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Abstract: Miscanthus was treated by hydrothermal carbonisation in a 2-L batch reactor at 200 ◦C
and 250 ◦C with residence times ranging between 0 and 24 h to understand the impact of residence
time has on the resulting bio-coal combustion chemistry. Increasing the residence time results in
dehydration of the bio-coal and increased repolymerisation; however, temperature has the greatest
influence on bio-coal properties. After 24 h at 200 ◦C, bio-coal has similar properties to that of the
250 ◦C + 0 h bio-coal. After 1 h at 250 ◦C, the cellulose present in the raw biomass appears to be
largely removed. The removal of cellulose and the associated dehydration and repolymerisation
results in bio-coal having a ‘coal like’ combustion profile, which exhibits a decreasing reactivity with
increasing residence time. At 200 ◦C + 0 h, 75% of the alkali metal is removed, increasing to 86% with
increasing residence time. Further extraction is seen at 250 ◦C. Phosphorus and sulphur appear to
undergo substantial extraction at 200 ◦C + 0 h but then are reincorporated with increasing residence
time. The calcium content increases in the bio-coal with increasing residence time at 200 ◦C but then
reduces after 1 h at 250 ◦C. Increasing temperature and residence time has been shown to decrease
the fuels’ fouling and slagging propensity.

Keywords: HTC; bio-coal; severity factor; slagging; fouling; corrosion; process chemistry; pulverised
fuel; combustion

1. Introduction

Hydrothermal carbonisation (HTC) is a thermal conversion process capable of producing
sustainable carbonaceous products from biomasses and waste materials. These carbonaceous products
can be used in a wide range of applications, including solid fuels [1,2], catalyst supports [3,4],
absorbents for environmental remediation [5–7] and soil additives [8]. The reaction rates and products
from HTC are governed to a large extent by reaction temperature, which governs the extent of
hydrolysis, dehydration and polymerisation reactions [9,10] and the onset of the degradation of key
components such as cellulose, hemicellulose and lignin [10–13]. Residence time is another important
parameter, with studies in the literature ranging from less than 5 min up to several days. Many studies
on the production of bio-coal for combustion applications focus on shorter residence times, for example,
5 min in Reza et al. [13] or 1 h in Smith et al. [2,14,15]. Only limited studies have investigated the effect
of residence time on the removal of minerals. This is important as several authors have suggested
that HTC may reduce the slagging, fouling and corrosion propensity of the resulting bio-coal, as
demonstrated through either alkali metal or ash reductions [2,13–22].

Shorter residence times have the advantage of increasing reactor throughput, although they
can also impose kinetic limitations, preventing aromatisation and repolymerisation [23]. It has been
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suggested by several authors that HTC is a two-stage process. The initial stage includes predominantly
the hydrolysis of the starting biomass, along with dehydration and decarboxylation reactions. These
initial reactions are quick, and it is assumed that in many HTC studies, these reactions may have gone
to completion by the time the hold temperature is reached [24,25]. The second-stage reactions include
the polymerisation and aromatisation of the hydrolysed and dehydrated fragments created in the
first stage. The advantage of retaining the reactor at temperature is that it promotes polymerisation
and aromatisation of these fragments in the liquid phase, but this can also lead to the precipitation
of insoluble salts [9]. Hoekman et al. [24] processed a spruce/fir mix at varying residence times and
analysed the acids and sugars present in the process water by ion chromatography, along with the
mass yields and energy density of the resulting chars. The results indicate that the sugar content in the
process water decreases with increasing residence time. This is associated with an increase in organic
acid content; however, overall, the total organic carbon (TOC) in the process water decreases, which is
indicative of repolymerisation. Furthermore, despite a small but noticeable decrease in mass recovery,
the energy content was shown to increase with residence time. Kruse et al. [26] also demonstrated
that an increase in residence time between 180 ◦C and 250 ◦C reduces the nitrogen content of the
resulting bio-coal for straw, herbaceous agricultural wastes and microalgae. It is generally assumed
that longer residence times increase the reaction severity [9]; however, there is a trade-off between the
costs associated with retaining a process at temperature (influence on throughput, increased energy
costs, etc.) and the product quality.

Several researchers have linked the temperature and pressure conditions as described in
Equation (1) into a single term known as the ‘severity factor’ [23,27–29]. The severity factor is the
logarithm of the reaction ordinate; a reactivity factor developed by Overend and Chornet [30] to
characterise hydrolytic depolymerisation processes during wood pulping and similar operations. The
principle dictates that similar products can be achieved through either lower reaction temperatures
with increased residence times or higher temperatures with lower residence times. The equation is
advantageous when predicting hydrolytic depolymerisation processes but becomes limited when you
consider the kinetic limitations imposed by aromatisation and polymerisation. Consequently, simply
increasing the reaction temperature in order to overcome long residence times may not overcome the
need for residence at temperature due to these kinetic limitations [23]. The influence of particle
size and solid loading are additional factors that will influence the required residence time, as
both diffusion-controlled transport mechanisms during biomass decomposition and condensation
polymerisation are likely to govern the overall rate of reaction.

Severity Factor = Log (time (min)) * e [(temp (◦C) − 100)/14.75]. (1)

In this paper, Miscanthus was hydrothermally carbonised at two temperatures 200 ◦C and 250 ◦C,
with varying residence times from 0 h to 24 h to understand the impact that increasing the residence
time has on the resulting bio-coal chemical composition and its inorganic and combustion chemistry.

2. Materials and Methods

2.1. Materials

Samples of Miscanthus giganteus were obtained from Rothamsed Research having been cultivated
at the Wodburn experimental farm in Bedfordshire, UK, (52 01◦ N 00 36 W) as part of a cultivation
trial. The samples were initially cut in a garden shredder followed by further homogenisation in a
cutting mill (Retsch, Germany) using a 4-mm grate to a particle size of 0.5–1.0 mm. The samples were
then oven dried at 70 ◦C for 72 h before processing.

2.2. Hydrothermal Carbonisation

HTC was performed in a modified 2000-ml high-pressure batch reactor containing a quartz liner
(Parr, USA) at 200 ◦C and 250 ◦C with 5 different residence times (0, 1, 4, 8 and 24 h). The residence
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time is taken as the time from when the centre of the reactor reaches the desired reaction temperature to
when the reactor is removed from the heating jacket. The temperature of the reactor was controlled by
a thermocouple located on the reactor inner wall and a proportional-Integral-Derivative (PID) heating
controller. The PID controller was tuned to prevent heating beyond the desired temperature and to
ensure consistent heating profiles. A second thermocouple was located in the centre of the reactor,
and these values were taken as the reaction temperature. Pressure and temperature were continually
logged throughout the experiment. For each run, a 10% solid loading was used with a combined mass
of 1000 grams per run. The quartz liner, mass of biomass and mass of water were weighed before
loading the reactor. Once sealed, the air in the reactor was removed by a vacuum pump and the reactor
flushed with argon twice before being pre-pressurised to 5 bar with argon. The reactor was then heated
to the desired temperature at approximately 5 ◦C min−1, after which the temperature was maintained
for the desired residence time. At the end of the desired residence time, the reactor was removed from
the heating jacket and allowed to air cool to room temperature. Once opened, the quartz reactor liner
and contents were re-weighed, and any additional moisture inside the reactor was quantified using a
pre-weighed tissue paper. The solid and liquid products were separated by filtration under a vacuum
using 110-mm qualitative filter paper (Grade 3, Whatman, UK). Any remaining solid sample in the
quartz liner was recovered through repeated rinsing of the liner with the process water until the liner
was clear of char. The process water yield was subsequently calculated by subtracting the starting
mass of the liner and the wet char from the post-run mass of the quartz reactor liner and contents.
The gas yield was taken as the starting mass of the liner and contents minus the mass of the liner and
contents plus the mass of moisture recovered from the reactor. The bio-coal was allowed to air dry in a
ventilated fume cupboard for a minimum of 48 h and then oven dried at 60 ◦C overnight. Yields are
defined as dry bio-coal mass compared with the original dry mass of the unprocessed Miscanthus.

2.3. Analysis

2.3.1. Inorganic Analysis

Prior to analysis, the dried samples were ground and homogenised to below 100 µm in a cryomill
(Retsch, Germany). Metal analysis was preformed using atomic absorption spectroscopy (AAS) for the
potentially volatile alkali and alkaline earth metals, while the remaining metals, along with phosphorus
and silicon, were determined using wavelength dispersive X-ray fluorescence (WD-XRF). For XRF
analysis, the samples were ashed in a PID-controlled muffle furnace (Nabertherm, Germany) to a final
temperature of 550 ◦C in accordance with BS EN ISO 18122-2 to minimise volatile metal loss. The
ash was then combined with a lithowax binder using a 10:1 ratio and pelletised at 10 tonnes using
a laboratory press (Spex, UK). The elemental composition of the ash was then determined by XRF
(Rigaku, USA) using the metal oxide method. The carbon content of the ash was determined by CHNS
analysis (Thermo Scientific, USA) and used to correct the XRF component list.

For AAS analysis, 0.2 g of the sample were digested using the acid digestion method described
in Smith et al. [2]. Then, 10 ml hydrofluoric acid was used to remove the silica, before being taken to
dryness and re-digested in 10 ml hydrochloric acid to remove any residual fluorine. A combination of
nitric and sulphuric acid was used to remove residual organic material. The AAS was calibrated using
standard elemental stock solutions (Spectrosol, UK), and the calibration and extraction efficiency were
checked using certified biomass reference materials (Elemental Microanalysis, UK).

Fuel chlorine and sulphur were determined according to BS EN ISO 16994-2 using an oxygen
bomb (Parr, USA), distilled water as an aqueous absorption media and ion exchange chromatography
(Dionex, USA).

2.3.2. Organic Analysis, Combustion Properties and Ash Measurement

Carbon, hydrogen, nitrogen and oxygen content was measured using a Flash 2000 CHNS-0
analyser (Thermo Scientific, USA). The instrument was calibrated and checked using calibration
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standards and certified biomass reference materials (Elemental Microanalysis, UK). The residual
moisture within the biomass was determined using a moisture oven (Carbolite, UK) at 105 ◦C under
nitrogen in accordance with BS EN ISO 18134-3:2015, and the hydrogen and oxygen values were
corrected to account for residual moisture in accordance with ASTM D3180-15, with figures presented
on a dry basis (db). The ash content was determined at 550 ◦C using the methodology described in
BS EN ISO 18122:2015. The higher heating value (HHV) was calculated by the Dulong equation (see
Equation (2)). Volatile matter and fixed carbon were determined using a thermo-gravimetric analyser
(TGA) (Mettler Toledo, Switzerland), where 10 µg of the sample were heated to 900 ◦C at a ramp rate
of 25 ◦C min-1 in nitrogen, with a hold time at 105 ◦C and 900 ◦C before switching to air. Fuel burning
profiles were obtained using TGA (Mettler Toledo, Switzerland) by heating 10 µg of sample to 900 ◦C
at 10 ◦C min−1 and calculating the first derivative of the TGA.

HHV = (0.3383 * % Carbon) + (1.422 * % Hydrogen) − (% Oxygen/8). (2)

2.3.3. Prediction of Slagging and Fouling Propensity

The propensity of the fuels to slag and foul was assessed using the ash fusion test (AFT) and
via slagging and fouling indices. The AFT was performed using a Carbolite digital ash fusion
furnace in accordance with DD CEN/TS 15370-1:2006. Cylindrical test pieces were formed using a
dextrin binder (Sigma-Aldrich, USA), and the ash samples were heated from 550 ◦C to 1570 ◦C in
an oxidising atmosphere, with an air flow of 50 ml min−1. Images were taken at 5 ◦C intervals and
were subsequently analysed to identify changes in test piece shape, indicative of changes in the ash
properties, as described in the standard. The key temperature stages include (i) the beginning of the
shrinkage, (ii) sample deformation, (iii) hemisphere and (iv) flow temperature. Temperatures are given
to the nearest 10 ◦C in accordance with the standard. Typically, the deformation temperature is taken
as the onset temperature for slag-related issues, with deformation indicative of the ash becoming sticky
and the onset of ash removal issues. Lower onset temperatures suggest increased slagging propensity
along with potentially increased fouling propensity. The alkali index (AI), bed agglomeration index
(BAI) and base to acid ratio (R b

a ) are numerical indices based on the ash chemistry. These slagging and
fouling indices predict the likelihood of slagging and fouling during combustion, with the equations
and key values given in Table 1.

Table 1. Predictive slagging and fouling indices.

Slagging/Fouling Index Expression Limit

Alkali Index AI = Kg (K2O+Na2O)
GJ

AI < 0.17 safe combustion
AI > 0.17 < 0.34 probable slagging and fouling
AI > 0.34 almost certain slagging and fouling [31]

EQ.3

Bed Agglomeration Index BAI = %(Fe2O3)
%(K2O+Na2O)

BAI < 0.15 bed agglomeration likely [32] EQ.4

Base to Acid Ratio R b
a =

%(Fe2O3+CaO+MgO+K2O+Na2O)
%(SiO2+TiO2+ Al2O3)

R b
a < 0.5 low slagging risk [32] EQ.5

2.3.4. Volatile Component Analysis

Volatile component analysis was carried out using pyrolysis-GCMS (py-GCMS) (CDS analytical,
USA; Shimadzu, Japan) using a 60 m 0.25 mm RTX-1701 capillary column (Restek, UK). All the samples
were analysed in duplicate at a pyrolysis temperature of 550 ◦C using a heating rate of 20 ◦C ms−1, with
the pyroprobe configured in trap mode. The samples generated at 250 ◦C at different residence times
were analysed by sequential pyrolysis at temperatures of 250 ◦C, 400 ◦C and 600 ◦C, corresponding to
the observed changes in the first derivative weight loss profiles obtained by the TGA proximate and
oxidation programs.
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3. Results

3.1. Influence of Residence Time on the Bio-Coal Organic Chemistry

The yields, energy density and proximate and ultimate analysis of the bio-coals produced at
different residence times are presented in Table 2. The results show for both temperatures that
increasing the residence time increases the carbon density, reduces the oxygen density and increases
the energy density of the resulting bio-coal, with the highest energy density being observed for HTC
250 + 24 h. The results presented in Table 2 show that the bio-coal produced at 200 ◦C for 24 h has
similar properties to the bio-coal produced at 250 ◦C for a 0-h residence time. The Van Krevelen
diagram shown in Figure 1 plots the moisture corrected H/C and O/C atomic ratios and indicates
that a more ‘coal like’ material is obtained after 24 h at 200 ◦C than after 0 h at 250 ◦C. This result is
consistent with the calculated ‘severity factor’ given in Equation (1).

Table 2. Yields, energy density and proximate and ultimate analysis of bio-coals derived from differing
residence times.

Temperature Residence
% Dry Basis HHV

MJ/kg
Energy

Yield (%)
Yield Nitrogen Carbon Hydrogen Oxygen Ash

Volatile
Matter

Fixed
Carbon

Unprocessed 0.7 52.2 5.2 38.7 3.1 84.5 12.3 18.2

HTC 200

0 h 67 0.7 51.8 5.6 39.5 2.4 80.4 16.0 18.5 68
1 h 65 0.7 53.6 5.3 38.2 2.2 77.4 18.9 18.9 68
4 h 64 0.7 55.3 5.5 36.0 2.4 74.7 21.7 20.1 71
8 h 61 0.7 57.6 5.3 34.3 2.1 71.9 25.2 20.9 70
24 h 56 0.8 61.1 5.2 30.5 2.5 65.7 31.1 22.6 70

HTC 250

0 h 52 0.6 59.2 4.9 32.9 2.3 69.1 27.9 21.1 60
1 h 46 0.8 65.5 4.7 26.2 2.8 58.1 38.2 24.2 61
4 h 44 0.8 71.6 4.8 20.1 2.7 53.5 42.3 27.5 66
8 h 43 0.8 73.4 4.7 18.6 2.5 51.7 44.1 28.2 67
24 h 43 0.8 74.1 4.6 17.5 2.9 49.3 45.8 28.5 67Energies 2019, 12, 523 6 of 21 
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Figure 1. Van Krevelen diagram of the resulting bio-coals from the hydrothermal carbonisation
(HTC) of Miscanthus at (i) 200 ◦C and (ii) 250 ◦C for increasing residence time (0, 1, 4, 8 and 24 h
residence times).

It is important to recognise that while the energy density increases, the mass yields decrease,
predominantly due to the removal of oxygen from within the bio-coal. The results presented in Figure 1
suggest that dehydration is the predominant mechanism for oxygen and hydrogen removal with
increasing residence time. The decreasing yield of bio-coal affects the overall energy yield, which is
defined as the resulting bio-coal energy multiplied by the mass yield. The results in Table 2 show that
for the lower residence times of 0 and 1 h, the energy yields are around 68% and 60% for the 200 ◦C and
250 ◦C treatments, respectively. As the residence time increases between 1 and 4 h, the energy yield
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increases from 68% to around 70% at 200 ◦C and 60% to 67% at 250 ◦C, after which it remains relatively
constant with increasing residence time for both temperatures. Therefore, for the HTC treatment at
250 ◦C, there is a larger increase in energy yield associated with increasing the residence time from
0 to 4 h (cf., 60–67%). For the treatment at 200 ◦C, the overall energy yield is slightly higher, but
there is only a small increase in the energy yield observed by increasing residence time from 0 to 4 h
(cf., 68–70%).

Increasing the residence time also increases the fixed carbon content of the fuel, as shown in
Table 1. The results indicate that the fixed carbon content increases at a higher rate than the mass loss
of bio-coal for all the conditions with the exception of HTC at 200 ◦C at lower residence times of 0 and
1 h (HTC 200 + 0 h and HTC 200 + 1 h). For HTC at 200 ◦C, the increasing fixed carbon content of the
bio-coal indicates increasing condensation and repolymerisation of oligomers and monomers derived
from the hydrolysis of hemicellulose and cellulose. These are readily degraded at temperatures of
180 ◦C and 200 ◦C, respectively [33]. The lignin content of the bio-coals is closely linked with the
amount of fixed carbon in the raw biomass [34] and is likely to remain largely unaltered at 200 ◦C.
As lignin is a cross-linked phenolic polymer, its degradation is expected to occur at temperatures in
the range from 230 ◦C to 260 ◦C depending on the residence time [11–13]. Consequently the lignin
fraction in the bio-coals produced at 200 ◦C is likely to remain relatively intact with possibly only
limited removal of the hydroxy, methoxy and alkoxy functional groups associated with its benzene
units [35]. Accordingly, based on the literature, the fixed carbon within the low residence time HTC
200 + 0 h bio-coal is likely to be derived predominantly from lignin. With increasing residence time,
water insoluble humic substances, often referred to as humins, are formed from the degradation and
repolymerisation of cellulose and will make up a greater proportion of the fixed carbon [36]. These
humins, once aromatised, produce similar phenolic pyrolysis fragments to those produced from the
thermal degradation of lignin [35]. Pyrolysis GCMS of the bio-coals is shown for the 200 ◦C bio-coals in
Figure 2. The results indicate that with increasing residence time, there are increasing concentrations of
methyl furans (peaks 1 and 2) generated, which is consistent with humin formation via aldol addition
or condensation of hydroxymethylfurfural (5-HMF) and furfural-like compounds [37] prior to further
aromatisation [38]. Increasing the residence times also results in increasing concentrations of methyl
and ethyl phenols (peaks 5, 21, 23, 25, 26 and 30), which indicate an increase in aromatic structures
within the bio-coal. Interestingly, all 200 ◦C bio-coals contain levoglucosan (peak 38), a pyrolysis
product of starch and cellulose [39], indicating that the cellulose has not fully degraded at 200 ◦C, even
after 24 h.

For conversion at 250 ◦C at different residence times, the py-GCMS results are given in Figure 3.
These results indicate a change in chemistry, with the loss of the large levoglucosan peak (peak 38)
seen in all the HTC 200 ◦C, the HTC 250 + 0 h bio-coal and unprocessed feedstock (see Figures 2 and 3).
The results imply that the cellulose is predominantly degraded after 1 h at 250 ◦C (HTC 250 + 1 h)
although the presence of small amounts of levoglucosan in HTC 250 + 24 h suggests that even after
24 h processing a small amount of recalcitrant cellulose may still be present. The presence of a large
levoglucasan peak in HTC 250 + 0 h implies that while cellulose degrades at and above 200 ◦C [33],
shorter residence times still impose kinetic limitations, preventing its full removal.

Figure 4 presents the first derivative thermogravimetric (DTG) curve from the pyrolysis of
the 250 ◦C-treated bio-coals generated at different residence times. To better understand the
devolatilisation/pyrolysis behaviour, the samples were analysed by multistage sequential pyrolysis
using py-GCMS. The sequential pyrolysis results are shown in Figures 5–7 for the compounds evolved
at 250 ◦C, 400 ◦C and 600 ◦C, respectively. Figure 5 indicates that the compounds desorbed at 250 ◦C
from the raw Miscanthus are significantly different from those from the bio-coals generated at 250 ◦C.
The peaks identified for the bio-coals include methyl-cyclopenten-1-one (peak 6), benzofuran (peak
12) and a series of phenols and methyl-phenols (peaks 13 to 18), while the raw Miscanthus produces
methylfurfural (5 methyl-2-furancarboxaldehyde) (peak 11) and ethylguaiacol (4-ethyl-2-methoxy
phenol) (peak 19). The phenolic compounds desorbed from the bio-coals are often associated with
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the thermal decomposition of lignin; however, such compounds are not seen in the py-GCMS
chromatograms from the raw Miscanthus until between 400 and 600 ◦C (see Figure 7). This would
suggest that these phenolic fragments originate from hydrolysed lignin, liberated by the hydrothermal
process. Alternatively, they could be derived from aromatised and repolymerised material generated
in the hydrothermal process, such as humin products from aldol addition or condensation of 5-HMF
and furfural [37]. With increasing residence time, the phenolic compounds also appear to change,
with the more functionalised phenols, such as methyl-propyl phenol (peak 21) and vanillin (phenolic
aldehyde) (peak 24) present after shorter residence times reducing, with a corresponding increase in
phenol (peak 13), methyl phenol (peak 14), cresol (peak 17) and ethyl phenol (peak 18).Energies 2019, 12, 523 7 of 21 
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Figure 2. Pyrolysis GCMS spectra of volatile organics evolved at 550 ◦C from bio-coals treated at
200 ◦C with varying residence times. ((1) 2-methyl furan; (2) 2,5 dimethyl furan; (3) propanediol;
(4) toluene; (5) 3-methyl phenol; (6) pentanoic acid; (7) cyclopentanone; (8) butanediol; (9)
dimethylpyrazole; (10) 2-furanmethanol; (11) ethylhexaldehyde; (12) 1,3 dimethylcyclopenten-3-one;
(13) cyclopentadione; (14) 2-furan carboxadehyde; (15) 1methyl-1-cyclopenten-3-one; (16) furanone;
(17) amino-3-pyridinol; (18) 3-methyl cyclopentanedione; (19) phenol; (20) 2-methoxyphenol; (21)
2-methyl phenol; (22) 2-cyclopenten-1-one: (23) 4-methyl phenol; (24) creasol; (25) 4-ethyl phenol; (26)
4-ethyl-2methoxy phenol; (27) dihydrobenzofuran; (28) 4-hydro-3-methyl acetophenone; (29) eugenol;
(30) 2,6, dimethoxyphenol; (31) isoeugenol; (32) triethoxybenzene; (33) vanillin; (34) trimethoxytoluene;
(35) dimethoxy acetophenone; (36) trimethylacealdehyde; (37) methoxy eugenol; (38) levoglucasan).
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Figure 3. Pyrolysis GCMS spectra of volatile organics evolved at 550 ◦C from bio-coals treated at
250 ◦C with varying residence times. ((1) 2-methyl furan; (2) 2,5 dimethyl furan; (3) propanediol;
(4) toluene; (5) 3-methyl phenol; (6) pentanoic acid; (7) cyclopentanone; (8) butanediol; (9)
dimethylpyrazole; (10) 2-furanmethanol; (11) ethylhexaldehyde; (12) 1,3dimethylcyclopenten-3-one;
(13) cyclopentadione; (14) 2-furan carboxadehyde; (15) 1methyl-1-cyclopenten-3-one; (16) furanone;
(17) amino-3-pyridinol; (18) 3-methyl cyclopentanedione; (19) phenol; (20) 2-methoxyphenol; (21)
2-methyl phenol; (22) 2-cyclopenten-1-one; (23) 4-methyl phenol; (24) creasol; (25) 4-ethyl phenol; (26)
4-ethyl-2methoxy phenol; (27) dihydrobenzofuran; (28) 4-hydro-3-methyl acetophenone; (29) eugenol;
(30) 2,6, dimethoxyphenol; (31) isoeugenol; (32) triethoxybenzene; (33) vanillin; (34) trimethoxytoluene;
(35) dimethoxy acetophenone; (36) trimethylacealdehyde; (37) methoxy eugenol; (38) levoglucasan).
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Figure 4. First derivative thermogravimetric (DTG) for the devolatilisation of bio-coals carbonised at
250 ◦C with varying residence times.
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Figure 5. Volatile organics evolved below 250 ◦C from bio-coals generated at 250 ◦C with varying
residence times. ((1) pentenol; (2) acetic acid; (3) dihydro-dioxin; (4) propanoic acid methyl esther;
(5) furfural; (6) 2-methyl-2-cyclopenten-1-one; (7) ethanone; (8) cymene; (9) furancarboxyldehyde;
(10) 5 methyl-2-furancaboxaldehyde; (11) dimethoxybutedimine; (12) benzofuran; (13) phenol; (14)
2-methyl phenol; (15) 4-methyl phenol; (16) cresol; (17) 4-ethyl phenol; (18) 4-ethyl-2-methoxy phenol;
(19) 2-methoxy-N-N-dymethyl benzoamine; (20) 2-methoxy-4-propyl phenol; (21) 2,6 dimethyl phenol;
(22) eugenol; (23) trimethoxybenzene; (24) vanillin; (25) 2-furyl-5-methyl furan; (26) aethallymal; (27)
4-hydroxy-3,5-dimethyoxy benzaldehyde; (28) methoxyeugenol).

Figure 6 shows the volatile organic fragments evolved by py-GCMS between 250 ◦C and 400 ◦C
for the raw biomass and the HTC bio-coals generated at 250 ◦C at different residence times. While
there are some common compounds in all of the chromatograms, for example phenol (peak 16),
2-methoxy phenol (peak 17), 2,3-dihydro benzofuran (peak 21), 4 hydroxy-3-acetophenone (peak 22)
and 2,6 dimethyl phenol (peak 24); generally, the raw Miscanthus has a different fragment profile to
the bio-coal. HTC 250 + 0 h displays some common peaks with the raw Miscanthus (acetic acid (peak
a), isobutylacetic acid (peak d), 2-methoxybutenol (peak e), pyrolidethylamine (peak f), propanediol
(peak g), furfural (peak h), furanmethanol (peak i), cyclopentanone (peak 11) and levolglucosan (peak
o)), as well as the phenolic and furfural peaks associated with 250 ◦C bio-coals with longer residence
times. The desorption of compounds common with raw Miscanthus and HTC 250 + 0 h but not present
in 250 ◦C bio-coals with longer residence times, would suggest that the HTC 250 + 0 h bio-coal is
only partially carbonised and is still undergoing hydrolysis. The presences of cyclopentanone (peak
11) in HTC 250 + 1 h and absence in the bio-coals with longer residence times indicates that the
bio-coal is still undergoing aromatisation after one hour. With increasing residence time, the results
show a reduction in methyl furan and dimethyl furans present in HTC 250 + 0 h and HTC 250 + 1 h
and an increase in aromatisation forming methyl and ethyl phenols (peaks 5, 21, 23, 25, 26 and 30).
These furanic compounds are likely dehydrated fragments derived from recalcitrant cellulose still
undergoing hydrolysis after an hour residence time. The reduction in furanic compounds and increase
in phenols with increasing residence time suggest they are becoming aromatised to the methyl and
ethyl phenols, through aldol addition or condensation, keto-enol tautomerism and intermolecular
dehydration [37,38] and not replaced due to depletion of cellulose.
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Figure 6. Volatile organics evolved between 250 ◦C and 400 ◦C from bio-coals generated at
250 ◦C with varying residence times. ((1) 2, methyl furan; (2) 2-propenoic acid 2-hydroxy ethyl
esther; (3) 2,5 dimethyl furan; (4) toluene; (5) 4 methyl phenol; (6) methyl-3-octyne; (7) dimethoxy
butane; (8) cyclohexanol; (9) cyclopenten-1-one; (10) acetylfuran; (11) cyclopentanone; (12)
methylcyclopenten-3-one; (13) benzenediol; (14) 3-methyl cyclopentanone; (15) phenol; (16) 2-methyl
phenol; (17) 4-methyl phenol; (18) cresol; (19) 4-ethyl phenol; (20) 4-ethyl-2-methoxy phenol; (21)
2,3-dihydro benzofuran; (22) 4 hydroxy-3-acetophenone; (23) eugenol; (24) 2,6 dimethyl phenol;
(25) eugenol; (26) 2 dihydro-2-methyl benofuran; (27) isoeugenol; (28) trimethoxybenzene; (29)
trymethoxy-5-methyl benzene; (30) acetophenone; (31) dimethoxy phenone; (32) methoxyeugenol;
(a) acetic acid; (b) dihydrodioxin; (c) bioxirane; (d) isobutylacetic acid; (e) 2-methoxybutenol;
(f) pyrolidethylamine; (g) propanediol; (h) furfural; (i) furanmethanol; (j) furanone; (k)
dimethoxybutanamine; (l) cyclopent-1-one; (m) ethyl-2-hydroxy cyclopenten-1-one; (n) dimethyl
heptane; (o) levoglucasan).

The presence of large levoglucasan peaks in the py-GCMS chromatogram at 400 ◦C and
600 ◦C shown in Figures 6 and 7 indicate the presence of cellulose within the raw Miscanthus and
HTC 250 + 0 h. This analysis would suggest that the larger devolatilisation peaks on the DTG curves,
for the raw Miscanthus and HTC 250 + 0 h (shown in Figure 4) will predominantly be due to the
decomposition of cellulose for HTC 250 + 0 h and hemicellulose and cellulose in the case of the raw
Miscanthus. Table 3 suggests that the alkali metals reduce after HTC and further reduce with increasing
residence time. The difference in the peak devolatilisation temperatures between the raw Miscanthus
and HTC 250 + 0 h in Figure 4 is most likely due the reduction alkali metal content influencing the
temperature the cellulose decomposes [40–44]. The 400 ◦C and 600 ◦C py-GCMS data (Figures 6 and 7)
indicate that beyond HTC 250 + 4 h, the devolatilisation characteristics of the 4, 8 and 24 h 250 ◦C
bio-coals are all similar. The similar decomposition products for the 4, 8 and 24 h 250 ◦C bio-coals
would suggest the increasing peak devolatilisation temperature with increasing residence time, shown
in Figure 4, maybe as a result of the removal of calcium, which can also catalyse devolatilisation, albeit
to a lesser extent than the alkali metals, as opposed to changes in organic content [44–46]. It should be
noted that the py-GCMS will not detect gaseous compounds in trap mode, and so, carbon monoxide,
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carbon dioxide and other gaseous products devolatilised will not be detected but will account for at
least part of the weight loss.
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Figure 7. Volatile organics evolved between 400 ◦C and 600 ◦C from bio-coals treated at 250 ◦C
with varying residence times. ((1) Ethylcyclobutane; (2) Pentane; (3) Amino methyl propanol; (4) 2,
methyl furan; (5) 2 ethyl butanal; (6) 2,5 dimethyl furan; (7) Valeric acid; (8) Octene; (9) Toluene;
(10) Ethanone; (11) Trimethylimidazole; (12) Undecyonic acid methyl esther; (13) Ethylbenzene; (14)
Xylene; (15) P-xylene; (16) 2-Cyclopenten-1-one; (17) Methyltoluene spp.; (18) Methyl cyclopentanone;
(19) Triethylbenzene; (20) Fumeric acid ethyl esther; (21) Methoxy methyl benzene; (22) Indene;
(23) 3-Methylcyclopenten-1-one; (24) 1-ethyl-4-methoxy benzene; (25) Acetonitrile benzene; (26)
phenol; (27) 2-methyoxy phenol; (28) 2-methyl phenol; (29) Dimethyl phenol; (30) Cresol; (31)
Creasol; (32) 2-ethyl phenol; (33) Ethylguaiacol; (34) 5-ethyl cresol; (35) 2,3 Dihydrobenzofuran;
(36) 4-hydoxy-2-methylacetophenone; (37) Dioxybezene; (38) Dimethoxy phenol; (39) Eugenol; (40)
Trimethoxybenzene; (41) Levolgucasan; (a) Cyclopentenone; (b) Hydroxy-3-methyl cyclopenten-1-one).

The py-GC-MS fragment profiles for compounds released between 400 ◦C and 600 ◦C is shown in
Figure 7. At this temperature, the fragments from the lignin fraction within the raw Miscanthus start
to devolatilise, and the six profiles look distinctly similar, with largely phenolic compounds evolved.
Slight differences include a large levoglucasan peak (peak 41) particularly prevalent for HTC 250 +
0 h and the presence of cyclopentenone (peak a) and hydroxy-3-methyl cyclopenten-1-one (peak b),
being present in both raw Miscanthus and HTC 250 + 0 h. For the longer-residence-time samples, there
are increasing quantities of benzo-alcohols and phenolic acids formed. While this analysis has been
undertaken on Miscanthus, the chemical pathways and fragmentation profiles should be applicable to
most lignocellulosic-based biomasses.
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Table 3. Inorganic and heteroatom analysis of bio-coals derived from differing residence times and the
corresponding slagging and fouling indices.

Temperature Residence
mg/kg (Dry Basis)

AI BAI R b
a

Na Mg Al Si P S Cl K Ca Mn Fe

Unprocessed 520 920 30 6890 700 1130 3590 3030 3530 110 40 0.27 0.01 0.78

HTC 200

0 h 100 540 80 6550 290 690 2710 1120 4060 50 90 0.08 0.08 0.58
1 h 150 400 70 6150 350 750 1760 1130 2800 50 120 0.08 0.09 0.49
4 h 120 480 110 6620 610 970 1650 900 4030 70 110 0.06 0.12 0.55
8 h 140 470 60 6960 670 880 1370 840 3780 80 50 0.06 0.05 0.50
24 h 190 470 100 7610 690 1170 1530 740 3630 60 100 0.06 0.10 0.44

HTC 250

0 h 140 440 120 6320 710 1290 3500 920 3100 70 110 0.06 0.11 0.48
1 h 90 530 190 7840 1150 1130 1720 1040 5280 80 140 0.05 0.14 0.57
4 h 120 460 120 6770 1100 1230 2010 890 3570 80 120 0.05 0.12 0.49
8 h 110 350 110 6000 1290 1020 1510 650 2180 90 90 0.04 0.12 0.37
24 h 130 370 140 8080 1090 1070 1760 850 1450 70 130 0.04 0.14 0.24

3.2. Influence of Residence Time on the Bio-Coal Inorganic Chemistry

The levels of metals, phosphorus, chlorine and sulphur in the resulting bio-coals are presented
in Table 3. HTC treatments at 200 ◦C result in an initial decrease in inorganics shown by a reduction
in the ash content (Table 2), reducing from 3.1 wt.% (db) for the raw Miscanthus to 2.4 wt.% (db) for
HTC 200 + 0 h. At longer residence times, the ash content does not significantly alter; however, the
composition of the ash does change, as shown in Table 3. The main change is an increase in the level of
silicon, while the level of potassium continues to decrease with increasing residence time.

Phosphorus is initially extracted into the process water at HTC 200 + 0 h but then re-incorporates
into the bio-coal with increasing residence time. The same trend is observed with temperature, with
lower temperatures favouring the extraction of phosphorus and higher temperature HTC resulting
in the re-incorporation of phosphorus back into the bio-coal. A similar trend is observed for sulphur,
while the inverse is shown for chlorine, which is further reduced with increasing residence time.
Sulphur is known to be incorporated into hydrothermal carbon via Maillard reactions (albeit not by the
Schiff base route) [47,48], which suggest that these Maillard reactions are favoured by longer residence
times. Chlorine, on the other hand, exists within biomass in the form of water soluble ionic salts (NaCl,
KCl, CaCl2, MgCl2 and ionic chlorides (Cl-)) [49,50], and its removal appears to be dependent on the
removal or retention of metal cations.

There is only limited removal of calcium, which is enhanced within the bio-coal. It is possible that
the chloride is retained within the bio-coal through association with this calcium. It is also possible
that the sodium, potassium and magnesium are forming salts with the organic acids, such as acetate
and formate, derived from the decomposition of monosaccharides [51,52]. In this instance, the residual
chlorine is being retained through the formation of weak chlorine–hydrogen interactions on the char
surface [53]. These results support the findings in Smith et al. [2] and indicate that the reduction in
chlorine content during HTC is less than that observed in comparable washing experiments, which
reduce chlorine by between 85% and 100% removal [54–56]. This suggests that there may be other
underlying roles for chlorine during HTC. Chlorine is rarely analysed in the HTC literature, as accurate
quantification using methods such as XRF are not possible. It is subsequently assumed by authors
that during HTC, most of the chlorine within the biomass is extracted, as is demonstrated in washing
experiments, but these results would suggest that this is only partly true. Given the importance of
chlorine in terms of deposit formation (fouling), corrosion and dioxin formation [57,58], further work
on this is required.

Ash stability is an important consideration during combustion as the ash composition influences
the tendency of the fuel to slag, foul, corrode and bring about bed agglomeration in fluidised bed
reactors [57]. Slagging is a phenomenon brought about though the melting of ash when it is exposed
to radiant heat, such as flames in a furnace. Most furnaces are designed to remove ash as a powdery
residue, so an ash with a high ash melting temperature is desirable. Low-temperature melting ashes
can undergo softening or melting within the furnace, and this can make ash removal difficult, bringing
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about operational issues. Bed agglomeration is similar to slagging but is an issue specific to fluidised
bed furnaces and comes about through high levels of potassium silicates within the ash. These
potassium silicates melt and lead to the adhesion of the bed material [59]. For slagging and bed
agglomeration, the temperature at which the ash melts and fuses is strongly influenced by the alkali
and alkaline metals. Alkali metals act as a flux for alumina-silicate ash, lowering melting temperature,
while the alkaline earth metals tend to increase melting temperatures. Fouling is brought about
when potassium and sodium, often in combination with chlorine, partially evaporate and form alkali
chlorides, which condense on cooler surfaces, such as heat exchangers [57].

The data in Table 3 shows that with increasing residence time, the ash becomes predominantly
calcium–silicon based, which should improve ash stability. Similarly, the reincorporation of phosphorus
into the char should further increase ash stability. The increased silicon content along with decreased
potassium chloride content within the bio-coal should also further reduce the fuels’ fouling propensity,
as silicon oxide can also react with potassium chloride forming potassium silicates (see Equation (3))
and abating the formation of gaseous potassium chloride [60–62]. This will be further aided by the
phosphorus and calcium (see Equation (4)–(6)) [63–65]. Consequently the changes in inorganic and
heteroatom chemistry with increasing residence time should reduce the fouling and the corrosion
propensity of the fuel, increasing efficiency and reducing maintenance [58,66].

SiO2 + 2 KCl + H2O→ K2O·SiO2 + 2 HCl(g) (3)

KCl(g) + 2 CaHPO4·2H2O→ 2 CaKPO4 + 2 H2O + HCl(g) (4)

4 KCl(g) + 2 CaHPO4·2H2O + O2 → 2 K2PO4 + 5 H2O + 2 CaCl2 (5)

K2PO4 + 2CaO→ 2 CaKPO4 + O2. (6)

Figure 8 shows the ash transition temperatures of the 200 ◦C bio-coals with increasing residence
time. The results show that as the residence times increase, the deformation temperature increases
up to HTC 200 + 8 h. For HTC 200 + 24 h, the ash deformation temperature (and hemisphere
and flow temperature) decrease compared with HTC 200 + 8 h. The reduction in the deformation
temperature for HTC 200 + 24 h is due to an increase in silicon concentration within the fuel, while
the concentration of calcium reduces, altering the silicon-to-calcium ratio and the associated higher
ash melting temperatures. The removal of the calcium at longer residence times could be due to the
presence of increased formic and acetic acids produced under increasing residence time, with the
acid leaching the calcium. This result suggests that with increasing residence time at 200 ◦C, there is
an improvement in fuel slagging propensity, up to a point, after which the organic acids generated
within the process lead to the increased removal of calcium and the enhanced stability brought about
by the calcium. It is also possible that after 8 hours, the continued dehydration of the bio-coal (see
Figure 1) is reducing the oxygen functional groups on which calcium can bind, reducing the residence
of calcium within the fuel. It is unclear whether it is these organic acids generated that are catalysing
the dehydration of the fuel.

The results for the 250 ◦C treatments yield similar results to the 200 ◦C treatments, with the
inorganic chemistry similar for HTC 200 + 0 h and HTC 250 + 0 h. Silicon is generally seen to
increase with increasing residence time; whereas calcium content remains reasonably constant in the
200 ◦C treatments, calcium content decreases with increasing residence time in the 250 ◦C treatments.
Organic acid content within the process water increases with time, so it is likely that the increased
calcium leaching with time is, in part, due to the extraction by the organic acids created as part of the
process [49,50]. The pH of the process water remains relatively stable for all runs, with a pH of 3.3
for 250 ◦C. This implies that the process water chemistry is buffered against the increasing organic
acids. Phosphorus steadily increases with increasing residence time, although there is not the initial
decrease seen in the 200 ◦C treatments, which imply that phosphorus is released on heating and is then
reincorporated quickly into the bio-coal. Sulphur remains reasonably stable in the 250 ◦C treatments,
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with a slight decrease with increasing residence time. The sulphur content is, however, higher in the
250 ◦C treatments than in HTC 200 + 24 h, which implies that sulphur released on heating appears to
be re-incorporated at 250 ◦C. Similarly, for the 250 ◦C treatments, the chlorine content steadily declines
with increasing residence time, with the chlorine content slightly higher than the 200 ◦C treatments.
While the chlorine content is slightly higher in the corresponding 250 ◦C treatments, the fuels’ higher
energy content will offset the higher chlorine content.
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Figure 8 shows the ash transition temperatures for the 250 ◦C bio-coals, and similar to the
200 ◦C bio-coals, the ash fusion temperature increases with increasing residence time. A deformation
temperature of 1330 ◦C was achieved after a 1-h residence at 250 ◦C, with the equivalent deformation
temperature not achieved until between 4 and 8 h at 200 ◦C. The results suggest that the severity
factor given in Equation 1, developed by Overend and Chornet [30] to characterise the hydrolytic
depolymerisation of wood, may also apply to the fuels’ slagging propensity. While the 250 ◦C
treatment produces a moderate improvement in deformation temperature and thus the safe combustion
temperature, it should be noted that there is a more substantial increase in the hemisphere and flow
temperature. This is evident in HTC 250 + 4 h and the subsequent treatments, for the samples reach the
furnace limit, at 1570 ◦C, without melting. This would be beneficial for combustion, as it would mean
that even if the ash is exposed to heat exceeding the deformation temperature, ash melting would still
be unlikely, further reducing the fuel slagging potential.

Table 3 presents the slagging and fouling indices, which are based on the total alkali content of
the fuel [56]. The results given in Table 3 show that the alkali index (AI) predicts probable slagging and
fouling. The AI indicate that all the hydrothermally treated fuels should be safe to combust without the
issues associated with slagging and fouling. The results indicate that for both the 200 ◦C and 250 ◦C
HTC bio-coals, the slagging and fouling propensity progressively reduces with increasing residence
time. The base to acid ratio (R b

a ) indicates a similar trend. The bed agglomeration index (BAI) indicates
a progressive improvement in the fuels’ agglomeration behaviour with increasing residence time,
but due to the low iron content within the initial biomass and resulting bio-coals, bed agglomeration
appears likely. Iron normally accumulates within the bio-coal, and so, bed agglomeration could
be overcome through the blending and addition of a higher iron feedstock within the HTC process,
increasing the overall iron content within the bio-coal. The Miscanthus used in this study has a relatively
high silicon content when compared with other biomass types (see Smith et al. [15]). Silicon will
influence the fuels’ propensity to slag, foul and corrode, as discussed, so some caution is needed when
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applying these findings to low-silicon-containing biomasses, such as willow (Salix spp.). Nonetheless,
the observed behaviour of the alkali metals, phosphorus, chlorine, sulphur and calcium should be
applicable to most lignocellulosic biomasses.

In the HTC method used, there was no additional washing of the bio-coals, and the bio-coal
was filtered from the process water and allowed to dry prior to analysis. The process waters will
typically contain metals and chlorides extracted as part of the process, and there is potential for residual
metal and chlorine containing process water to be left within the char. Additional leaching of these
alkali metals and chlorine maybe possible with the incorporation of an additional washing step post
carbonisation. This should further enhance the removal of alkali metals and chlorine and further
reduce fouling propensity, if required. The impact of an additional water treatment on the energy
content and energy yields has not been assessed in this instance, nor have water treatment options
such as anaerobic digestion been considered.

3.3. Influence of Residence Time on the Bio-Coal Combustion Behaviour

HTC bio-coal is considered to be a coal substitute fuel for combustion in coal-powered power
plants, as it can enable the utilisation of the existing infrastructure. When doing this, it is important
to achieve flame stability to sustain the flame and ensure safe boiler operation [67]. Lignocellulosic
biomass contains a higher volatile fraction and a much smaller char fraction than those seen in coals;
moreover, 70% of the heat output is associated with volatile combustion for biomass, and 36% of the
total heat output is associated with volatile combustion for coal [68]. When burning higher rank coals in
pulverised fuel applications, coals undergo heterogeneous ignition, whereby devolatilisation, ignition
and combustion of the volatiles and char oxidation/combustion occur almost simultaneously [69].
Biomass, along with high volatile coals, undergoes a process called homogeneous ignition, which
begins with the ignition of the volatiles and oxygen close to the particle surface. Once ignited, a gas
flame surrounds the particle and prevents oxygen from reaching and igniting the char [69]. This
brings about two-phase combustion and may allow the particles to become entrained in the gas stream
and move higher in the furnace while burning, bringing about flame instability [70]. In this instance,
the rate of burning (flame velocity) may not match the rate of the material feed, and if these are not
matched, the flame will either blow off or flash back [67]. Thermo-gravimetric analysis (TGA) is
one method originally developed by Babcock and Wilcox for comparing and evaluating fuels and
calculating the first derivative thermogravimetric (DTG) curve and enabling easy comparison between
burning characteristics [70]. When undertaking this test, five characteristic temperatures are typically
interpreted. The first is the volatile initiation temperature where the weight loss begins; the second
temperature is peak volatile burn; the third temperature is the char initiation temperature due to the
onset of char combustion; the fourth peak is peak char burn temperature; and the fifth is the burn-out
temperature where the weight is constant, indicating the completion of combustion [70].

Figure 9b shows the burning profile for the 200 ◦C hydrothermally treated fuels, while Figure 9a
shows the burning profile of the raw Miscanthus and a reference coal for comparison. The first main
change is the change in the onset of the volatile initiation temperature, which is delayed from 190 ◦C
to 270 ◦C, due the removal of hemicellulose in all the treatments [71]. The removal of the alkali
metals, which are known to catalyse the decomposition of biomass [40], most likely delay the volatile
burn peak temperature and the fixed carbon peak temperature for HTC 200 + 0 h. As residence time
increases, the volatile burn peak temperature appears to advance, despite no notable increase in alkali
and alkaline earth metals within the fuel, which are known to have significant catalytic influence on
devolatilisation [46]. Consequently, the increase in reactivity could be due to changes in the nature of
the volatile matter as opposed to a shift in catalytic behaviour. Figure 2 shows that with increasing
residence time, there is a change in the composition of the volatile organics evolved, and similarly,
Figure 5 shows that hydrothermal treatment results in the formation and volatilisation of 2-methyl
phenol, 4-methyl phenol, 4-ethyl phenol, 2,6 dimethyl phenol and vanillin, amongst others, at a
pyrolysis below 250 ◦C.
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and bituminous reference coal (Elemental Microanalysis B2306, batch 203830); (b) Miscanthus
hydrothermally treated at 200 ◦C with varying residence time and (c) Miscanthus hydrothermally
treated at 250 ◦C with varying residence time.

It should be noted that in the case of the 200 ◦C bio-coals and raw Miscanthus, the peak temperature
is on the volatile burn as opposed to char combustion, seen in the coals and 250 ◦C bio-coals (excluding
HTC 250 + 0 h). Increasing the residence time results in an increase in the onset of char combustion.
This fits with the proximate analysis given in Table 2, which shows a decrease in volatile matter
and an increase in fixed carbon with residence time. This trend continues with the 250 ◦C bio-coals
shown in Figure 9c. In Figure 9c, the burning profile changes quickly from two distinct volatile and
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char burn peaks, as seen for HTC 250 + 0 h, to a ‘coal like’ single-stage combustion profile. With
increasing residence time, the volatile peak becomes increasingly less distinct, and by HTC 250 + 24 h,
the start of the char burn is marked more by an increase in the rate of weight loss as opposed to the
commencement of a second peak.

For all the hydrothermally derived fuels, the volatile initiation temperature on the DTC curves
are around 270 ◦C, and the char initiation temperature increases slightly from 380 ◦C for HTC 250 +
0 h to 390 ◦C for HTC 250 + 1 h to HTC 250 + 24 h. The inverse is observed for the 200 ◦C bio-coals.
Peak temperature (char burn) also appears to increase from 390 ◦C for HTC 250 + 0 h to 460 ◦C for
HTC 250 + 4 h to HTC 250 + 24 h. Burnout temperature initially advances from 530 ◦C observed in the
200 ◦C bio-coals to 580 ◦C, which is consistent for HTC 250 + 1 h to HTC 250 + 24 h. The reference
coal burns at a higher temperature than that observed for the bio-coal, albeit with a similar burning
curve to that of the longer-residence-time 250 ◦C bio-coal. The volatile initiation temperature is around
325 ◦C, with the char initiation temperature around 460 ◦C, a peak temperature around 550 ◦C and
a burnout temperature at 650 ◦C. The lower fuel characteristic temperatures of the 250 ◦C bio-coals
can, nevertheless, be beneficial, as this will promote early ignition of the total fuel mass, especially
when co-fired, leading to better and more complete combustion. This early ignition, in turn, can
also be beneficial for nitrogen oxide emissions, as it will consume additional oxygen, increasing the
fuel-staging effects of low-NOx burners and lowering NOx emissions [70].

It should be noted, that while increasing the severity factor for HTC appears to offer greater
flame stability through a more coal-like burning profile, fuel particle size is also an equally important
parameter. Flame instability can be further influenced by differences in particle size, as large particle
sizes can act as heat sinks, increasing the residence time of the particle before ignition and influencing
the balance of heat loss and heat release. For a stable flame in a pulverised coal burner, pulverisation
of the fuel to 70% below 75 µm is typically required [67]. The ease in which fuels can be pulverised
to 70% below 75 µm is described using the Hardgrove grindability index (HGI) [72]. Coals typically
lie between 30 (increased resistance to pulverisation) and 100 (more easily pulverised) on the scale.
In Smith et al. [2], a HGI value of 25 was demonstrated for HTC 200 + 1 h Miscanthus, while a HGI
value of 150 was demonstrated for HTC 250 + 1 h Miscanthus. This result would suggest that the
200 ◦C samples should pulverise if burnt in a pulverised fuel plant. Similarly, the HGI will increase
with reaction severity due to decomposition, removal and re-polymerisation of the fibrous cellulose
that provides strength to the biomass. An HGI of 25 represents a fuel that can pulverise in a similar
manner to that of a high-resistance coal. An HGI of 150 would imply that the fuel will easily pulverise,
and there should be limited issues with flame stability. The lower volatile initiation temperature of
the bio-coals would, to a certain extent, allow for larger particle diameter, as heat loss due to the
greater heat sink brought about through the larger particle would be balanced by the earlier heat
release when using an appropriate system [2]. The findings of this section should be applicable to
most lignocellulosic-based biomasses.

4. Conclusions

Miscanthus was hydrothermally carbonised at 200 ◦C and 250 ◦C with varying residence times
from 0 to 24 h to better understand the influence residence time has on the inorganic and combustion
chemistry of bio-coal derived from lignocellulosic biomasses. Increasing residence severity brings
about increased dehydration of the fuel, although temperature is the more important variable, with
the HTC 200 + 24 h having similar properties to that of the HTC 250 + 0 h bio-coal. After 1 h, the
250 ◦C bio-coal continues to dehydrate, with evidence of repolymerisation of hydrothermally derived
aromatics being observed at increased residence time. By 1 h, most of the cellulose has decomposed at
250 ◦C, although levoglucosan is observed in small quantities at 24 h using analytical pyrolysis.

The dehydration, repolymerisation and cellulose removal at 250 ◦C brings about a more ‘coal
like’ combustion profile, with decreasing reactivity with increasing residence time. This should aid
combustion in existing pulverised coal power plants. Alkali metals are extracted at low residence
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times and appear to further decrease with increasing residence time. Phosphorus and sulphur appear
to undergo substantial extraction at HTC 200 + 0 h but are re-incorporated with increasing residence
time. Fuel chlorine is reduced with increasing residence time. Silicon content increases within the
bio-coal with increasing severity, while calcium appears to reduce within the 250 ◦C bio-coals after 1 h
and is thought to be linked to organic acid leaching. Increasing the reaction severity brings about a
decrease in fuel fouling and slagging propensity, as demonstrated by the ash fusion test and various
slagging and fouling indices.

Overall, the results suggest that in order to get complete dehydration and aromatisation of a
lignocellulosic biomass, operating temperatures around 250 ◦C are required. At 250 ◦C, residence times
in excess of 1 h and up to 4 h are required to fully hydrolyse the feedstock and enable polymerisation
and aromatisation reactions to near completion. Increasing the reaction temperature above 250 ◦C may
reduce the required residence time, but residence at temperature may still be required to enable the
polymerisation and aromatisation reactions to go to completion.
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