

This is a repository copy of Threshold Analysis as an Alternative to GRADE for Assessing Confidence in Guideline Recommendations Based on Network Meta-Analyses.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/143486/

Version: Accepted Version

Article:

Phillippo, David, Dias, Sofia orcid.org/0000-0002-2172-0221, Welton, N J et al. (3 more authors) (2019) Threshold Analysis as an Alternative to GRADE for Assessing Confidence in Guideline Recommendations Based on Network Meta-Analyses. Annals of Internal Medicine. ISSN: 0003-4819

https://doi.org/10.7326/M18-3542

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supplementary Tables

Supplementary Table 1: Thresholds for the social anxiety example for each contrast on the standardised mean difference (SMD) scale, sorted to show contrasts with smallest thresholds first. Only contrasts with SMD less than 2 are shown here; the full set can be obtained by running the R code provided in the supplementary material. NT = no threshold in this direction.

			T	Thresholds and new optimal				
				treatments				
Contrast				Lower	Upper			
41	vs.	31	-	NT	0.46	36		
41	vs.	23	-	NT	0.47	36		
36	vs.	1	36	-0.48	15.17	7		
36	vs.	16	36	-0.57	5.60	16		
36	vs.	24	36	-0.69	6.34	25		
41	vs.	2	-	NT	0.83	36		
17	vs.	2	17	-0.86	51.18	12		
13	vs.	2	13	-0.89	140.10	4		
39	vs.	18	39	-0.94	3.96	36		
38	vs.	21	38	-0.95	3.92	36		
18	vs.	2	39	-0.96	9.32	36		
23	vs.	2	23	-1.88	0.98	36		
36	vs.	2	36	-1.02	35.15	18		
16	vs.	2	36	-1.03	17.80	12		
19	vs.	2	19	-1.06	30.23	23		
25	vs.	24	25	-1.11	554.79	39		
31	vs.	8	31	-13.74	1.15	36		
34	vs.	1	34	-1.19	102.31	5		
31	vs.	1	31	-15.58	1.20	36		
32	vs.	30	32	-1.33	5.90	36		
11	vs.	2	11	-1.42	856.47	34		
9	vs.	2	9	-1.43	46.88	36		
40	vs.	35	40	-1.48	3.17	36		
30	vs.	24	30	-8.78	1.49	36		
15	vs.	2	15	-1.52	49.81	23		
22	vs.	2	22	-1.54	6.18	18		
8	vs.	1	8	-1.98	1.55	36		
8	vs.	6	8	-13.19	1.57	6		
37	vs.	30	37	-1.74	7.20	36		
8	vs.	7	8	-17.10	1.75	7		
31	vs.	23	36	-1.79	2.11	23		
21	vs.	2	21	-1.80	11.17	36		
12	vs.	2	12	-1.97	59.88	36		

Supplementary Table 2: Contrast level thresholds for the headaches example, in headache days per month. NT = no threshold in this direction.

		Threshol	Thresholds and new optimal treatments					
Contrast			Lower	Upper				
2 vs.	1	2, 3, 6, 7	-0.17	NT	-			
4 vs.	1	3, 4, 6, 7	-0.82	11.89	3, 6, 7, 8			
5 vs.	1	3, 5, 6, 7	-0.68	24.05	2, 3, 6, 7			
6 vs.	1	-	NT	0.14	3, 6, 7, 8			
7 vs.	1	3, 7	-1.05	0.64	3, 6, 7, 8			
8 vs.	1	3, 6, 7, 8	-0.09	NT	-			
6 vs.	3	6, 7	-0.45	0.40	3, 7			
7 vs.	6	3, 7	-0.52	1.12	3, 6			

Supplementary Table 3: Study level thresholds for the headaches example, in headache days per month. NT = no threshold in this direction.

	Thresholds and new optimal treatments					
Study		Lower	Upper			
Diener 2009 (1)	-	NT	0.17	2, 3, 6, 7		
Diener 2009 (2)	2, 3, 6, 7	-0.17	NT	-		
Apostol 2008 (1)	3, 6, 7, 8	-7.15	0.82	3, 4, 6, 7		
Apostol 2008 (4)	3, 4, 6, 7	-2.99	5.01	3, 6, 7, 8		
Apostol 2008 (4)	3, 4, 6, 7	-2.45	NT	-		
Apostol 2008 (4)	3, 4, 6, 7	-2.08	7.99	3, 6, 7, 8		
Brandes 2004 (1)	3, 6, 7, 8	-0.65	NT	-		
Brandes 2004 (6)	-	NT	1.47	3, 6, 7, 8		
Brandes 2004 (6)	-	NT	1.79	3, 6, 7, 8		
Brandes 2004 (6)	-	NT	17.46	2, 3, 6, 7		
Lewis 2009 (1)	3, 6, 7, 8	-1.50	NT	-		
Lewis 2009 (6)	-	NT	2.28	3, 6, 7, 8		
Lewis 2009 (6)	-	NT	3.51	3, 6, 7, 8		
Lipton 2011 (1)	3, 6, 7, 8	-0.92	NT	-		
Lipton 2011 (6)	-	NT	0.75	3, 6, 7, 8		
Silberstein 2004 (1)	3, 6, 7, 8	-0.54	NT	-		
Silberstein 2004 (6)	-	NT	1.83	3, 6, 7, 8		
Silberstein 2004 (6)	-	NT	1.74	3, 6, 7, 8		
Silberstein 2004 (6)	-	NT	1.65	3, 6, 7, 8		
Winner 2005 (1)	3, 6, 7, 8	-1.49	NT	-		
Winner 2005 (6)	-	NT	1.27	3, 6, 7, 8		
Diener 2004 (1)	3, 6, 7, 8	-0.19	1.32	3, 7		
Diener 2004 (6)	3, 6	-2.48	0.98	3, 7		
Diener 2004 (6)	3, 6	-2.78	0.95	3, 7		
Diener 2004 (7)	3, 7	-0.35	0.69	3, 6		
Holroyd 2010 (1)	6, 7	-14.13	0.09	3, 6, 7, 8		
Holroyd 2010 (8)	3, 6, 7, 8	-0.09	14.67	6, 7		
Silberstein 2013 (5 vs. 1)	3, 5, 6, 7	-0.69	11.76	2, 3, 6, 7		
Dodick 2009 (3 vs. 6)	3, 7	-0.39	0.44	6, 7		