
This is a repository copy of FSM quasi-equivalence testing via reduction and observing
absence.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/143554/

Version: Accepted Version

Article:

Hierons, R. orcid.org/0000-0002-4771-1446 (2019) FSM quasi-equivalence testing via
reduction and observing absence. Science of Computer Programming, 177. pp. 1-18.
ISSN 0167-6423

https://doi.org/10.1016/j.scico.2019.03.004

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

FSM quasi-equivalence testing via reduction and

observing absences

Robert M. Hierons

Department of Computer Science, The University of Sheffield, UK

Abstract

There has been significant interest in automatically generating test cases from
a non-deterministic finite state machine (FSM). Most approaches check that
the behaviours of the system under test (SUT) are allowed by the specification
FSM; they therefore test for reduction. However, sometimes one wants all of
the behaviours, and so features, of the specification to be implemented and then
one is testing for equivalence. In this paper we first note that in order to test
for equivalence one must effectively be able to observe the SUT not being able
to produce an output y in response to an input x after trace σ̄; we model this as
the absence of an output. We prove that the problem of testing for equivalence
to FSM M can be mapped to testing for reduction to an FSM R(M) that
extends M with absences. Thus, one can use techniques developed for testing
for reduction when testing for equivalence. We then consider the case where
the specification is partial, generalising the result to quasi-equivalence. These
results are proved for observable specifications and so we also show how a partial
FSM can be mapped to an observable partial FSM from which we can test.

Keywords: conformance testing, partial finite state machine, testing for
equivalence, observable finite state machine.

1. Introduction

There has been significant interest in the problem of automatically gen-
erating a test suite from a finite state machine (FSM) specification M , with
work considering deterministic FSMs [1, 2, 3, 4, 5, 6], non-deterministic FSMs
[7, 8, 9, 10, 11], and partial (deterministic or non-deterministic) FSMs [12, 13,
14, 15, 16, 17]. Much of the FSM testing literature assumes that FSM speci-
fications are completely-specified, where FSM M is completely-specified if for
every state s and input x, the response to x in state s is defined. However, in
practice specifications often are not completely-specified, they are partial (see,
for example, [18, 19, 16]). For example, Kushik et al. [20] note that protocol

Email address: r.hierons@sheffield.ac.uk (Robert M. Hierons)

Preprint submitted to Science of Computer Programming January 9, 2019

specifications are usually partial and also observe that often it is not possible
to complete the corresponding FSMs used as the basis of testing. In addition,
work on testing from partial FSMs looked at a set of 59 FSMs based on the
designs of circuits (the ACM/SIGDA benchmarks [21]) and found that just over
25% of these FSMs from industry were partial [22].

In order to reason about test effectiveness, it is normal to assume that the
system under test (SUT) behaves like an unknown FSM I. It is then possible
to define an implementation relation (between FSMs) that says what it means
for an unknown FSM model I of the SUT to be a correct implementation of the
FSM specification S. The implementation relation tells us what behaviours are
allowed, for a given specification S, and so allows us to determine the verdict
(pass or fail) when we test the SUT. In addition, if we assume that the FSM I
must lie in some given set F (a fault domain), then there is potential to produce
test suites that are complete in the following sense: if the SUT passes the test
suite then, under the assumption that I ∈ F , we know that the SUT is a correct
implementation of S. The notion of a fault domain is closely related to the test
hypotheses introduced by Gaudel [23].

There are two standard implementation relations for testing from a completely-
specified FSM specification S, reduction and equivalence. Given specification
S, that is a completely-specified FSM, the implementation I is a reduction of
S if all sequences of input/output pairs (traces) of I are also traces of S. This
corresponds to language inclusion: the set of traces of I is a subset of the set
of traces of S. The notion of equivalence strengthens this to require that I
and S have the same set of traces and so corresponds to language equivalence.
Most work has looked at the problem of testing for reduction but sometimes one
might want the SUT to be behaviourally equivalent to the specification FSM
M . This might be the case, for example, when one wishes to ensure that all of
the features of the specification are present.

Naturally, one needs to adapt implementation relations to the case where
the specification is partial. Work on testing from a partial FSM specification S
normally assumes that if no response to input x is defined after trace σ̄ then all
behaviours are allowed. As result, there are two implementation relations for
partial FSMs: quasi-equivalence and quasi-reduction, and some work on testing
from partial FSMs [15, 16, 17, 24, 25]. However, until recently these imple-
mentation relations were only defined for specifications that have harmonised
traces1.

The work in this paper builds on recent research that generalises the imple-
mentation relations for partial FSMs (quasi-reduction and quasi-equivalence)
to remove the requirement that the specification has harmonised traces. This
previous work showed that one can test for quasi-reduction to specification S
by completing S in an appropriate manner and then using any technique for
testing for reduction [26]. The practical benefit of this is that when testing

1FSM S has harmonised traces if there is no input sequence x̄ that can take S to states s

and s′ such that there is an input x defined in s but not s′.

2

whether the SUT is a quasi-reduction of the partial FSM specification S, one
can use any one of the many test generation algorithms that have been de-
vised for testing whether an SUT is a reduction of a completely-specified FSM
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. However, the work also showed that the ap-
proach given cannot be used with quasi-equivalence. The work in this paper
was motivated by the desire to map the problem of testing for quasi-equivalence
to one where there was a more substantial body of techniques (e.g. testing for
reduction or equivalence when the specification is completely-specified).

This paper starts by considering how one can test for equivalence to a
completely-specified FSM specification S; this is a problem that has been con-
sidered before [27] but we take a rather different approach. In order to be able
to test for equivalence, one must be able to test in a manner that allows one to
conclude that a given trace σ̄ of S has not been implemented by the SUT I; the
failure to implement σ̄ is one of the ways in which the SUT can fail. Typically,
this is achieved by making a fairness assumption: for a given integer k, if one
applies a test case t a total of k times then one is (assumed to be) guaranteed
to observe all possible traces of the SUT that can result from t. The choice of a
value for k provides a cost/effectiveness trade-off and might be based on domain
knowledge.

Observing that σ̄ is not a trace of the SUT is similar to observing a refusal,
which typically corresponds to the ability to observe that the SUT cannot engage
in an action a (or a set of actions) [28]. We instead use the term ‘absence’ since,
as we explain later, typically it does not make sense to refuse an output in testing
(see, for example, [29]). For each output y we add ay to the output alphabet,
with ay representing the situation in which the FSM cannot produce output y
in response to a given input. We show how we can add such observations to an
FSM M to form an FSM R(M).

Having introduced the notion of the absence of an output, we prove that it
is possible to rephrase testing for equivalence to S in terms of testing that the
SUT is a reduction of the completely-specified FSM R(S). As a result, we can
use any technique for testing for reduction when testing for equivalence. Having
established this result, we consider the problem of testing from a partial FSM
S. We show that one can test for quasi-equivalence to S by testing that the
SUT is a quasi-reduction of R(S). It is known that one can use any one of the
many techniques devised for testing for reduction against a completely-specified
FSM when testing for quasi-reduction [26]; the combination of these results tells
us that we can use any technique for testing for reduction in order to test for
quasi-equivalence.

These result are proved for the case where the specification S is observ-
able2. This is not a significant restriction if S is completely-specified since one
can map a completely-specified FSM to an equivalent observable completely-
specified FSM using any technique that maps a non-deterministic finite state

2A finite state machine S is observable if whenever σ̄ is a trace of S, there is only one state
of S that can be reached by a path with label σ̄.

3

automaton to an equivalent deterministic finite state automaton. However, it
is known that such techniques cannot in general be used with partial FSMs3.
We therefore consider the problem of mapping a partial FSM S that is not ob-
servable to an observable partial FSM S ′ from which one can test. We start by
examining the recently defined notions of correctness (generalisations of quasi-
reduction and quasi-equivalence) and show that these can be slightly weakened
when the specification is not observable. We then devise an approach that
adds events that represent the refusal of inputs, then makes the resultant FSM
observable, and finally removes certain transitions.

This paper makes the following main contributions.

1. It proves that testing for equivalence/quasi-equivalence can be rephrased
as testing for reduction.

2. It shows that the recent generalised definitions of quasi-equivalence and
quasi-reduction can be slightly weakened when the specification is not
observable.

3. It solves the problem of how one can map a partial FSM S that is not
observable to an observable partial FSM S ′ from which one can test.

The primary practical consequence is that, when testing whether the SUT is
quasi-equivalent to partial FSM specification S, one can generate a completely-
specified FSM S1 and use any one of the many automated test generation tech-
niques that generate test suites from a completely-specified FSM [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11].

The paper is structured as follows. Section 2 defines associated notation
and concepts. In Section 3 we prove the results for completely-specified FSMs
and in Section 4 we generalise this to partial FSMs. Section 5 then shows how
we can map a partial FSM to an observable partial FSM from which we can
test. Practical implications are discussed in Section 6 and Section 7 reviews
some related work. Finally, in Section 8 we summarise the results and discuss
possible lines of future work.

2. Preliminaries

This section defines finite state machines (Mealy machines) and the associate
concepts and notation used in the paper.

Definition 1. A partial non-deterministic finite state machine (PFSM) is de-
fined by a tuple (S, s0, X, Y, h) in which: S is the finite set of states; s0 ∈ S is
the initial state; X is the finite input alphabet; Y is the finite output alphabet;
and h is the transition relation of type S ×X × S × Y .

Throughout this paper M will denote such a PFSM and we will fix the
input alphabet to be X and the output alphabet to be Y unless otherwise

3In Section 5 we given an example that demonstrates this.

4

s0

x1/y1

88

x1/y2

��

s1

x1/y1

��

x1/y1

xx

s3
x2/y1

// s2

x1/y2

``

x2/y2

VV

Figure 1: Partial FSM S1

stated. Figure 1 gives an example of a PFSM S1 (from [26]) with input alphabet
{x1, x2} and output alphabet {y1, y2}. Here, nodes represent states and an arc
from si to sj with label x/y denotes (si, x, sj , y) ∈ h; the PFSM can move from
si to sj with input x and output y. We can associate a PFSM with its initial
state and so at times we will use the terms PFSM and state interchangeably.

An input x is defined in state s of M if there is at least one state s′ and output
y such that (s, x, s′, y) ∈ h. Further, we let dom h be the set of (s, x) such that x
is defined in state s. Given (s, x) ∈ dom h, we let h(s, x) = {(s′, y)|(s, x, s′, y) ∈
h}. We also use ΩM (s) to denote the set of inputs that are defined in state s ∈ S
and so ΩM (s) = {x ∈ X|(s, x) ∈ dom h}. If s is the initial state of M then we
also denote this Ω(M) (i.e. Ω(M) = ΩM (s0)). If we consider S1, we have that
ΩS1

(s2) = {x1, x2} and Ω(S1) = {x1}. Given (s′, y) ∈ h(s, x), t = (s, s′, x/y)
is a transition of M . For example, (s1, s2, x1/y1) is a transition of S1. Given
transition t = (s, s′, x/y), s is the starting state of t, s′ is the ending state of t,
and x/y is the label of t.

Given PFSM M , if |h(s, x)| ≥ 1 for all s ∈ S and x ∈ X then M is a
completely-specified finite state machine (FSM). We use the term PFSM where
a finite state machine might be partial or completely-specified and use FSM
when the finite state machine must be completely-specified. Clearly S1 is partial
since, for example, there is no transition from s1 with input x2. PFSM M is
said to be observable if there is no pair of transitions that have the same starting
state, input and output but different ending states (for all (s, x) ∈ dom h and
y ∈ Y there is at most one s′ for which we have that (s′, y) ∈ h(s, x)). It is
straightforward to see that S1 is not observable since, for example, from state
s1 there are two transitions with label x1/y1 and these reach different states.

In this paper we assume that the specification is a PFSM S. When testing

5

from such a PFSM, it is normal to assume that the SUT behaves like an unknown
completely-specified FSM I with the same input and output alphabets as S. It
is then possible to formally define what it means for the SUT to be a correct
implementation of S in terms of an implementation relation between FSMs.
The assumption that the SUT is completely-specified is one normally made in
the testing literature since most systems will either respond to an input, when
applied, or provide observable evidence that the input cannot be applied (this
evidence can be represented by an output).

The execution of PFSM M leads to a path; a sequence ρ̄ = (s1, s2, x1/y1) . . .
(sk, sk+1, xk/yk) of consecutive transitions. We say that s1 is the starting state
of ρ̄, sk+1 is the ending state of ρ̄, and σ̄ = x1/y1 . . . xk/yk is the label of ρ̄.
Here, σ̄ is an input/output sequence, also called a trace, with input portion
π1(σ̄) = x1 . . . xk and output portion π2(σ̄) = y1 . . . yk. Thus, for example,
(s0, s1, x1/y1)(s1, s2, x1/y1) is a path of S1 that has starting state s0, ending
state s2, and label x1/y1 x1/y1. Given PFSM M , LM (s) denotes the set of
labels of paths of M that start at s; if s is the initial state of M then we
sometimes use L(M) instead. Naturally, LM (s) is prefix closed: if σ̄ ∈ L(M)
then all prefixes of σ̄ are in L(M).

We will need to reason about the possible behaviours of a PFSM after a trace
σ̄ has occurred. If s is a state of PFSM M , s-after-σ̄ will be the set of states
of M that can be reached from s by a path with trace σ̄. Thus, s′ ∈ s-after-σ̄
if and only if M has a path that has starting state s, ending state s′ and label
σ̄. In S1, for example, (S1-after-x1/y1 x1/y1) = {s0, s2}. Naturally, if M is
observable then s-after-σ̄ is either empty or a singleton.

We extend h to input sequences: h(s, ǫ) = {(s, ǫ)} and for x ∈ X and x̄ ∈ X∗

we have that h(s, xx̄) = {(s′′, yȳ)|∃s′ ∈ S.(s′, y) ∈ h(s, x) ∧ (s′′, ȳ) ∈ h(s′, x̄)}.

3. Completely-specified FSMs

In this section we consider the problem of testing for equivalence to an FSM
S, showing that this can be mapped to the problem of testing for reduction to an
FSM that can be constructed from S. The practical benefit is that we can then
use any test generation algorithm for reduction when testing for equivalence.

When testing for equivalence, we are testing to determine whether L(S) =
L(I). Given set L of traces, we let L̄ denote the set of traces not in L. Clearly,
L(S) = L(I) if and only if L(I) ⊆ L(S) and L̄(I) ⊆ L̄(S), a fact that will be
used in proofs.

The challenge is to show how the second of these two problems (testing that
L̄(I) ⊆ L̄(S)) can be expressed in terms of testing from an FSM; here we utilise
absences.

As noted earlier, the behaviour of a PFSM is defined in terms of traces. We
let Γ = {x/y|x ∈ X ∧ y ∈ Y } denote the set of input/output pairs. Given
an output y, we will use ay 6∈ Y to denote the observation of the absence of
y in response to an input and we let Ya = {ay|y ∈ Y }. We therefore let
Γa = {x/ay|x ∈ X ∧ y ∈ Y } denote the set of input/output pairs that denote

6

absences. Given a sequence γ̄ ∈ (Γ∪Γa)
∗ (one that might include absences), at

times we will want to be able to reason about the corresponding trace in Γ∗.

Definition 2. Given γ̄ ∈ (Γ∪Γa)
∗, to_out(γ̄) will denote the trace in Γ∗ formed

by replacing every ay by the corresponding output y. Thus, given x ∈ X and
y ∈ Y :

to_out(γ̄) =

ǫ if γ̄ = ǫ
x/y to_out(γ̄1) if γ̄ = x/y γ̄1
x/y to_out(γ̄1) if γ̄ = x/ay γ̄1

Given FSM M , FSM R(M) will include absences to model traces that are
not traces of M . The following is defined for partial FSMs since we will reuse
the definition in the next section.

Definition 3. Given observable PFSM M = (S, s0, X, Y, h), R(M) is the FSM
(S ∪ {sR}, s0, X, Y ∪ Ya, h

′) in which sR 6∈ S and h′ is defined by the following
in which s ∈ S, x ∈ X, y ∈ Y , with (s, x) ∈ dom h.

1. If y ∈ π2(h(s, x)) then {s′|(s′, y) ∈ h(s, x)} = {s′|(s′, y) ∈ h′(s, x)} and
{s′|(s′, ay) ∈ h′(s, x)} = ∅. Comment: this says that we retain the transi-
tions of M .

2. If y 6∈ π2(h(s, x)) then {s′|(s′, ay) ∈ h′(s, x)} = {sR} and {s′|(s′, y) ∈
h′(s, x)} = ∅. Comment: this says that if M should not produce output y
when it receives input x in state s then this is still the case in R(M) and,
in addition, we add a transition from s with input x and absence ay, with
this going to the new sink state SR.

3. We have that h′(sR, x) = {(sR, ay)|y ∈ Y }. Comment: this says that in
the new sink state we can only observe absences.

Essentially, R(M) can be constructed from M by adding a new state sR,
in which all outputs are refused, and an input/output pair x/ay from a state
s to sR if y cannot be produced in response to x from state s. The condition
requiring that (s, x) ∈ dom h is included for the case where the FSM M is
partial: we do not want to add transitions corresponding to inputs that are not
specified. Figure 2 gives an example of an FSM S2 and Figure 3 gives R(S2).
In Figure 2, for example, an arc with label x1/y2, x2/y1 denotes two transitions:
one with label x1/y2 and one with label x2/y1. Note that if M is a PFSM then
R(M) is also partial (a case we consider in the next section).

We will now prove that in order to test for equivalence to S it is sufficient
to test that R(I) is a reduction of R(S). The intuition is that given FSM M ,
R(M) captures both the traces that M can produce (the traces of R(M) that
contain no absences) and also the traces that M cannot produce (the traces
of R(M) that contain no absences). The following Lemmas give corresponding
properties that are used in the proof of the main result; any proofs can be found
in the appendix.

The first Lemma states that the traces in L(R(M)) that are not traces in
L(M) end in absences; this is immediate from the definition of R(M).

7

s0

x1/y2,x2/y1

77
x1/y1

++
s1

x1/y1

ww
x2/y1

ss

Figure 2: Completely-specified FSM S2

s0

x1/y2,x2/y1

66x1/y1

++

x2/ay2

s1

x1/y1

vv
x2/y1

ss

x1/ay2
,x2/ay2

~~
sR

x1/ay1
,x1/ay2

,x2/ay1
,x2/ay2

VV

Figure 3: FSM R(S2)

8

Lemma 1. Given observable FSM M , all traces in L(R(M))\L(M) are in the
form of σ̄1σ̄2 for σ̄1 ∈ L(M) and non-empty σ̄2 ∈ Γ∗

a.

The following is stated (and proved in the Appendix) for PFSMs since we
also use the result in the next section. It tells us that the set of traces in
L(R(M)), that are not traces in L(M), represents the set of traces of L̄(M).

Lemma 2. Given observable PFSM M , L̄(M) = to_out(L(R(M)) \ L(M)).

The following is an immediate consequence of these two lemmas and the fact
that L(I) = L(S) if and only if L(I) ⊆ L(S) and L̄(I) ⊆ L̄(S).

Lemma 3. Given FSMs S and I, L(I) = L(S) if and only if L(R(I)) =
L(R(S)).

We can now give this section’s main result, which follows from the above
Lemma and the fact that, by construction, L(R(I)) = L(R(S)) if and only if
L(R(I)) ⊆ L(R(S)).

Theorem 1. Given observable FSMs I and S with the same input and output
alphabets, S and I are equivalent if and only if L(R(I)) ⊆ L(R(S)).

This result tells us that if we want to test whether the SUT is equivalent to
S, it is sufficient to test whether the SUT (with absences observed in testing) is
a reduction of R(S). Most likely, absences will be observed using the standard
fairness assumption and, as noted earlier, it makes no sense to test for equiva-
lence if one cannot observe absences; there is no observation that can be made
in testing that leads to the SUT failing a test if the SUT is a reduction of S but
is not equivalent to S.

4. Partial FSMs

In this section we consider the problem of testing from an observable PFSM.
We start by giving the definitions of the implementation relations (quasi-equivalence
and quasi-reduction) we require for testing from PFSMs. We then define the
set US of traces that ‘do not matter’ given specification S; these are the traces
that begin with a trace of S followed by an undefined input. Having defined
US , we show how quasi-equivalence and quasi-reduction can be characterised
in terms of L(S) and L(I) \ US . We then use this to prove that I is quasi-
equivalent to S if and only if R(I) is a quasi-reduction of R(S). This al-
lows one to use any technique, for testing for quasi-reduction, when testing for
quasi-equivalence. Further, it has previously been shown that, when testing
for quasi-reduction, we can use any technique for testing for reduction [26].
Thus, the results in this section tell us that when testing whether the SUT is
quasi-equivalent to the specification it is possible to use any one of the many
techniques that have been devised for testing whether the SUT is a reduction
of the specification [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

9

Recall that if input x is not specified in state s then all possible behaviours
of an SUT are allowed if x is received when the specification is in state s (see, for
example, [15, 16, 17, 24, 25]). The implementation relation quasi-equivalence
has been defined to capture this requirement; it essentially relaxes equivalence
to allow the SUT to have any behaviour in response to undefined inputs.

Definition 4. Given states s1 and s2 of observable PFSM M , s1 is quasi-
equivalent to state s2 if and only if, for all σ̄ ∈ LM (s1) ∩LM (s2) and x ∈ X, if
x ∈ ΩM (s2-after-σ̄) then:

1. x ∈ ΩM (s1-after-σ̄); and

2. {y′ ∈ Y |σ̄x/y′ ∈ LM (s1)} = {y′ ∈ Y |σ̄x/y′ ∈ LM (s2)}.

Given observable PFSMs I and S with the same input and output alphabets,
we say that I is quasi-equivalent to S if and only if the initial state of I is
quasi-equivalent to the initial state of S. We denote this I ≈Q S.

It is clear that the quasi-equivalence relation is reflexive (every observable
FSM is quasi-equivalent to itself) and it is not too hard to show that it is
transitive. However, quasi-equivalence is not symmetric since, for example,
every observable FSM is quasi-equivalent to the FSM that has no transitions
but the converse does not hold.

We also define quasi-reduction since we will express quasi-equivalence in
terms of quasi-reduction.

Definition 5. Given states s1 and s2 of observable PFSM M , s1 is a quasi-
reduction of state s2 if and only if, for all σ̄ ∈ LM (s1) ∩ LM (s2) and x ∈ X, if
x ∈ ΩM (s2-after-σ̄) then:

1. x ∈ ΩM (s1-after-σ̄); and

2. {y′ ∈ Y |σ̄x/y′ ∈ LM (s1)} ⊆ {y′ ∈ Y |σ̄x/y′ ∈ LM (s2)}.

Similar to quasi-equivalence, quasi-reduction is reflexive and transitive but
not symmetric.

We now explore how quasi-equivalence can be represented in terms of inclu-
sion. First, we define the set of pairs (σ̄, x) such that input x is defined after
trace σ̄.

Definition 6. Given observable PFSM M , DM is the set of (σ̄, x) such that
σ̄ ∈ L(M) and input x is defined in the unique state s of M reached by σ̄
(s ∈ s0-after-σ̄).

We let UM denote the set of traces associated with undefined inputs.

Definition 7. Given observable PFSM M ,

UM = {σ̄1x/yσ̄2 ∈ Γ∗|σ̄1 ∈ L(M) ∧ (σ̄1, x) 6∈ DM}

10

Clearly, UM is a regular language and it is straightforward to construct a
finite automaton that accepts UM .

We can now formulate quasi-equivalence directly in terms of regular lan-
guages. The following essentially says that I is quasi-equivalent to S if the two
PFSMs ‘agree’ (have the same possible outputs) whenever we apply an input
x after σ̄ such that (x, σ̄) ∈ DS . The essential idea is that L(I) \ US captures
all of the traces of I that are referred to in the definition of quasi-equivalence.
Again, proofs of lemmas can be found in the appendix.

Lemma 4. Given observable PFSMs S and I with the same input and output
alphabets, I is quasi-equivalent to S if and only if L(I) \ US = L(S).

We can now express quasi-equivalence in terms of language inclusion, the
next result following from properties of sets and Lemma 4.

Lemma 5. Given observable PFSMs S and I with the same input and output
alphabets, I is quasi-equivalent to S if and only if (L(I) \ US) ⊆ L(S) and
(L̄(I) \ US) ⊆ (L̄(S) \ US).

Similar to Lemma 4, we can represent quasi-reduction in terms of language
inclusion.

Lemma 6. Let us suppose that S is an observable PFSM and I is an observable
FSM with the same input and output alphabets. Then, I is a quasi-reduction of
S if and only if L(I) \ US ⊆ L(S).

Given a PFSM M , at times we will reason about both UM and UR(M). In
R(M), if we take a transition that includes the absence of an output then we go
to the state in which all inputs are enabled. Thus, from the definition of UM , if
a trace σ̄ is in UR(M) then it must start with a trace σ̄1 from L(M) followed by
an ‘undefined input’ x ((σ̄1, x) 6∈ DM) with either an output or the absence of
an output. After this, all traces from (Γ∪ Γa)

∗ are possible. We therefore have
the following result, which is immediate.

Lemma 7. Given observable PFSM M , we have that

UR(M) =
{σ̄1x/zσ̄2|σ̄1 ∈ L(M)∧

σ̄2 ∈ (Γ ∪ Γa)
∗ ∧ (σ̄1, x) 6∈ DM ∧ z ∈ Y ∪ Ya}

We now provide two more results that we require, before proving the main
result in this section. These results will allow us to move between reasoning
about traces in (Γ ∪ Γa)

∗ that contain absences (i.e. traces of R(S) or R(I))
and corresponding traces in Γ∗ that do not contain absences.

Lemma 8. Given observable PFSMs S and I, to_out(L(R(I)) \L(I)) \US =
to_out(L(R(I)) \ L(I) \ UR(S)).

11

Lemma 9. Given observable PFSMs S and I with the same input and output
alphabets, if (L(I) \ US) ⊆ L(S) then

to_out(L(R(I)) \ L(I) \ UR(S)) ⊆
to_out(L(R(S)) \ L(S) \ UR(S)) ⇐⇒

L(R(I)) \ L(I) \ UR(S) ⊆ L(R(S)) \ L(S) \ UR(S)

The following is the key result in this section.

Theorem 2. Let us suppose that S is an observable PFSM and I is an observ-
able FSM with the same input and output alphabets as S. Then, I is quasi-
equivalent to S if and only if R(I) is a quasi-reduction of R(S).

Proof

First, from Lemma 5 we know that I is quasi-equivalent to S if and only if
(L(I) \US) ⊆ L(S) and (L̄(I) \US) ⊆ (L̄(S) \US). By Lemma 2 we know that
L̄(I) \ US = to_out(L(R(I)) \ L(I)) \ US and L̄(S) \ US = to_out(L(R(S)) \
L(S)) \ US . Thus, we have that (L̄(I) \ US) ⊆ (L̄(S) \ US) if and only if
to_out(L(R(I)) \ L(I)) \ US ⊆ to_out(L(R(S)) \ L(S)) \ US . We therefore
have that

I ≈Q S ⇐⇒
L(I) \ US ⊆ L(S)∧

to_out(L(R(I)) \ L(I)) \ US ⊆ to_out(L(R(S)) \ L(S)) \ US

By Lemma 8 we know that to_out(L(R(I))\L(I))\US = to_out(L(R(I))\
L(I)\UR(S)) and to_out(L(R(S))\L(S))\US = to_out(L(R(S))\L(S)\UR(S))
and so

I ≈Q S ⇐⇒
L(I) \ US ⊆ L(S)∧

to_out(L(R(I)) \ L(I) \ UR(S)) ⊆ to_out(L(R(S)) \ L(S) \ UR(S))

We can now apply Lemma 9 to get the following.

I ≈Q S ⇐⇒
L(I) \ US ⊆ L(S)∧

L(R(I)) \ L(I) \ UR(S) ⊆ L(R(S)) \ L(S) \ UR(S)

All traces of L(I) that are in US are also in UR(S) and so L(I) \ US =
L(I) \UR(S). Since the same holds for L(S) and L(R(S)) \L(S), we have that

I ≈Q S ⇐⇒
L(I) \ UR(S) ⊆ L(S) \ UR(S)∧

L(R(I)) \ L(I) \ UR(S) ⊆ L(R(S)) \ L(S) \ UR(S)

We can now observe that traces in L(I) do not contain absences and all
traces in L(R(I)) \ L(I) contain absences (Lemma 1) and so

12

L(I) \ UR(S) ⊆ L(S) \ UR(S)∧
(L(R(I)) \ L(I)) \ UR(S) ⊆ (L(R(S)) \ L(S)) \ UR(S)

⇐⇒
(L(I) ∪ (L(R(I)) \ L(I))) \ UR(S) ⊆
(L(S) ∪ (L(R(S)) \ L(S))) \ UR(S)

We therefore have that

I ≈Q S ⇐⇒
(L(I) ∪ (L(R(I)) \ L(I))) \ UR(S) ⊆
(L(S) ∪ (L(R(S)) \ L(S))) \ UR(S)

Since L(I) ⊆ L(R(I)) and L(S) ⊆ L(R(S)), the above term simplifies to

I ≈Q S ⇐⇒ L(R(I)) \ UR(S) ⊆ L(R(S)) \ UR(S)

The result therefore follows from the definition of quasi-reduction. �

Note that previous work showed how the problem of testing for quasi-
reduction can be mapped to a problem of testing for reduction [26]. Combining
these results, we have that the problem of testing for quasi-equivalence to an
observable PFSM can be mapped to testing for reduction from a completely-
specified FSM. As a result, we can use any one of the many automated test gener-
ation algorithms (for testing for reduction) when testing for quasi-equivalence [1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

5. Making a partial FSM observable

The results in the previous sections were for specifications that are observable
(P)FSMs. In this section we consider PFSMs that are not observable. In Section
5.1 we first explore the implementation relation, quasi-equivalence and show how
it can be generalised to PFSMs that are not observable. In Section 5.2 we then
show how a PFSM can be mapped to an observable PFSM from which we can
test.

5.1. Implementation Relations

Recall that if input x is not specified in state s then all possible behaviours
of an SUT are allowed if x is received when the specification is in state s (see, for
example, [15, 16, 17, 24, 25]). The implementation relation quasi-equivalence
has been defined to capture this requirement; it essentially relaxes equivalence
to allow the SUT to have any behaviour in response to undefined inputs.

Recall that quasi-equivalence and quasi-reduction were recently generalised
to allow PFSMs that do not have harmonised traces [26]. The new definitions
considered an input x after trace σ̄ if two conditions hold: a) σ̄ is a trace of both
the SUT and specification and also b) the input of x after σ̄ is always defined in
the specification. However, the definitions were slightly stronger than necessary
if the specification is not observable. This is because they did not consider the

13

s1

x1/y2

~~
s0

x1/y1

77

x1/y1

''

s3
x2/y2

oo

s2

x2/y2

OO

x1/y1

VV

Figure 4: Partial FSM S3

possibility that σ̄ has a prefix σ̄1x1/y1 such that x1 is defined in some states
of the specification reached by σ̄1 but not all. In this section we weaken the
definitions to resolve this issue. By weakening the implementation relations for
PFSMs that are not observable we potentially allow a wider range of (valid)
implementations of the specification. We start by introducing some notation.

Definition 8. Given state s1 of PFSM M , we let LF
M (s1) denote the set of

traces of M such that σ̄ ∈ LF
M (s1) if and only if σ̄ ∈ L(s1) and for every prefix

σ̄1x/y of σ̄ we have that x ∈ Ω(s2) for all s2 ∈ s1-after-σ̄1. If s is the initial
state of M then we let LF (M) denote LF

M (s).

Example 1. Consider the PFSM S3 shown in Figure 4. In S3, for example,
x1/y1 x1/y1 and x1/y1 x1/y2 are both in LF (S3) since x1 is defined in all states
reached by x1/y1. In contrast, x1/y1 x2/y2 x1/y2 is not in LF (S3) since x2 is
not defined in one of the states (s1) reached by x1/y1 even though x1 is defined
in all states reached by x1/y1 x2/y2.

We can now define the new version of quasi-equivalence (it is straightforward
to prove that this is equivalent to the recently defined version if the specification
is observable).

Definition 9. Given states s1 and s2 of PFSM M , s1 is quasi-equivalent to
state s2 if for all σ̄ ∈ LF

M (s2) ∩ LM (s1) and x ∈ X, if x ∈ ΩM (s) for all
s ∈ s2-after-σ̄ then:

1. for all s′ ∈ s1-after-σ̄ we have that x ∈ ΩM (s′); and
2. {y′ ∈ Y |σ̄x/y′ ∈ LM (s1)} = {y′ ∈ Y |σ̄x/y′ ∈ LM (s2)}.

Given PFSMs I and S with the same input and output alphabets, we say that
I is quasi-equivalent to S if and only if the initial state of I is quasi-equivalent
to the initial state of S. We again denote this I ≈Q S.

14

For completeness, we give a corresponding more general definition for quasi-
reduction.

Definition 10. Given states s1 and s2 of PFSM M , s1 is a quasi-reduction
of state s2 if for all σ̄ ∈ LF

M (s2) ∩ LM (s1) and x ∈ X, if x ∈ ΩM (s) for all
s ∈ s2-after-σ̄ then:

1. for all s′ ∈ s1-after-σ̄ we have that x ∈ ΩM (s′); and

2. {y′ ∈ Y |σ̄x/y′ ∈ LM (s1)} ⊆ {y′ ∈ Y |σ̄x/y′ ∈ LM (s2)}.

Given PFSMs I and S with the same input and output alphabets, we say that I
is a quasi-reduction of S if and only if the initial state of I is a quasi-reduction
of the initial state of S.

5.2. Making PFSMs observable

There are standard approaches that map a completely-specified FSM to an
equivalent observable FSM. Essentially, this is because a completely-specified
FSM is observable if and only if the corresponding finite automaton is deter-
ministic; one can use standard techniques that transform a finite automaton into
an equivalent deterministic finite automaton. However, the following shows that
this approach does not work when testing against a PFSM.

Example 2. Consider the partial FSM S4 in Figure 5 in which, for example,
an arc with label x1/y1, x2/y2 denotes two transitions: one with label x1/y1
and one with label x2/y2. Further, let us suppose that we turn this into an
observable PFSM by using the standard algorithm that takes a finite automaton
and returns an equivalent deterministic finite automaton. The finite automaton
corresponding to S4 is non-deterministic because it has two transitions from state
s0 with label x1/y1. The standard approach to generating a deterministic finite
automaton creates a state corresponding to {s1, s2}, since we need a unique state
reached by x1/y1, and results in the PFSM S5 shown in Figure 6. Observe that
there is a transition with input x2 leaving the state {s1, s2} of S5. For the SUT
to be quasi-equivalent to S5, or a quasi-reduction of S5, it must produce output
y2 in response to x2 after x1/y1. However, there is a state of S4 reached by
x1/y1 in which x2 is not defined. As a result, if S4 is the specification then any
output is allowed in response to x2 after x1/y1 (since x2 is not defined in the
state s1 reached by x1/y1). Thus, S4 and S5 do not allow the same set of SUTs.

Motivated by the above, we develop a new technique that involves the addi-
tion of transitions that represent the refusal of inputs. The approach essentially
operates as follows. We add a new output r that will be used to denote the
refusal of an input and a new state sO that denotes the state after a refusal of
an input. Given PFSM M , we generate a completely-specified FSM O1(M) as
follows: whenever x is not defined in state s, we add the transition (s, sO, x/r).
From the new state sO, for each input x we include transition (sO, sO, x/r).
Thus, O1(M) behaves like M unless input is received in a state where it is
not defined; in such circumstances we observe output r. Clearly, O1(M) is

15

s0
x1/y1,x2/y2

//

x1/y1,x1/y2

��

s1

x1/y1

��

s2
x1/y2

//x2/y2

++
s3

x1/y2

``

Figure 5: Partial FSM S4

{s0}
x2/y2

//

x1/y2

��x1/y1

��

{s1}

x1/y1

��

{s2}
x1/y2

//x2/y2

77

{s3}

x1/y2

aa

{s1, s2}

x1/y1,x1/y2

44

x2/y2

;;

Figure 6: Partial FSM S5 formed by making S4 observable

16

s0
x1/y1,x2/y2

//

x1/y1,x1/y2

��

s1

x1/y1

��

x2/r

sO

x1/r,x2/r

VV

s2
x1/y2

//x2/y2

++
s3

x1/y2

]]

x2/r

>>

Figure 7: Completely-specified FSM O1(S4)

completely-specified and so one can then map O1(M) to an equivalent observ-
able FSM O2(M). Finally, we remove some transitions from O2(M) to produce
the required PFSM O(M). We now provide the details of this approach.

We start by defining the FSM O1(M) that essentially uses an output r 6∈ Y
to denote the refusal of an input. Note that this is similar to the notion of
demonic completion used, for example, in testing for ioco [30] though it differs
through the inclusion of a label r that denotes a refusal.

Definition 11. Given PFSM M = (S, s0, X, Y, h) we let O1(M) be the FSM
(S ∪ {sO}, s0, X, Y ∪ {r}, h′) in which sO 6∈ S and h′ is defined by the following
for s ∈ S ∪ {sO} and x ∈ X.

1. If (s, x) ∈ dom h then h′(s, x) = h(s, x).

2. If (s, x) 6∈ dom h then h′(s, x) = {(sO, r)}.

Example 3. Consider again the PFSM S4. Here input x2 is not defined in
states s1 and s3. The completely-specified FSM O1(S4) is shown in Figure 7.

Since O1(M) is completely-specified, it is possible to convert it into an equiv-
alent observable FSM O2(M); we can use any technique that converts a non-
deterministic finite automaton into an equivalent deterministic finite automaton
(see, for example, [31]).

Example 4. Consider O1(S4). We can convert this into the equivalent observ-
able FSM shown in Figure 8. Note that we have a transition with label x2/r
from the state with label {s1, s2} since there is a transition with label x2/r from
the state s1 of O1(S4).

We finally construct the PFSM O(M) from O2(M) as follows, in which the
essential idea is that if O2(M) has a transition of the form (s, sO, x/r) then this

17

{s0}
x2/y2

//

x1/y2

��

x1/y1

��

{s1}

x1/y1

��

x2/r

""

{sO}

x1/r,x2/r

RR

{s2}
x1/y2

//x2/y2

77

{s3}

x1/y2

]]

x2/r

<<

{s1, s2}

x1/y1,x1/y2

44

x2/y2

;;

x2/r

FF

Figure 8: Completely-specified FSM O2(S4) formed by making O1(S4) observable

denotes the possibility that (if the state of O(M) is s) the current state of M is
such that x is not defined and so we then remove all transitions from s that have
input x. Again, a similar notion has been defined for ioco testing when applying
a determinisation step to a model M ; having applied a subset construction, an
input is only enabled in a given state if it is enabled in all of the corresponding
states of M [32].

Definition 12. Given O2(M) = (S′, s′0, X, Y ∪ {r}, h1), we construct O(M) =
(S′, s′0, X, Y, h2) in which h2 is defined as follows for s ∈ S′ and x ∈ X:

1. If there exists state s′ such that (s′, r) ∈ h1(s, x) then h2(s, x) = ∅;

2. If there does not exist state s′ such that (s′, r) ∈ h1(s, x) then h2(s, x) =
h1(s, x).

We then remove any unreachable states and transitions that leave these states.

Example 5. Consider O2(S4). We need to remove all transitions with input
x from a state s if O2(S4) has at least one transition from s with label x/r.
This involves removing a transition from state {s1, s2}, resulting in the partial
FSM shown in Figure 9. This differs from the FSM S5 in Figure 6 through (as
required) x2 not being specified in state {s1, s2}.

Note that since O2(M) is observable, we must have that O(M) is observable.
We now prove that we can test from O(M) instead of M .

18

{s0}
x2/y2

//

x1/y2

��

x1/y1

��

{s1}

x1/y1

��

{s2}
x1/y2

//x2/y2

77

{s3}

x1/y2

``

{s1, s2}

x1/y1,x1/y2

44

Figure 9: The result of removing transitions from O2(S4)

Theorem 3. Given PFSM specification S and FSM I, I is quasi-equivalent to
S if and only if I is quasi-equivalent to O(S).

Proof

First assume that I is quasi-equivalent to S and we are required to prove that
I is quasi-equivalent to O(S). Consider some σ̄ ∈ LF (O(S)) ∩ L(I) and x ∈
X such that x ∈ ΩO(S)(s) for all s ∈ O(S)-after-σ̄. By construction, since
x ∈ ΩO(S)(s) for all s ∈ O(S)-after-σ̄ we have that σ̄x/r 6∈ L(O2(S)) and
so x ∈ ΩS(s) for all s ∈ O(S)-after-σ̄. Since I is quasi-equivalent to S, by
definition we have that for all σ̄ ∈ LF (S)∩L(I) and x ∈ X, if x ∈ ΩS(s) for all
s ∈ S-after-σ̄ then:

1. for all s′ ∈ I-after-σ̄ we have that x ∈ ΩI(s
′); and

2. {y′ ∈ Y |σ̄x/y′ ∈ L(I)} = {y′ ∈ Y |σ̄x/y′ ∈ L(S)}.

By construction, O(S) and S have the same set of traces of the form σ̄x/y.
We therefore have that

1. for all s′ ∈ I-after-σ̄ we have that x ∈ ΩI(s
′); and

2. {y′ ∈ Y |σ̄x/y′ ∈ L(I)} = {y′ ∈ Y |σ̄x/y′ ∈ L(O(S))}.

as required.
Now assume that I is quasi-equivalent to O(S) and we are required to prove

that I is quasi-equivalent to S. Since I is quasi-equivalent to O(S), by definition
we have that for all σ̄ ∈ LF (O(S)) ∩ L(I) and x ∈ X, if x ∈ ΩO(S)(s) for all
s ∈ O(S)-after-σ̄ then:

1. for all s′ ∈ I-after-σ̄ we have that x ∈ ΩI(s
′); and

19

2. {y′ ∈ Y |σ̄x/y′ ∈ L(I)} = {y′ ∈ Y |σ̄x/y′ ∈ L(O(S))}.

Now consider some σ̄ ∈ LF (S) ∩ L(I) and x ∈ X such that x ∈ ΩS(s) for
all s ∈ S-after-σ̄. We must have that x is defined in all of the states of O1(S)
reached by σ̄ and the same set of outputs must be possible in response to x
in these states: {y′ ∈ Y |σ̄x/y′ ∈ L(S)} = {y′ ∈ Y |σ̄x/y′ ∈ L(O1(S))}. Since
O1(S) and O2(S) are equivalent, x must be defined in the unique state of O2(S)
reached by σ̄ and {y′ ∈ Y |σ̄x/y′ ∈ L(S)} = {y′ ∈ Y |σ̄x/y′ ∈ L(O2(S))}. It
is now sufficient to observe that in forming O(S) from O2(S), we retain the
unique path with label σ̄ and also all transitions from state O2(S)-after-σ̄ that
have input x. The result therefore follows. �

As a result of this, we know that if we are interested in testing for quasi-
equivalence to a PFSM S that is not observable then we can first construct
observable O(S) and we can test for quasi-equivalence to this. We can then
use results from previous sections, which tell us that in order to test for quasi-
equivalence it is sufficient to test for quasi-reduction to R(O(S)).

For completeness, we now give the corresponding result for quasi-reduction.

Theorem 4. Given PFSM specification S and FSM I, I is a quasi-reduction
of S if and only if I is a quasi-reduction of O(S).

Proof

First assume that I is a quasi-reduction of S and we are required to prove that I
is a quasi-reduction of O(S). Since I is a quasi-reduction of S, by definition we
have that for all σ̄ ∈ LF (S)∩L(I) and x ∈ X, if x ∈ ΩS(s) for all s ∈ S-after-σ̄
then:

1. for all s′ ∈ I-after-σ̄ we have that x ∈ ΩI(s
′); and

2. {y′ ∈ Y |σ̄x/y′ ∈ L(I)} ⊆ {y′ ∈ Y |σ̄x/y′ ∈ L(S)}.

Now consider some σ̄ ∈ LF (O(S))∩L(I) and x ∈ X such that x ∈ ΩO(S)(s)
for all s ∈ O(S)-after-σ̄. By construction, since x ∈ ΩO(S)(s) for all s ∈
O(S)-after-σ̄ we have that x ∈ ΩS(s) for all s ∈ S-after-σ̄. We therefore have
that

1. for all s′ ∈ I-after-σ̄ we have that x ∈ ΩI(s
′); and

2. {y′ ∈ Y |σ̄x/y′ ∈ L(I)} ⊆ {y′ ∈ Y |σ̄x/y′ ∈ L(S)}.

as required.
Now assume that I is a quasi-reduction of O(S) and we are required to

prove that I is a quasi-reduction of S. Since I is a quasi-reduction of O(S), by
definition we have that for all σ̄ ∈ LF (O(S))∩L(I) and x ∈ X, if x ∈ ΩO(S)(s)
for all s ∈ O(S)-after-σ̄ then:

1. for all s′ ∈ I-after-σ̄ we have that x ∈ ΩI(s
′); and

2. {y′ ∈ Y |σ̄x/y′ ∈ L(I)} ⊆ {y′ ∈ Y |σ̄x/y′ ∈ L(O(S))}.

Now consider some σ̄ ∈ LF (S) ∩ L(I) and x ∈ X such that x ∈ ΩS(s) for
all s ∈ S-after-σ̄. We must have that x is defined in all of the states of O1(S)
reached by σ̄ and the same set of outputs must be possible in response to x

20

in these states: {y′ ∈ Y |σ̄x/y′ ∈ L(S)} = {y′ ∈ Y |σ̄x/y′ ∈ L(O1(S))}. Since
O1(S) and O2(S) are equivalent, x must be defined in the unique state of O1(S)
reached by σ̄ and {y′ ∈ Y |σ̄x/y′ ∈ L(S)} = {y′ ∈ Y |σ̄x/y′ ∈ L(O2(S))}. It
is now sufficient to observe that in forming O(S) from O2(S), we retain the
unique path with label σ̄ and also all transitions from state O2(S)-after-σ̄ that
have input x. The result therefore follows. �

6. Practical Implications and Case Study

6.1. Practical Implications

This paper introduced a new approach that maps the problem of testing
for quasi-equivalence to a partial FSM S to the problem of testing for quasi-
reduction. Recent results have shown that one can map the problem of testing
for quasi-reduction to the problem of testing whether the SUT is a reduction of a
completely-specified FSM. When we combine these results, we have that we can
use test techniques and tools for reduction when testing for quasi-equivalence.
The main practical consequence of these results is that testers can utilise the
many test generation algorithms, for testing for reduction, when testing for
quasi-equivalence (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). The
following sequence of steps can be used to achieve this, when testing for quasi-
equivalence to PFSM S.

1. Create the observable PFSM S1 = O(S).

2. Generate S2 = R(S1).

3. Apply one of the following approaches:

(a) Test that the SUT is a quasi-reduction of S2; or
(b) Use the results in [26] to generate a completely-specified FSM S3 and

generate a test suite from S3 (for testing for reduction).

It is worth briefly explaining how one applies a test sequence that includes
an absence. Let us suppose, for example, that σ̄x/ay is a test sequence for some
trace σ̄. Then we start the process of apply this test sequence by providing
the inputs in σ̄ in the specified order, only continuing if the outputs given in σ̄
are observed. For example, if σ̄ = x1/y1x2/y2 then we initially apply x1 and
terminate if the SUT does not output y1 in response, even if this does not denote
a failure. If the SUT produces y1 in response to x1 then we next apply x2. If
this process succeeds (σ̄ is produced by the SUT) then we finally apply input x
and observe the output produced; there is a failure if this final output is y (i.e.
the absence is not observed). Naturally, a test case need not be a trace and
might instead, for example, be defined by a tree/adaptive process. However,
the same principles apply.

As previously noted, the main practical benefit is to make a much wider
range of test generation techniques available to the tester (when testing from a
partial FSM). Note that the results, along with those in [26], also unify several
test generation problems, allowing these to be addressed or reasoned about
together.

21

There are some limitations to this work. First, the process of making a
partial FSM observable uses a subset construction and so can lead to exponen-
tially many states. However, this issue also arises when considering completely-
specified FSMs since the problem of making such an FSM observable is equiva-
lent to the problem of deriving a deterministic finite automaton that is equiva-
lent to a given non-deterministic finite automaton. Thus, this complexity prob-
lem is inherent in the area.

A second limitation is that the FSM R(S) constructed has a sink state
and so one may not be able to apply test generation techniques that require
the specification to be strongly-connected4. However, it should be possible to
overcome such issues if the SUT has a reliable reset: a reset operation that is
known to take the SUT back to its initial state.

6.2. Case Study

We now illustrate the ideas with a case study that represents a simple game.
Essentially, the user chooses to start (input s, output message 1) and the system
then randomly chooses one of three ‘doors’ (not telling the user). The user
then chooses one of the three doors: input di represents the choice of door i
(1 ≤ i ≤ 3). There are two winning conditions: if the user chooses d1 and the
game had chosen door 1, or if the user chooses d2 and the game had chosen door
2. Note that the choice of d3 always leads to the user losing (most likely they
are not made aware of this!). Winning is represented by output 1; losing by 0.
The partial FSM is shown in Figure 10 (left hand side) in which the initial state
s0 is shown twice in order to simplify the diagram. Here, it we want to test
for quasi-equivalence and not quasi-reduction. For example, an implementation
that did not allow d1 to potentially win would not be a valid implementation.
Note that G is not observable. Figure 10 (right hand side) shows an observable
version, G1 = O(G).

We can now construct the partial FSM G2 = R(G1), which is shown in
Figure 11; the self-loop transitions are not shown in state SR. As demonstrated
earlier, in order to test against G for quasi-equivalence it is sufficient to test for
quasi-reduction to G2. Now let us suppose that we wish to test using the trace
s/1d3/a1 that denotes that after s/1 the SUT should not be able to produce
output 1 in response to d3. As explained above, testing involve applying input
s and observing the resultant output. If output 1 is produced by the SUT
in response to s then the tester next applies input d3 and returns verdict fail
if output 1 is observed. As previously discussed, in order to obtain complete
testing when testing from a non-deterministic finite state machine, it is normal
to make a fairness assumption of the form: if an input sequence has been applied
k times (some given k) then all possible resultant output sequences will have
been observed. Naturally, the choice of k might be based on the criticality of
the system but also on probabilistic arguments.

4An FSM M is strongly-connected if for every ordered pair of states (s, s′) there is a path
that takes M from s to s′.

22

s0

s/1

~~

s/1

��

s/1

s0

s/1

��

D1

d1/1,d2/0,d3/0

D2

d1/0,d2/1,d3/0

��

D3

d1/0,d2/0,d3/0

~~

D

d1/0,d1/1,d2/1,d2/0,d3/0

��

s0 s0

Figure 10: Partial FSM G representing a simple game and G1 = O(G)

s0

s/1

��

D

d1/0,d1/1,d2/1,d2/0,d3/0

��

d3/a1

// SR

s0

Figure 11: Partial FSM G2 = R(G1)

23

s0

s/1

��

d1/0,d1/1,d2/0,d2/1,d3/0,d3/1

yy

E D
s/0,s/1

oo

d1/0,d1/1,d2/1,d2/0,d3/0

��

d3/a1

// SR

s0

Figure 12: Completely-specified FSM G3

As a final step, we can create the FSM G3 shown in Figure 12 using the results
from [26]. Similar to before, we do not include the self-loop transitions in the
error state E. We know that the SUT is correct if and only if it is a reduction
of G3 and so we can use any technique for testing from a completely-specified
FSM.

7. Related Work

The work on testing from an FSM specification goes back to Moore’s seminal
paper in 1956 [33], with Hennie introducing the first test generation algorithm
in 1964 [2]. Many FSM-based test generation algorithms have since been intro-
duced [1, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Many of these techniques produce tests that
are complete in the sense that they are guaranteed to determine whether the
SUT is faulty as long as the SUT is in a well-defined fault domain. Most of the
FSM testing literature considers completely-specified FSMs that act as specifi-
cations. However, a specification might be partial and so there has been interest
in testing from PFSMs [12, 13, 14, 15, 16, 17]. This line of work has treated the
situation in which input x is not specified in state s as underspecification; all
behaviours are allowed if x is received in state s.

When testing from a PFSM S, one might have the situation in which it is
possible to reach states s1 and s2 using input sequence x̄ and input x is defined
in s1 and not s2. The problem here is that one cannot safely apply x after x̄ since
one should not apply x in state s2; this might preclude the possibility of applying
x in state s1. As a result, work on testing from PFSMs has traditionally required
that this scenario cannot happen in the specification PFSM: the specification S
has harmonised traces. Until recently, the two notions of correctness for testing
from a PFSM (quasi-equivalence and quasi-reduction) were only defined when
the specification has harmonised traces. In addition, algorithms for generating
tests from PFSMs required the PFSMs to have harmonised traces.

Although there is practical motivation for requiring the specification to have
harmonised traces, it is important to note that the restriction, that an input

24

sequence x̄ cannot take the specification to states s1 and s2 in which different
inputs are defined, is applied even if the associated traces σ̄1 and σ̄2 are different.
If σ̄1 and σ̄2 differ and testing is adaptive (the choice of next input can depend
on the outputs that have been observed) then a test case can apply x̄ and then
choose the next input to apply based on the trace observed. Thus, if testing is
adaptive then there is no need to restrict attention to specifications that have
harmonised traces. Only recently have quasi-reduction and quasi-equivalence
been generalised to allow the PFSM to not have harmonised traces [26] but this
work still relies on the PFSM specification being observable. This paper has
provided a full generalisation of quasi-reduction and quasi-equivalence to allow
any PFSM specification.

Recent work showed that one can transform the problem of testing for quasi-
reduction to an observable PFSM to one of testing for reduction to a completely-
specified FSM [26]. This was achieved by suitably completing the specification
PFSM. Earlier results showed how this could be done with PFSMs that have
harmonised traces [15]. However, the completion does not work with quasi-
equivalence [26], motivating the work described in this paper.

In this paper we noted that to test for equivalence or quasi-equivalence we
must be able to determine, in testing, that the SUT cannot produce a particular
output y in response to an input x after a trace σ̄. This is similar to the notion
of a refusal, which typically corresponds to the ability to observe that the SUT
cannot engage in an action a. Refusals have been studied in the context of
labelled transition systems and process algebras such as CSP (see, for example,
[28, 34, 35, 36]).

The absence ay is not a refusal in the classical sense: a refusal of y would nor-
mally be observed by an experiment in which the environment (tester) refuses
to engage in events other than y and the composition of the SUT and environ-
ment deadlocks. In testing, it is normal to assume that the tester/environment
cannot block output (see, for example, [30]) and so we cannot observe a refusal
of an output in this way. Recent work on testing from CSP specifications has
also noted that the tester cannot observe the refusal of a single output but it
does allow the refusal of all outputs to be observed [37], with this corresponding
to the observation of quiescence in the ioco testing theory [30]. The observation
of quiescence is not required when testing from finite state machines since a
finite state machine is always quiescent after the execution of a transition.

In order to observe trace σ̄x/ay in testing, it is sufficient to utilise the stan-
dard fairness assumption used in testing from a non-deterministic (P)FSM. This
involves applying x after σ̄ at least k times and concluding that y cannot be
output, and so ay has been observed, if y is not produced. Much of the work
on testing from non-deterministic finite state machines makes such a fairness
assumption (see, for example, [7, 8, 9, 10, 11]).

8. Conclusions

There has been significant interest in automating testing from a finite state
machine specification S. Previous work has defined two implementation re-

25

lations (notions of correctness) for completely-specified FSMs: reduction and
equivalence. There are also corresponding implementation relations for testing
from a PFSM, with these being quasi-reduction and quasi-equivalence. Recent
work showed that we can convert the problem of testing for quasi-reduction to a
PFSM specification S into the problem of testing for reduction to a completely-
specified FSM constructed from S. This allows standard test generation tech-
niques (for testing for reduction) to be utilised when testing for quasi-reduction.
The main motivation for the work in this paper was to extend this to testing
for quasi-equivalence.

We started by discussing how one tests for equivalence, noting that testing
must be able to show that the SUT cannot produce output y in response to input
x after trace σ̄. In practice, this would be achieved by having a test case that
inputs x after σ̄ and applying this a sufficient number of times (having made a
fairness assumption). We noted that the inability to produce y in response to
x after σ̄ can be represented by trace σ̄x/ay and we called ay an absence. We
showed how FSM M can be enriched to form a new FSM R(M) that includes
such absences and proved that in order to test for equivalence to completely-
specified FSM S it is sufficient to test that the SUT is a reduction of R(S).

We then considered the problem of testing against PFSM S, exploring the
quasi-equivalence implementation relation. We proved that in order to test for
quasi-equivalence to PFSM S, one can test for quasi-reduction to R(S). Recent
results have shown that one can map the problem of testing for quasi-reduction
to the problem of testing whether the SUT is a reduction of a completely-
specified FSM. When we combine these results, we have that we can use test
techniques and tools for reduction when testing for quasi-equivalence. The main
practical consequence of the results in this paper is that testers can utilise the
many test generation algorithms, for testing for reduction, when testing for
quasi-equivalence [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. However, there are additional
potential benefits of unifying several test generation problems (e.g. results re-
garding one problem transfer to the others).

The results were proved for the case where the specification S is observable.
If S is completely-specified then this is not a significant restriction since we
can convert S into an equivalent observable FSM and test from this. However,
this approach does not work when testing from PFSMs. In order to investigate
the problem of converting a PFSM specification into an observable PFSM from
which we can test, we generalised quasi-equivalence to deal with PFSMs that
are not observable. The resulting generalisation allows greater freedom in design
and removes the potential to (incorrectly) state that a correct SUT is faulty. We
then showed that given PFSM specification S, we can produce an observable
PFSM O(S) from which we can test: the SUT is quasi-equivalent to S if and
only if it is quasi-equivalent to O(S), with the corresponding result also holding
for quasi-reduction. When combined with previous results, this shows that the
problems of testing for quasi-reduction, equivalence, and quasi-equivalence can
all be mapped to a corresponding problem of testing for reduction.

Regarding future work, it would be interesting to explore whether corre-
sponding results hold for other FSM problems such as constructing synchronis-

26

ing sequences or distinguishing states.

[1] T. S. Chow, Testing software design modelled by finite state machines,
IEEE Transactions on Software Engineering 4 (1978) 178–187.

[2] F. C. Hennie, Fault-detecting experiments for sequential circuits, in: Pro-
ceedings of Fifth Annual Symposium on Switching Circuit Theory and Log-
ical Design, Princeton, New Jersey, 1964, pp. 95–110.

[3] H. Ural, X. Wu, F. Zhang, On minimizing the lengths of checking sequences,
IEEE Transactions on Computers 46 (1) (1997) 93–99.

[4] A. Simão, A. Petrenko, N. Yevtushenko, On reducing test length for FSMs
with extra states, Software Testing, Verification and Reliability 22 (6)
(2012) 435–454.

[5] R. M. Hierons, U. C. Türker, Incomplete distinguishing sequences for finite
state machines, The Computer Journal 58 (11) (2015) 3089–3113.

[6] R. M. Hierons, U. C. Türker, Parallel algorithms for testing finite state
machines: Generating UIO sequences, IEEE Transactions on Software En-
gineering 42 (11) (2016) 1077–1091.

[7] H. AboElFotoh, O. Abou-Rabia, H. Ural, A test generation algorithm for
protocols modeled as non-deterministic FSMs, The Software Engineering
Journal 8 (4) (1993) 184–188.

[8] R. M. Hierons, Generating candidates when testing a deterministic imple-
mentation against a non–deterministic finite state machine, The Computer
Journal 46 (3) (2003) 307–318.

[9] I. Hwang, T. Kim, S. Hong, J. Lee, Test selection for a nondeterministic
FSM, Computer Communications 24 (12) (2001) 1213–1223.

[10] A. Petrenko, A. Simão, N. Yevtushenko, Generating checking sequences
for nondeterministic finite state machines, in: Fifth IEEE International
Conference on Software Testing, Verification and Validation (ICST 2012),
2012, pp. 310–319.

[11] F. Zhang, T.-Y. Cheung, Optimal transfer trees and distinguishing trees
for testing observable nondeterministic finite-state machines, IEEE Trans-
actions on Software Engineering 29 (1) (2003) 1–14.

[12] A. L. Bonifácio, A. V. Moura, Test suite completeness and partial models,
in: 12th International Conference on Software Engineering and Formal
Methods (SEFM 2014), Vol. 8702 of LNCS, Springer, 2014, pp. 96–110.

[13] A. L. Bonifácio, A. V. Moura, Partial models and weak equivalence, in:
11th International Colloquium on Theoretical Aspects of Computing (IC-
TAC 2014), Vol. 8687 of LNCS, Springer, 2014, pp. 80–96.

27

[14] A. L. Bonifácio, A. V. Moura, On the completeness of test suites, in: Sym-
posium on Applied Computing (SAC 2014), ACM, 2014, pp. 1287–1292.

[15] A. Petrenko, N. Yevtushenko, G. v. Bochmann, Testing deterministic im-
plementations from nondeterministic FSM specifications, in: IFIP TC6 9th
International Workshop on Testing of Communicating Systems, Chapman
and Hall, Darmstadt, Germany, 1996, pp. 125–141.

[16] A. Petrenko, N. Yevtushenko, Testing from partial deterministic FSM spec-
ifications, IEEE Transactions on Computers 54 (9) (2005) 1154–1165.

[17] A. Petrenko, N. Yevtushenko, Conformance tests as checking experiments
for partial nondeterministic FSM, in: 5th International Workshop on For-
mal Approaches to Software Testing (FATES 2005), Vol. 3997 of Lecture
Notes in Computer Science, Springer, 2006, pp. 118–133.

[18] A. Bertolino, E. Marchetti, H. Muccini, Introducing a reasonably complete
and coherent approach for model-based testing, Electr. Notes Theor. Com-
put. Sci. 116 (2005) 85–97.

[19] M. Kalinowski, M. Felderer, T. Conte, R. O. Spínola, R. Prikladnicki,
D. Winkler, D. M. Fernández, S. Wagner, Preventing incomplete/hidden
requirements: Reflections on survey data from austria and brazil, in: Soft-
ware Quality. The Future of Systems- and Software Development, 8th Inter-
national Conference (SWQD 2016), Vol. 238 of Lecture Notes in Business
Information Processing, Springer, 2016, pp. 63–78.

[20] N. Kushik, N. Yevtushenko, A. R. Cavalli, On testing against partial non-
observable specifications, in: 9th International Conference on the Quality of
Information and Communications Technology, QUATIC 2014, IEEE Com-
puter Society, 2014, pp. 230–233.

[21] F. Brglez, ACM/SIGMOD benchmark dataset, available online at
http://cbl.ncsu.edu:16080/benchmarks/Benchmarks-upto-1996.html.

[22] R. M. Hierons, U. C. Türker, Distinguishing sequences for partially spec-
ified FSMs, in: NASA Formal Methods - 6th International Symposium,
NFM 2014„ Vol. 8430 of Lecture Notes in Computer Science, Springer,
2014, pp. 62–76.

[23] M.-C. Gaudel, Testing can be formal too, in: 6th International Joint Con-
ference CAAP/FASE Theory and Practice of Software Development (TAP-
SOFT’95), Vol. 915 of Lecture Notes in Computer Science, Springer, 1995,
pp. 82–96.

[24] G. Luo, A. Petrenko, G. v. Bochmann, Selecting test sequences for
partially-specified nondeterministic finite state machines, in: The 7th IFIP
Workshop on Protocol Test Systems, Chapman and Hall, Tokyo, Japan,
1994, pp. 95–110.

28

[25] A. Simão, A. Petrenko, Generating checking sequences for partial reduced
finite state machines, in: 20th IFIP TC 6/WG 6.1 International Confer-
ence Testing of Software and Communicating Systems, 8th International
Workshop on Formal Approaches to Testing of Software (TestCom/FATES
2008), Vol. 5047 of Lecture Notes in Computer Science, Springer, 2008, pp.
153–168.

[26] R. M. Hierons, Testing from partial finite state machines without har-
monised traces, IEEE Transactions on Software Engineering 43 (11) (2017)
1033–1043.

[27] G. L. Luo, G. v. Bochmann, A. Petrenko, Test selection based on com-
municating nondeterministic finite-state machines using a generalized Wp-
method, IEEE Transactions on Software Engineering 20 (2) (1994) 149–161.

[28] R. v. Glabbeek, The linear time-branching time spectrum I. The semantics
of concrete, sequential processes, in: J. Bergstra, A. Ponse, S. Smolka
(Eds.), Handbook of process algebra, North Holland, 2001, Ch. 1.

[29] A. Cavalcanti, R. M. Hierons, Testing with inputs and outputs in CSP,
in: 16th International Conference on Fundamental Approaches to Software
Engineering (FASE 2013), Vol. 7793 of Lecture Notes in Computer Science,
Springer, 2013, pp. 359–374.

[30] J. Tretmans, Model based testing with labelled transition systems, in: For-
mal Methods and Testing, Vol. 4949 of Lecture Notes in Computer Science,
Springer, 2008, pp. 1–38.

[31] J. E. Hopcroft, An n log n algorithm for minimizing the states in a finite
automaton, in: Z. Kohavi (Ed.), The theory of Machines and Computation,
Academic Press, 1971, pp. 189–196.

[32] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, Model-based mutation
testing of hybrid systems, in: 8th International Symposium on Formal
Methods for Components and ObjectsFMCO 2009, Vol. 6286 of Lecture
Notes in Computer Science, 2009, pp. 228–249.

[33] E. F. Moore, Gedanken-experiments, in: C. Shannon, J. McCarthy (Eds.),
Automata Studies, Princeton University Press, 1956.

[34] L. Heerink, J. Tretmans, Refusal testing for classes of transition systems
with inputs and outputs, in: Formal Description Techniques and Protocol
Specification, Testing and Verification (FORTE X/PSTV XVII), Vol. 107
of IFIP Conference Proceedings, Chapman & Hall, 1997, pp. 23–38.

[35] I. Phillips, Refusal testing, Theoretical Computer Science 50 (3) (1987)
241–284.

[36] A. Roscoe, The Theory and Practice of Concurrency, Prentice Hall, 1998.

29

[37] A. Cavalcanti, R. M. Hierons, S. Nogueira, A. Sampaio, A suspension-
trace semantics for CSP, in: 10th International Symposium on Theoretical
Aspects of Software Engineering (TASE 2016), IEEE Computer Society,
2016, pp. 3–13.

30

Lemma 2. Given observable PFSM M , L̄(M) = to_out(L(R(M)) \ L(M)).

Proof

First we will assume that σ̄ ∈ to_out(L(R(M)) \ L(M)) and we are required
to prove that σ̄ ∈ L̄(M). Let γ̄ be a trace in L(R(M)) \ L(M) such that
to_out(γ̄) = σ̄. By the definition of R(M), we must have that γ̄ has prefix
γ̄1 = σ̄1x/ay for some σ̄1 ∈ Σ∗, x ∈ X, and y ∈ Y . Since M is observable, there
is only one state of M that can be reached by a path with label σ̄1 and so we
must have that σ̄1x/y 6∈ L(M). However, σ̄1x/y is a prefix of to_out(γ) = σ̄.
Since L(M) is prefix closed, we must have that σ̄ 6∈ L(M) and so σ̄ ∈ L̄(M) as
required.

Now we will assume that σ̄ ∈ L̄(M) and we are required to prove that
σ̄ ∈ to_out(L(R(M)) \ L(M)). We must have that σ̄ = σ̄1x/yσ̄2 where σ̄1 is
the longest prefix of σ̄ that is in L(M). Thus, σ̄1 labels a unique path of M
and that path ends in a state s from which there is no transition with input
x and output y. By the construction of R(M) we therefore have that σ̄ is
the image, under to_out(), of some γ̄ ∈ L(R(M)). Further, γ̄ must contain
at least one absence and so we have that γ̄ 6∈ L(M). We therefore have that
γ̄ ∈ L(R(M)) \ L(M) and so σ̄ ∈ to_out(L(R(M)) \ L(M)) as required. �

Lemma 4. Given observable PFSMs S and I with the same input and output
alphabets, I is quasi-equivalent to S if and only if L(I) \ US = L(S).

Proof

First, let us suppose that I is quasi-equivalent to S and let σ̄ be a trace that
is not in US ; we require to prove that σ̄ ∈ L(I) if and only if σ̄ ∈ L(S). Proof
by contradiction: assume that this does not hold and so σ̄ 6∈ L(I) ∩ L(S) and
σ̄ ∈ L(I)∪L(S). Thus, σ̄ = σ̄1x/yσ̄2 for some maximal σ̄1 ∈ L(S)∩L(I). Since
σ̄ 6∈ US , we have that x is defined in the unique state of S reached by σ̄1. Since
I is quasi-equivalent to S, we must have that x is also defined in the unique
state of I reached by σ̄1. But this implies that x is defined after σ̄1 in I and
S but also that one of I and S can produce output y in response to x after σ̄1

and the other cannot. This contradicts the second condition of the definition of
I being quasi-equivalent to S, as required.

Now suppose that L(I) \ US = L(S) and we are required to prove that
I is quasi-equivalent to S. Let us suppose that σ̄ ∈ L(I) ∩ L(S), x ∈ X,
and (σ̄, x) ∈ DS . By definition, we require to prove that (σ̄, x) ∈ DI and
{y′ ∈ Y |σ̄x/y′ ∈ L(I)} = {y′ ∈ Y |σ̄x/y′ ∈ L(S)}. Since (σ̄, x) ∈ DS , US does
not contain any trace of the form σ̄x/y. Thus, since L(I) \ US = L(S) \ US ,
we must have that L(I) has at least one trace of the form σ̄x/y and so we can
conclude that (σ̄, x) ∈ DI . Further, since L(I) \ US = L(S), we can conclude
that {y′ ∈ Y |σ̄x/y′ ∈ L(I)} = {y′ ∈ Y |σ̄x/y′ ∈ L(S)} as required. The result
therefore follows. �

31

The following proof uses the fact that I is completely-specified.

Lemma 6. Let us suppose that S is an observable PFSM and I is an observable
FSM with the same input and output alphabets. Then, I is a quasi-reduction of
S if and only if L(I) \ US ⊆ L(S).

Proof

First, let us suppose that I is a quasi-reduction S and let σ̄ be a trace that is
not in US ; we require to prove that σ̄ ∈ L(I) implies that σ̄ ∈ L(S). Proof by
contradiction: assume that this does not hold and so σ̄ ∈ L(I) and σ̄ 6∈ L(S).
Thus, σ̄ = σ̄1x/yσ̄2 for some maximal σ̄1 ∈ L(S) ∩ L(I). Since σ̄ 6∈ US , we
have that x is defined in the unique state of S reached by σ̄1. Since I is a
quasi-reduction of S, we must also have that x is also defined in the unique
state of I reached by σ̄1. But this implies that x is defined after σ̄1 in I and S
but also that I can produce output y in response to x after σ̄1 and S cannot.
This contradicts the definition of I being a quasi-reduction of S, as required.

Now suppose that L(I) \US ⊆ L(S) \US and we are required to prove that
I is a quasi-reduction of S. Let us suppose that σ̄ ∈ L(I) ∩ L(S), x ∈ X,
and (σ̄, x) ∈ DS . By definition, we require to prove that (σ̄, x) ∈ DI and
{y′ ∈ Y |σ̄x/y′ ∈ L(I)} ⊆ {y′ ∈ Y |σ̄x/y′ ∈ L(S)}. The first follows from
I being completely-specified. Since (σ̄, x) ∈ DS , for all y ∈ Y we have that
σ̄x/y 6∈ US . Thus, since L(I) \ US ⊆ L(S) \ US , we can conclude that {y′ ∈
Y |σ̄x/y′ ∈ L(I)} ⊆ {y′ ∈ Y |σ̄x/y′ ∈ L(S)} as required. The result therefore
follows. �

Lemma 8. Given observable PFSMs S and I, to_out(L(R(I)) \L(I)) \US =
to_out(L(R(I)) \ L(I) \ UR(S)).

Proof

It is sufficient to prove that if γ̄ ∈ L(R(N)) \L(N) then γ̄ ∈ UR(M) if and only
if to_out(γ̄) ∈ UM . Let σ̄ = to_out(γ̄). Observe that γ̄ contains at least one
absence.

By the definition of R(M), γ̄ ∈ UR(M) if and only if γ̄ = σ̄1γ̄2 for some
σ̄1 ∈ L(M) and non-empty γ̄2 ∈ (Γ ∪ Γa)

∗ where the first input x in γ̄2 is such
that (σ̄1, x) 6∈ DM . However, we also have that σ̄ ∈ UM if and only if we can
write σ̄ as σ̄1σ̄2 for some σ̄1 ∈ L(M) and non-empty σ̄2 ∈ Γ∗ where the first
input x in σ̄2 is such that (σ̄1, x) 6∈ DM . Since σ̄ = to_out(γ̄), these conditions
are equivalent and so the result follows. �

Lemma 9. Given observable PFSMs S and I with the same input and output
alphabets, if (L(I) \ US) ⊆ L(S) then

to_out(L(R(I)) \ L(I) \ UR(S)) ⊆
to_out(L(R(S)) \ L(S) \ UR(S)) ⇐⇒

L(R(I)) \ L(I) \ UR(S) ⊆ L(R(S)) \ L(S) \ UR(S)

Proof

The right-to-left result is immediate and so we assume that L(I)\US ⊆ L(S)\US

32

and to_out(L(R(I))\L(I)\UR(S)) ⊆ to_out(L(R(S)))\L(S)\UR(S)) and we
are required to prove that L(R(I)) \ L(I) \ UR(S) ⊆ L(R(S)) \ L(S) \ UR(S).

We use proof by contradiction and suppose that γ̄ is a minimal element of
L(R(I))\L(I)\UR(S) such that γ̄ 6∈ L(R(S))\L(S)\UR(S). Let σ̄ = to_out(γ̄).
Then σ̄ = σ̄1σ̄2 for some maximal prefix σ̄1 ∈ L(I). Since γ̄ 6∈ UR(S), we also
have that σ̄1 6∈ US (if σ̄1 ∈ US then, by definition, all extensions of σ̄1 are in
US and so also in UR(S)). Further, by construction, we have that γ̄ = σ̄1γ̄2 for
some γ̄2 ∈ Γ∗

a such that σ̄2 = to_out(γ̄2).
Since to_out(L(R(I)) \ L(I) \ UR(S)) ⊆ to_out(L(R(S))) \ L(S) \ UR(S))

we have that σ̄ ∈ to_out(L(R(S)) \ L(S) \ UR(S)). Let γ̄′ be the trace in
L(R(S)) \ L(S) \ UR(S) such that to_out(γ̄′) = σ̄; since R(S) is observable, γ̄′

is uniquely defined. Since σ̄1 ∈ L(I) and σ̄1 6∈ US , we have that σ̄1 ∈ L(I)\US .
Since (L(I) \ US) ⊆ (L(S) \ US), we must have that σ̄1 ∈ L(S) \ US . Thus, σ̄1

is a prefix of γ̄′ and so γ̄′ = σ̄1γ̄
′
2 for some γ̄′

2 ∈ Γ∗Γ∗
a.

Since γ̄ 6∈ L(R(S)) \ L(S) \ UR(S) we must have that γ̄′
2 6∈ Γ∗

a (since then
we would have γ̄2 = γ̄′

2). Thus, γ̄′ = σ̄1x/yγ̄3 for some x/y ∈ Γ. But this
implies that σ̄1x/y ∈ L(S) and so, since S is observable, σ̄1x/ay 6∈ L(R(S)).
But this tells us that σ̄1x/y 6∈ to_out(L(R(S)) \ L(S) \ UR(S)). However,
σ̄1x/y ∈ to_out(L(R(I)) \ L(I) \ UR(S)) and this contradicts the assumption
that to_out(L(R(I)) \ L(I) \ UR(S)) ⊆ to_out(L(R(S))) \ L(S) \ UR(S)) as
required. �

33

