (x1 + x2), mixed model REML x1 0.524 28.783 0.000 

 x2 0.193 12.000 0.000 

i issue: y = f (x1 + x2), mixed model ML x1 0.524 28.789 0.000 

 x2 0.193 11.997 0.000 

*The GWR t-values are not corrected for multiple hypothesis tests (see Gollini et al., 2015). 

 

From Figure 2, it is clear that for regression models (a, c, d, e and f) the y* are much closer to 

x1 than to y. This is particularly true for regressions (c and e), the v and e issues, respectively, 

where changes in the support of x1 and the error associated with x1 are very clearly reflected 

in y*.  For regression (d), the m issue, the y* have a similar spatial pattern to x1 as that found 

in the reference regression (a), but the y* has reduced variability. This effect similarly results 

for regression (f), the first f issue with GWR, in comparison to the reference regression (a); 

but in this case, the y* show the least spatial similarity to x1, (at least for regressions using 

only a single covariate). Thus, accounting for spatial effects (the f issue) reduces the 

similarity between the y* and x1, as might be expected. 

 

When an additional covariate, x2 is added for the x issue (in regressions b, g and h), the y* are 

no longer as close to x1, but are now a reflection of x1 and x2, combined. Variability in y* 

reduces when viewing the second f issue (a mixed model), in comparison to its reference 

regression (b); and this is similarly true with the first f issue (GWR), in comparison to its 

reference regression (a).  On viewing only regressions (g and h), the chosen i issue, appears 

to have little to no effect on y*, which was anticipated. 

 



 

 

From Figure 3, the y* from single covariate regressions (c, d, e and f, for issues v, m, e and f, 

respectively) all display clear differences to that found with the reference regression (a).  

Similarly, the double covariate regression (b, for the x issue) provides clear differences in its 

y* to that of the single covariate reference regression (a). Similarly, the double covariate 

regressions (g and h, for issues f and i, respectively), both display differences to that found 

with their reference regression (b), but not with each other.  The results for Figure 4, mimic 

those given for Figure 3, but in terms of the residuals (y - y*) rather than y*. 

 

From Figure 5, it is evident that regressions for five of the six issues (x, v, m, e, and f) all 

provide residuals that are different in spatial pattern to the reference regression and also to 

any alternative reference regression (i.e., the second f issue and the i issue with the x issue as 

their reference). For regressions representing the v and e issues, this effect can be quite 

striking. Figure 6, depicts how the spatial characteristics of y* move closer to or further away 

from the spatial characteristics of the covariate x1, depending on the illustrated semantic 

issue. Here, the regression for the m issue appears to provide y* values that are the most 

similar to the covariate x1, whilst the regressions for the v and e issues provide y* values that 

are least similar. 

 

The model inference summaries (Table 1) are only given for completeness and are largely 

uninteresting given that this is a synthetic case study. However, none of the six semantic 

issues result in a change of significance for any regression coefficients. The coefficient 

estimates can change, however; for example, the covariate x2, negatively relates to y in the x 

issue, whereas the same relationship is a positive relationship in the second f issue. 

 

4. Real case study: soils in the Loess Plateau, China 

In this second case study, the predictive and inferential impacts of the x, v, m, f and i issues 

are illustrated for a soils dataset in the Loess Plateau, China. This area is dominated by thick 

loess deposits and suffers from intense erosion. It contains several fragile ecosystems (Chen 

et al., 2007; Wang et al., 2008) and has been the subject of much research, particularly 

focused on reducing the impacts of soil erosion by vegetation restoration, re-greening and 

sustainable agriculture initiatives (Fu et al., 2018; Luo et al., 2018; Hu et al., 2017; Li et al., 

2017). Soil moisture is driven by limited precipitation, most of which falls between June and 

September. Understanding hydrological processes, and particularly soil conductivity, is 

critical in the Loess Plateau as these underpin the effectiveness of vegetation restoration 



 

 

activities. Soil data were collected at 243 locations in the Loess Plateau, China (Figure 7) and 

analysed in the laboratory to generate measurements of several soil characteristics including 

soil physical properties (soil hydraulic conductivity, Ks, in cm min-1 and saturated soil water 

content, SSWC) and soil composition (% Clay, % Silt and % Sand). All soil measures were 

recorded at three different depths of 0 to 10 cm, 10 to 20 cm and 20 to 40 cm.  

 

 
Figure 7. The 243 sample locations in the Loess Plateau, China, with a slight shading 

transparency to show sites that overlap. 

 

 

In this study, Ks at 0 to 10 cm depth is considered as the target variable, y, with covariates 

SSWC at 0 to 10 cm and % Clay and % Silt both at 0 to 10 cm (% Sand at 0 to 10 cm is 

dropped to deal in a simple way with the compositional nature of the data). Additional 

covariates in terms of landscape (terrain) indices were obtained for each sample location from 

a series of DEMs at spatial resolutions of 30 m and 90 m. The ‘terrain’ function in the R 

‘raster’ package (v2.6-7, Hijmans and van Etten, 2017) was used to generate measures of 

aspect (0 to 360°) and stream flow direction (encoded in powers of 2 to indicate compass 

direction). The aspect variable was transformed to East-ness by taking the cosine of the 

angles, and flow direction was converted to a measure of Flow Northeast-ness in a similar 

way using the sine function only. 

 

The soil and terrain covariates allow us to demonstrate the x issue, and as the two terrain 

covariates (East-ness, Flow Northeast-ness) are calculated over different supports of 30 and 

90 m, the v issue, also. The m issue is not present in this data, where it would have been ideal 

to have covariate data from different methods of measuring the exact same property using 



 

 

three competing analytical techniques. However, we do have measurements of the same soil 

property collected at three different depths and, therefore, we use the SSWC at 20 to 40 cm, 

as alternative measurements of SSWC at 0 to 10 cm. This serves for illustration. If we had 

chosen to integrate the depth-dependent soils data, for example to 0 to 20 cm or 0 to 40 cm 

then we would be provided with an alternative v issue. 

 

The nature of the alternative covariates for the study of the v issue and m issue are shown in 

Figures 8 and 9, respectively. The prediction accuracy of Ks at 0 to 10 cm should intuitively 

reduce for a regression calibrated with terrain variables over the larger supports (v issue), and 

similarly, reduce for a regression calibrated with the deeper values of % SWCC (m issue). 

These covariate decisions illustrate the potential for variation in regression outputs 

(predictions, coefficients and uncertainties) due to decisions over choice of support (Figure 8) 

and of measurement (Figure 9). The final data-driven semantic issue, the e issue, is not 

illustrated. 

 

Figure 8. The v issue - variation in the terrain indices derived from different DEMs 

(probability densities). Note that the variance should decrease as sample support size 

increases. 

 

 
Figure 9. The contrived m issue - variation in the distributions of the soil property variables 

(% Clay, % Silt, % SSWC) sampled at the top and bottom depths (0 to 10 cm and 20 to 40 

cm). The m issue is illustrated only using % SSWC and not % Clay and % Silt, also. 

 



 

 

To illustrate the two model-driven semantic issues (the f and i issues), multiple regression, 

GWR and mixed models fitted using REML and ML were again specified. Thus, again two f 

issues are illustrated, where the i issue corresponds directly to the second f issue (via the 

mixed models). Again, the second f issue and its i issue are also given in the form used for 

the x issue and not the reference regression. The resultant seven regression analyses chosen 

to illustrate the x, v, m, f and i issues are as follows (with the differences to the reference 

regression highlighted in bold): 

 

a) Reference: Ks at 0 to 10 cm = f (SSWC at 0 to 10 cm, Flow-NE and East-ness both at 

30 m) with multiple regression; 

b) x issue: Ks at 0 to 10 cm = f (SSWC at 0 to 10 cm, Flow-NE and East-ness both at 30 

m; Clay and Silt both at 0 to 10 cm) with multiple regression; 

c) v issue: Ks at 0 to 10 cm = f (SSWC at 0-10 cm, Flow-NE and East-ness both at 90 

m) with multiple regression; 

d) m issue: Ks at 0 to 10 cm = f (SSWC at 20 to 40cm, Flow-NE and East-ness both at 

30 m) with multiple regression; 

e) first f issue: Ks at 0 to 10 cm = f (SSWC at 0 to 10 cm, Flow-NE and East-ness both 

at 30 m) with GWR; 

f) second f issue: Ks at 0-10 cm = f (SSWC at 0-10 cm, Flow-NE and East-ness both at 

30 m; Clay and Silt both at 0-10 cm) with mixed model fitted by REML; 

g) i issue: Ks at 0-10 cm = f (SSWC at 0-10 cm, Flow-NE and East-ness both at 30 m; 

Clay and Silt both at 0-10 cm) with mixed model fitted by ML. 

 

Figure 10 maps the y*’s. Model inference outputs for each of the seven regressions are 

summarised in Table 2. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

Figure 10. Maps of y* arising from the five issues and seven regressions (a to g). 

 

 



 

 

Table 2. Model summaries from the five issues and the seven regression analyses applied to 

the soils case study (changes from the reference regression highlighted in bold). 

Regression form Covariate Estimate t-value Pr. (>|t|) 

Reference (multiple regression) SSWC at 0-10 cm 0.013 22.292 0.000 

 Flow-NE at 30m 0.085 2.660 0.008 

 East-ness at 30m -0.082 -2.398 0.017 

x issue (multiple regression) SSWC at 0-10 cm 0.038 13.497 0.000 

 Flow-NE at 30m 0.058 2.144 0.033 

 East-ness at 30m -0.074 -2.571 0.011 

 Clay at 0-10 cm 0.047 6.755 0.000 

 Silt both at 0-10 cm -0.029 -9.837 0.000 

v issue (multiple regression) SSWC at 0-10 cm 0.013 22.116 0.000 

 Flow-NE at 90m 0.093 2.810 0.005 

 East-ness at 90m 0.026 0.691 0.490 

m issue (multiple regression) SSWC at 20-40 cm 0.014 19.194 0.000 

 Flow-NE at 30m 0.096 2.733 0.007 

 East-ness at 30m -0.088 -2.345 0.020 

first f issue (GWR*, showing IQRs only) SSWC at 0-10 cm 0.002 2.799 0.000 

 Flow-NE at 30m 0.095 1.798 0.503 

 East-ness at 30m 0.092 1.783 0.354 

second f issue (mixed model REML) SSWC at 0-10 cm 0.038 13.430 0.000 

 Flow-NE at 30m 0.060 2.260 0.025 

 East-ness at 30m -0.080 -2.831 0.005 

 Clay at 0-10 cm 0.044 6.185 0.000 

 Silt both at 0-10 cm -0.029 -9.488 0.000 

i issue (mixed model ML) SSWC at 0-10 cm 0.038 13.430 0.000 

 Flow-NE at 30m 0.060 2.254 0.025 

 East-ness at 30m -0.080 -2.815 0.005 

 Clay at 0-10 cm 0.044 6.221 0.000 

 Silt both at 0-10 cm -0.029 -9.507 0.000 

*The GWR t-values are not corrected for multiple hypothesis tests (see Gollini et al., 2015). 

 

From Figure 10, it is useful to start with regression models (a, c, d and e) where the Ks (at 0 

to 10 cm) predictions y* are informed by SSWC, Flow-NE and East-ness covariates, and 

relate to the v, m and (first) f issues. The regressions for (c, d and e) provide Ks prediction 

maps with a broadly similar spatial pattern to that found with the reference regression (a). 

However, the v issue (regression c) results in a reduced range of y* and a likely reduction in 

its accuracy, and the possibility of missing areas of high or low Ks, that may be vital to the 

understanding of the soils process and its erosion. The m issue (regression d) appears to result 

in an increase in lower values of y*, suggesting an under-prediction bias for Ks, especially 

towards the edges of the sampled area. Again, clear spatial interpretation issues for Ks may 



 

 

result.  For the f issue care must be taken, as unlike the v and m issues, where likely 

inaccuracies are expected (including their direction), it is not known which of multiple 

regression and GWR is the most accurate. GWR provides a cluster of unusually high Ks 

values to the mid-south of the sample area.  If, as is likely, GWR predicts more accurately 

than multiple regression, then the mis-identification of such an area of high Ks values is 

likely to be problematic, especially for this region’s soil health (a region of approximately 

100 km by 200 km). 

 

Conversely the maps of y* are highly similar for regressions (b, f and g) where y* are 

additionally informed by Clay and Silt covariates, encompassing the x, (second) f and i 

issues. This suggests a multiple regression for predicting Ks to be as worthy as a mixed 

model (i.e., the f issue), regardless of its identification method (i.e., the i issue). For the x 

issue, the y* from regression (a) need to be compared to y* from regression (b), where the 

addition of the Clay and Silt covariates has an obvious influence on y*. As previously 

discussed, this outcome may relate to where missing covariates are reflected in spatial effects 

(in this case the non-stationary relationships of regression e), that may not be present if the 

regression were better-specified (i.e., with the extra covariates). However, this would need to 

be tested via a second GWR fit using all five covariates. 

 

The model inference summaries are given in Table 2, and similarly indicate little difference 

in regressions (b, f and g), but clear differences for regressions (a, c, d and e). For the latter, 

this includes changes in coefficient sign (for East-ness) and changes in coefficient 

significance (for East-ness with regression c, and Flow-NE and East-ness with regression e).  

Again, the x issue in covariate choice, appears hugely important to the interpretation of this 

study’s soils process. 

 

 

5. Conclusions 

 

This study illustrated how the semantics associated with regression prediction and inference 

are functions of choices over covariate data and regression models. The choice of covariates, 

the nature of their supports, the way that they are measured and their (unknown) errors were 

all shown to have an impact on the resultant prediction, and thereby its semantics. Prediction 

was also shown to be affected by model choices, specifically model specification and the 



 

 

method of parameter identification. The implications of each of the issues identified are 

summarised in Table 3 and, of course, in any analysis several issues may be present and may 

interact. Many of these semantic effects are known but they are infrequently articulated and 

almost never routinely described in reports and scientific papers despite being the subject of 

wider study. Given the ubiquity of the use of regression within quantitative geography and 

the profound nature of the semantic impacts, this study presents an opportunity for 

researchers in quantitative geography to pause and update their thinking. In the extreme case 

of simple regression with one covariate x1, the prediction is nothing more than a scaled 

version of that covariate, inheriting the same (scaled) spatial correlation and it is 

fundamentally naive to ignore this. Even small differences in data and model decisions can 

result in profound differences in outcomes including predictions, residuals, coefficient 

estimates, and the relationship between covariates and predictions. There is a wider and 

potentially more pressing context for these observations. Some advocates of machine learning 

have suggested that most of the issues identified in this paper can be ignored. However, as 

Marcus (2018, p15) states “deep learning is just a statistical technique, and all statistical 

techniques suffer from deviation from their assumptions”. 

 

Table 3. Implications of the different semantic issues  
Issue Implications 

x issue (which covariates to 

include in the model) 

This limits the possibility space of y*, which in turn, restricts its semantic 

meaning. 

v issue (support effects / 

measurement scales)  

Choices (e.g., size, geometry, orientation, position) can result in different 

integrals xv on the supports v which, in turn, can have a key effect on y*. 

m issue (how x is measured) The impact of any covariate x is dependent on its method of measurement 

and y* will vary according to which form of x is specified. 

e issue (accuracy of 

measures of x) 

The error ex in x will propagate through the model transform to the prediction 

of y (related to the measurement of x above) and will have its own 

distribution and spatio-temporal character. 

f issue (specification of the 

model) 

A semantic effect on y* through the resultant linear weighted combinations 

of x’s. Models for spatial data can vary greatly (e.g., linear vs. non-linear, 

stationary vs. non-stationary). The nature of the model parameters effect y*. 

i issue (the statistical method 

of estimating the model 

parameters) 

A semantic effect on y* will be evident in the linear weights for combining 

the x’s. Although often small, the choice of estimation or inference method 

for identifying the model may affect y*. 

y issue (variation in y* due 

to the specification of y)  

The definition and sampling framework of y itself has a semantic effect on y* 

at locations other than y (i.e., predictions at un-sampled locations). 

 



 

 

 

The inclusion of GWR as a model choice raised some interesting issues in terms of the spatial 

structure of the predictions and residuals. For multiple regression, the impact on the 

predictions is a simple linear additive and multiplicative factor applied to the covariates. In 

GWR, spatial correlation is induced in the predictions that is not present in the covariates. In 

a mixed model, the impact includes spatial smoothing that is similarly not present in the 

covariates. More profoundly, as the nature of model information and model fit changes from 

location to location with GWR, this suggests that the semantics of y* vary locally, also. This 

is evident in extensions to GWR, such as the geographically weighted LASSO (Wheeler, 

2009) and geographically weighted elastic net logistic regression (Comber and Harris, 2018), 

where covariate selection is local; locally-compensated ridge GWR, where the method of 

estimation is local (Brunsdon et al., 2012); and autoregressive GWR (Brunsdon et al., 1998; 

Geniaux and Martinetti, 2017), where the method of identification is local. 

 

In summary, the semantic issues highlighted in this paper have clear relevance to the many 

geographical studies that routinely use regression in one form or another, many of which 

inform the core challenges that the world is facing today, such as the global disease burden, 

global mortality, poverty, food insecurity, losses in biodiversity, and increasing pollution 

through urbanization. It is important that researchers think carefully about the semantics 

associated with any interpretation of predictions and the potential impact of semantic issues, 

given the large number of ways in which regression prediction may be affected by data and 

model choices. It is hoped that this study will raise awareness amongst quantitative 

geographers, challenge naive application of regression, lead to proper consideration of the 

semantic interpretation of regression predictions and introduce the semantic lens to data and 

model choices in regression modelling. This study supports this purpose by providing a clear 

conceptual framework that defines the multiple ways in which data and model choices can 

impact on prediction and inference. The uncertainty in prediction arising from these choices 

was deliberately omitted in establishing the core message of the paper but will be the subject 

of a future study.  
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