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Abstract 
Guideline development requires synthesising evidence on multiple treatments of interest, typically using 
Network Meta-Analysis (NMA). Because treatment effect estimates may be imprecisely estimated or based 
on evidence which may lack internal or external validity, guideline developers need to assess the robustness 
of recommendations made based on the NMA to potential limitations in the evidence. Such limitations 
arise because the observed estimates differ from the true effects of interest, for example due to study biases, 
sampling variation, or issues of relevance. The widely-used GRADE framework aims to assess the quality 
of evidence supporting a recommendation using a structured series of qualitative judgements. We argue 
that GRADE approaches proposed for NMA are insufficient for the purposes of guideline development, 
as the influence of the evidence on the final recommendation is not accounted for. We outline threshold 
analysis as an alternative approach, demonstrating the method with two examples of clinical guidelines from 
the UK National Institute for Health and Care Excellence. Threshold analysis quantifies precisely how 
much the evidence could change (for any reason, such as potential biases or simply sampling variation) 
before the recommendation changes, and what the revised recommendation would be. If it is judged that 
the evidence could not plausibly change by more than this amount then the recommendation is considered 
robust, otherwise the recommendation is sensitive to plausible changes in the evidence. In this manner, 
threshold analysis directly informs decision makers and guideline developers of the robustness of treatment 
recommendations.  
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Introduction 

Health technology assessments and guidelines require evidence on multiple treatments of interest from 
several studies to be synthesised. Typically, such analyses are performed using Network Meta-Analysis 
(NMA), which provides a consistent set of treatment effect estimates so that coherent recommendations 
may be made (1-3). However, if the NMA estimates are imprecise, if studies included in the analysis have 
flaws in their conduct or reporting, or there are concerns over relevance, the reliability of results from the 
NMA can be in doubt. Therefore, analysts and decision makers need to assess the robustness of any 
conclusions based on the NMA to potential limitations in the included evidence.  

The framework developed by the Grading of Recommendations Assessment, Development and Evaluation 
(GRADE) Working Group, known as GRADE NMA (4, 5) has been proposed to assess this. 

A GRADE assessment rates the quality of evidence contributing to the treatment effect estimates for each 
pair of treatments as high, moderate, low or very low across five domains—study limitations, imprecision, 
indirectness, inconsistency (heterogeneity), and publication bias—and a qualitative summary judgement is 
formed (6). The GRADE Handbook (7) states two different aims for this quality assessment, depending 
on whether the intended users are systematic reviewers or guideline developers.  

1. For systematic reviewers, “the quality of evidence reflects the extent to which we are confident 
that an estimate of the effect is correct.”  

2. For guideline developers, “the quality of evidence reflects the extent to which our confidence in 
an estimate of the effect is adequate to support a particular recommendation.”  

GRADE NMA reaches a judgement for each treatment comparison by considering the individual GRADE 
judgements for the direct and indirect evidence between each pair of treatments. However, this approach 
does not deliver an assessment of the credibility of recommendations based on the NMA for guideline 
developers. Instead, it delivers a set of independent assessments of the confidence in the estimates for 
individual pairwise comparisons. Moreover, GRADE NMA suggests replacing the NMA estimates with 
the direct or indirect estimates if they have a higher quality rating, leading to a set of final estimates which 
are not consistent with each other and therefore cannot be used for rational decision making (4). For 
example, it would be possible to obtain estimates where intervention A is better than B, B is better than C, 
but C is better than A. Not only is it possible for GRADE NMA to reach a set of conclusions that are 
logically incoherent, it also fails to indicate how evidence quality might affect the final recommendation. As 
such, whilst GRADE NMA may achieve the prescribed aim for systematic reviewers, it is inadequate for 
guideline developers. The GRADE NMA ratings describe how likely each comparison estimate is to differ 
from the “truth”, but the influence of evidence on the recommendation is not considered. For example, 
low quality evidence that has negligible influence on the treatment recommendation should be of little 
concern, but more influential evidence should be scrutinised carefully and confidence in the robustness of 
the recommendation may be diminished. Recent advances in GRADE guidance (5) acknowledge that the 
influence of evidence is important, suggesting that “there is no need to rate the indirect evidence when the 
[quality] of the direct evidence is high, and the contribution of the direct evidence to the network estimate 
is as least as great as that of the indirect evidence.” However, this reasoning is only applied to each pairwise 
comparison, and influence on the overall decision is not considered. Furthermore, GRADE NMA quickly 
becomes infeasible as the number of treatments in the network increases, since the number of loops of 
evidence that must be assessed grows very large (such as the social anxiety disorder example discussed 
later).  

An alternative, statistically rigorous, extension of GRADE to NMA proposed by Salanti et al. (8) formally 
evaluates the influence of the direct evidence on each estimate and uses this to combine quality judgements 
from each piece of direct evidence into an overall quality assessment. This approach avoids the possibility 
of incoherent conclusions. Salanti GRADE has been implemented in the CINeMA web application (9) 
which automates the statistical operations and facilitates the required judgement steps, making it feasible 
even in large networks with many evidence loops since the quality and contribution of indirect evidence is 
accounted for automatically. Salanti GRADE clearly meets the aim of quality assessment for systematic 
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reviews and does so in a much more rigorous manner than GRADE NMA. However, it still does not fully 
meet the aim of GRADE for guideline developers because the quality assessments reflect the confidence 
in the NMA estimates, which does not necessarily translate into robustness of treatment recommendations: 
evidence may be influential for an NMA result but may not actually change a decision (10). In addition, it 
does not detail how potential bias would change a recommendation and is therefore less useful to decision 
makers and guideline developers than the approach described in this paper, which directly assesses the 
robustness of the recommendations based on an NMA. 

Network meta-analyses are based on data from studies of relative treatment effects. Both the study 
estimates and resulting NMA estimates may differ from the “true effects” of interest in the decision setting 
for two basic reasons: bias (systematic error) and/or sampling variation (random error). In the most general 
statistical sense, bias is any systematic departure from the truth. This may be due to issues of internal validity 
(i.e. study limitations) or external validity (affecting the generalisability of results into the decision setting). 
Sampling variation is captured by the confidence interval, representing the uncertainty in the estimate, and 
is typically reduced as sample size increases. The issues addressed by the five GRADE domains all concern 
either bias (study limitations, inconsistency, indirectness, publication bias) or sampling variation 
(imprecision). From here onwards we use the phrase “change in the evidence” to refer to any difference 
between an estimate and the true effect of interest, whether due to bias or sampling variation.  

Treatment recommendations can be made using a variety of decision criteria. The simplest is to choose the 
treatment with the “best” estimate on a particular outcome, for example the treatment with the highest 
mean reduction in pain, or on a composite outcome, such as a weighted average of outcomes (as in multi-
criteria decision making (11)) or net monetary benefit (12). Other formats include recommending: the top 
few treatments with the highest mean estimates; treatments achieving a benefit above a certain cut-point; 
the top treatments within a minimally clinical important difference; or a “do not do” recommendation 
against using the treatments with the worst outcomes. To determine the robustness of a treatment 
recommendation, we are concerned with whether there are plausible changes to the evidence that would 
translate into NMA estimates that lead to a different recommendation being reached. 

Threshold analysis is a standard form of sensitivity analysis used in health economics which answers the 
question, “how much would the evidence have to change before the recommendation changes?” (13). In 
its basic form we can simply re-run the NMA, iteratively changing the data until a new recommendation is 
reached (10). These changes to the data can be made at one of two levels: either changing an estimate from 
a single study (which we refer to as a study level threshold analysis), or changing the combined evidence on 
a contrast (relative effect) between two treatments (a contrast level threshold analysis). The result is a set of 
thresholds which describe how much each (study or contrast) data point could change before the 
recommendation changes, and what the revised recommendation would be. Investigators can then judge 
whether the evidence could plausibly change by more than the threshold amount in each direction to 
determine the robustness of the recommendation. For potential changes due to sampling variation one can 
refer to the confidence interval (or credible interval if a Bayesian analysis was used) and whether this 
overlaps the threshold. For potential changes due to bias a judgement of the plausible magnitude and 
direction of potential bias is required. If it is judged that the evidence could not plausibly change beyond 
the thresholds then the recommendation is considered robust, otherwise the recommendation is sensitive 
to plausible changes in the evidence.  

A more sophisticated algebraic approach that does not require multiple re-runs of the NMA has recently 
been proposed (14), which only requires the user to supply the NMA estimates and the decision criteria.  
This is computationally much faster and offers additional flexibility: we can consider potential changes to 
individual study estimates or to a set of estimates on a treatment comparison, and examine the impact of 
specific potential biases. The analysis is not limited to greatest efficacy decisions: we can consider how 
changes in the evidence affect any treatment rankings, for example to determine the robustness of a “do 
not do” decision for the worst treatment, and we can consider complex decision rules such as those based 
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on a minimal clinically important difference, and simple net benefit functions. An R (15) package is available 
(https://cran.r-project.org/package=nmathresh)(14), making it quick and easy to conduct.  

Threshold analysis in practice 

We illustrate threshold analysis in two practical examples taken from Clinical Guidelines produced by the 
National Institute for Health and Care Excellence (NICE). In the first, we demonstrate that the method 
can be used with large networks with complex modelling, and in the second we demonstrate an application 
with different formats for the recommendations. All R code is given in the Supplementary Material, and a 
brief guide to performing threshold analysis with the R package nmathresh is given in the Appendix. 

Example: social anxiety 

Large networks with many treatments are common in guideline development. A NICE guideline (CG159) 
for social anxiety disorder included evidence on 41 treatments in 17 different classes from 100 studies, 
forming the evidence network in Figure 1 (16, 17). Based on greatest efficacy, the base case treatment 
recommendation is group cognitive behavioural therapy with phenelzine (treatment 41), with the largest 
estimated reduction in symptoms of social anxiety (most negative standardised mean difference (SMD)) of 
–1.68 and 95% credible interval (–2.10, –1.27) compared to placebo. GRADE NMA is simply not 
practicable in this scenario: there are 820 possible pairwise comparisons, of which 84 are directly informed 
by studies, and the number of indirect evidence loops is very large. However, we can easily perform a 
threshold analysis to assess the robustness of the recommendation; the results are shown in Figure 2. Each 
row of the figure corresponds to a comparison between two treatments for which direct study evidence 
was available, sorted to show comparisons with smallest thresholds first. We visualise the positive and 
negative thresholds for each comparison by creating invariant intervals, plotted as shaded lines. These are 
formed by adding the positive and negative thresholds (listed in Supplementary Table 1) to the point 
estimate, to show how much the combined evidence on each comparison would have to change before a 
new treatment decision is reached. Changes to the evidence within the invariant interval do not alter the 

Figure 1: Social Anxiety treatment network. Circles (nodes) represent treatments and connecting lines (edges) show study comparisons. 
Numbers around the edge are the treatment codings. Treatment classes are indicated by the braces, some classes contain a single treatment. 
See (17) for full details; figure modified from (14). 
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treatment recommendation. If evidence were to change beyond the thresholds at either end of the invariant 
interval, then new treatment decisions would be reached; these are presented in the table (using treatment 
codes) at the corresponding side of the invariant interval. For some comparisons there is no threshold in 
one direction (indicated by “NT”), so no amount of change to the evidence in this direction would alter 
the recommendation. The smallest threshold (see Supplementary Table 1) is a positive change of 0.46 in 
the estimate of –0.88 SMD for the 41 vs. 31 comparison (i.e. the upper limit of the invariant interval is –
0.88+0.46=–0.42), at which point cognitive therapy (treatment 36) would be recommended. At the negative 
side of the invariant interval for the 41 vs. 31 comparison, there is no threshold—no amount of change in 
the negative direction to the evidence on this comparison (i.e. becoming even more favourable to treatment 
41) could ever result in a new recommendation. In total, only 5 comparisons have thresholds smaller than 
0.8 SMD—a value considered to be large (18)—and for each of these, the new treatment recommendation 
would be cognitive therapy, which was ranked second in the original NMA. For the remaining 79 
comparisons, we judge that the magnitude of change required to alter the treatment decision is 
unrealistically large and the treatment recommendation is therefore robust to plausible changes to these 
comparisons. As this example shows, with such large networks typically only a few contrasts are decision-
sensitive and require further scrutiny, whereas GRADE NMA may be infeasible. 

Figure 2: Forest plot for the Social Anxiety example showing results of the threshold analysis, sorted with smallest thresholds first. Only 
contrasts with a threshold less than 2 standardised mean differences (SMD) are shown here for brevity. The first 5 comparisons have 
thresholds less than 0.8 SMD. The base-case optimal treatment is 41 (cognitive behavioural therapy with phenelzine).  
NT – no threshold: no amount of change in this direction would change the recommendation. At either side of the invariant interval are 
shown the new optimal treatment if threshold exceeded in this direction. 
Figure modified from (14). 
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We also use threshold analysis to examine the potential impact of more complex biases, exploring concerns 
in sets of treatment comparisons or studies. For example, it is plausible that the effects of psychological 
interventions are overestimated compared to inactive control, perhaps due to difficulties of blinding. 
Threshold analysis (Figure 3) reveals that adjusting for such bias (if present) would change the treatment 
recommendation only if the effects were overestimated by at least 1.54 SMD. This threshold is implausibly 
large and would require most psychological treatments to in fact be harmful. The recommendation is 
therefore considered robust to plausible overestimation of the psychological treatment effects.  

Example: headaches 
Threshold analysis may also be applied to more complex decision rules. A NICE clinical guideline (CG150) 
examined eight prophylactic treatment regimens for chronic or episodic migraine (19); a NMA was 
performed on a treatment network formed of 11 studies comparing 8 treatments (Figure 4). A minimal 
clinically important difference of 0.5 headache days per month was defined, with which we form a decision 
rule: recommend any treatment which shows a reduction of 0.5 days or more compared to Placebo, and is 
within 0.5 days of the most effective treatment. Based on this decision rule, propranolol with an expected 
change in headache days (and 95% credible interval) of –1.19 (–2.20, –0.20), topiramate with –1.04 (–1.52, 
–0.58), and amitriptyline with –1.14 (–2.45, 0.16) were recommended.  

Figure 3: The invariant interval for all psychological treatments against an inactive control, considered to be bias adjusted by the same 
amount on the standardised mean difference (SMD) scale. The base-case optimal treatment is 41.  At either side of the invariant interval 
are shown the new optimal treatment if threshold exceeded in this direction. Figure reproduced from (14). 

Figure 4: Headaches treatment network. Circles (nodes) represent treatments and connecting lines (edges) show study comparisons, with 
numbers on the edges show the number of studies making the comparison. Numbers inside the nodes are the treatment codings. The bold 
loop is formed by a single three-arm study. 
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Applying threshold analysis to the body of evidence on each comparison (Figure 5), we see that the credible 
intervals for the evidence on each comparison extend beyond the limits of the invariant intervals; the 
recommendation is therefore sensitive to the level of uncertainty in the data (which is also reflected in the 
credible intervals for the treatment effects). The smallest threshold (see also Supplementary Table 2) is –
0.09 days (just over 2 hours per month) for the propranolol/nadolol vs. placebo (8 vs. 1) comparison, at 
which point propranolol/nadolol joins the recommended set of treatments. As propranolol/nadolol was 
very close to within 0.5 days of propranolol (the most effective treatment) in the original analysis, this is 
not surprising. We might expect bias to exaggerate the effect of treatment compared to placebo, but the 
small thresholds for comparisons of treatments 2, 4, 5, and 8 vs. placebo are for changes in the opposite 
direction. Any bias in the evidence on these comparisons is therefore unlikely to change the decision; the 
decision is still sensitive to the level of uncertainty in the evidence however. Notably, the GRADE 
assessments shown in Figure 5 do not show any relationship with the magnitude of the thresholds. As 
observed previously (10), evidence quality is unrelated to the influence of evidence on the results of the 
NMA. 

The combined body of evidence on a contrast often involves more than one study, and these are likely to 
have different characteristics, assessments of risk of bias, and to have greater or lesser influence on the 
treatment recommendation. Threshold analysis can also be applied to the individual study estimates, to 
determine sensitivity at the study level. Figure 6 gives the results of a study level threshold analysis, showing 
that the recommendation is sensitive to the level of imprecision in 6 out of 11 studies. The thresholds for 
the remaining five studies are larger, and a judgement is required as to whether changes of plausible 
magnitude and direction could surpass these thresholds (see also Supplementary Table 3). Thresholds which 
might plausibly result in a treatment dropping out of the recommended set are found for only two studies 
(Diener 2004 and Dodick 2009), so these studies may be prioritised for further scrutiny. Risk of Bias 
assessments (shown in Figure 6) are low or unknown in all domains for Dodick 2009, but there is a high 
risk of attrition bias for Diener 2004 which should be investigated further. For six studies, there are no 
thresholds in one direction, so no amount of change in this direction could alter the recommendation. 

The results of the threshold analysis should lead to further scrutiny of the study evidence to which the 
recommendation is sensitive and may placate any concerns raised about studies to which the treatment 
recommendation is not so sensitive. 

Figure 5: Forest plot for headaches example, showing results of the threshold analysis applied to the combined evidence on each comparison 
and the GRADE quality ratings. The base-case optimal set of treatments is 3, 6, 7 (amitriptyline, topiramate, propranolol).  

NT – no threshold: no amount of change in this direction would change the recommendation. At either side of the invariant interval are 
shown the new set of optimal treatments if threshold exceeded in this direction. 
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Discussion 

Threshold analysis is a powerful tool for analysts and decision makers to examine sensitivity of decisions 
to potential changes in the evidence. Conducting a threshold analysis requires a basic ability to prepare data 
in R and to call the R package. Interpretation of the results does not require technical knowledge and is 
best performed by clinical/content experts in a guideline development group with some statistical guidance. 
Frameworks such as GRADE cannot by themselves evaluate the robustness of a treatment 
recommendation because the influence of each piece of evidence on the recommendation is not accounted 
for. The thresholds and invariant intervals produced by a threshold analysis directly indicate how sensitive 
a decision is to each piece of evidence, which should then be combined with judgements of the plausible 
magnitude and direction of bias, informed by assessments such as the Cochrane Risk of Bias tool (20). The 
meta-epidemiological literature on the empirical evidence for bias is likely to be helpful in this regard, once 
potential biases in the evidence have been identified (21, 22). It is also possible to consider the effects of 
several potential changes simultaneously (14). The resulting multi-dimensional thresholds are 
straightforward to compute, but visualisation is challenging; some suggestions are discussed in (14).  

Recently the GRADE Evidence to Decision (EtD) framework (23, 24) has been proposed to support the 
development of healthcare guidelines and policy. One of the criteria presented in EtD tables is the 
“certainty” of the evidence. The EtD framework proposes using GRADE to assess certainty. However, 

Figure 6: Forest plot for headaches example, showing results of the threshold analysis applied to each study estimate. The base-case optimal 
set of treatments is 3, 6, 7 (amitriptyline, topiramate, propranolol). Bold study labels indicate studies with thresholds that lie within the 
95% confidence interval. The Risk of Bias table is displayed to the right of the plot. 

NT – no threshold: no amount of change in this direction would change the recommendation. At either side of the invariant interval are 
shown the new set of optimal treatments if threshold exceeded in this direction. Risk of bias is judged as low (L), high (H), or unknown 
(U) in six domains (selection, performance, detection, attrition, reporting, other). 
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threshold analysis is arguably more relevant to the assessment of evidence certainty in the EtD context 
because it directly evaluates the sensitivity of treatment recommendations to changes in the evidence. 

GRADE NMA, Salanti GRADE, and threshold analysis all require subjective judgement in their application 
or interpretation. However, the level of subjectivity differs between the three approaches. GRADE NMA 
and Salanti GRADE both make structured but subjective judgements of the quality of each piece of 
evidence. GRADE NMA then combines these judgements in a subjective manner to reach an overall 
judgement, whereas Salanti GRADE uses an objective statistical rationale to reach an overall judgement. 
Further subjectivity in interpreting the GRADE judgement is one of the challenges raised in a previous 
commentary (25), along with reproducibility and predictive validity. In comparison, threshold analysis is 
objective in deriving thresholds and determining the respective changes in treatment recommendation—
these both follow from the mathematical structure of the NMA. Interpretation of these thresholds then 
requires subjective judgements of the plausible magnitude and direction of changes in the evidence, which 
can be informed by risk of bias assessments and the meta-epidemiological literature on bias (21, 22). This 
is not a trivial task and is a potential limitation, however the authors have piloted the method in a live 
guideline development scenario and found the required judgements to be feasible (26). 

For simplicity, the two examples in this paper focussed on decisions based on efficacy; in reality, both 
guidelines ultimately made treatment recommendations based on cost-effectiveness (along with other 
considerations such as licensing arrangements in the UK), as is usual in guidelines produced by NICE. 
Threshold analysis is applicable within a cost-effectiveness framework and algebraic solutions may be found 
for simple economic models (14), however this is not possible in general. Alternative approaches to applying 
threshold analysis for cost-effectiveness decisions are therefore an area for further research. For decision 
rules based on statistical “significance” rather than on expected treatment effects, numerical methods are 
required to determine the thresholds. The current algebraic approach only determines the influence of the 
evidence on the point estimates and not on the uncertainty. 

Threshold analysis is just one of several sensitivity analyses that may be used to assess the robustness of a 
NMA and the resulting recommendations. One common approach is to remove from the analysis all studies 
at high risk of bias. However, this may lead to issues such as disconnected networks or removing treatments 
of interest. Threshold analysis allows a more informative assessment of the potential impact of high-risk 
studies, whilst avoiding such problems. Meta-regression offers the possibility of adjusting for biases that 
are suspected to be present, but typically requires external evidence on bias (27-30). Threshold analysis is 
always possible, regardless of the number of studies in the analysis, since no bias-estimation is performed. 

Whilst we have demonstrated the use of threshold analysis for NMA, the ideas and processes apply equally 
to pairwise meta-analysis as a special case. We suggest that threshold analysis is integrated into the guideline 
development process in the following manner. Prior to analysis, the included studies should be assessed for 
risk of bias (20, 31) and a decision rule formulated, as is current best practice. Once the (network) meta-
analysis has been performed, undertake threshold analysis to determine the sensitivity to the evidence on 
individual comparisons (for NMA) and to each study. Further threshold analyses may then be used to 
address more specific concerns, such as biases in sets of treatment comparisons or studies. If sensitivities 
are identified, the plausible magnitude and direction of potential changes in the evidence should be 
investigated. The impact (if any) of plausible changes in the evidence is then easily determined, and decision 
makers can incorporate knowledge of robustness or sensitivity into their recommendations. 
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Appendices 
A brief guide to threshold analysis in R 

Threshold analysis can be performed in R using the nmathresh package, which is installed from CRAN and 
loaded using the commands 

install.packages("nmathresh") 
library(nmathresh) 

The function nma_thresh performs the threshold analysis. The basic syntax (for a fixed effect NMA 
model) is: 

nma_thresh(mean.dk = d, lhood = V.data, post = V.est, X = X) 

where:  

d is a vector containing the NMA estimates for each treatment compared with treatment 1 

V.data is the covariance matrix for the observed data (either study or contrast level). For a study level 
analysis, then this will be a (block) diagonal matrix with the squared standard errors on the diagonals (and 
for relative effect data, covariances between estimates from trials with more than two arms). For a contrast 
level analysis, the covariance matrix needs to be reconstructed using the recon_vcov function:  

recon_vcov(post = V.est, X = X)  

V.est is the covariance matrix of the NMA estimates for each treatment compared with treatment 1. This 
may be the posterior covariance matrix of the estimates from a Bayesian analysis, or the covariance matrix 
of the estimates from a frequentist analysis.  

X is the design matrix showing the comparisons made in the data, either at study or contrast level. For 
example, suppose we had 2 studies comparing treatments 3 vs. 1, one study 4 vs. 2, and one study 3 vs. 2, 
each reporting study-level relative effects. The columns of the design matrix represent the basic treatment 
parameters 𝑑12, 𝑑13, and 𝑑14. For a study-level threshold analysis, the design matrix would be: 

[ 0 1 00 1 0−1 0 1−1 1 0] 

For a contrast-level threshold analysis, the design matrix would be 

[ 0 1 0−1 0 1−1 1 0] 

 

Further options provided to nma_thresh specify the type of decision rule, or are required for threshold 
analysis of random effects NMA. For further details see the help page ?nma_thresh. 

opt.max specifies whether higher or lower relative effects are better (the default is TRUE, higher effects are 
better). 

mcid specifies a minimally clinically important difference, to be used with the option mcid.type as follows. 

When mcid.type = "decision" this specifies a decision rule to recommend the set of treatments better 
than treatment 1 by mcid or more, and within mcid of the most effective (as in the headaches example). 
When mcid.type = "change" threshold analysis is carried out for the greatest efficacy decision rule, but 
where the decision only changes if a treatment exceeds mcid compared to the existing optimal treatment. 
The default is "decision", but mcid.type is only used when mcid is not 0. 
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trt.rnk specifies the treatment rank to derive thresholds for. For example, to derive thresholds for when 
the second-placed treatment would change, specify trt.rank = 2. To derive thresholds for worst-placed 
treatment (perhaps to investigate the robustness of a “do not do” decision), specify trt.rank equal to the 
number of treatments. This option cannot be used when mcid.type = "decision" and mcid is greater 
than 0. The default is to derive thresholds for the best treatment (trt.rnk = 1). 

To specify threshold analysis for a random effects NMA, the following options are required: 

nmatype = "random" for random effects NMA (the default is "fixed") 

delta.design is the design matrix for the random effects terms, specifying which study data points have 
random effects. By default this is the identity matrix, so every data point has a random effect (suitable for 
relative effect data), but for arm-based data the reference arm in each study should be given a 0 on the 
corresponding diagonal entry. 

mu.design is the design matrix for any additional parameters, for example study baselines for arm-based 
data, or covariates in a meta-regression model. The default value is NULL (no extra parameters). 

For random effects NMA, V.est should be the covariance matrix of the treatment parameters, random 
effects terms, and any additional parameters. 

 

The outputs of nma_thresh are the thresholds and new treatment recommendations (as given in 
Supplementary Tables 1, 2, and 3). We summarise these graphically alongside the data by plotting the 
invariant intervals formed by adding positive and negative thresholds to the point estimate (as in Figures 2, 
5, and 6). The function thresh_forest performs these calculations and produces the figures. The basic 
function call looks like 

thresh_forest(thresh, y, CI.lo, CI.hi, label, data) 

where thresh is a threshold object produced by nma_thresh. y, CI.lo, CI.hi, and label are either 
vectors or columns in the data frame data representing the study or contrast estimates for which thresholds 
were derived, along with confidence interval limits and labels to display. For details on the further options 
available to customise the output, see the help page ?thresh_forest.  

 

Further details of the package and walkthroughs of example analyses can be found using the help files and 
the vignette: 

vignette("Examples", package = "nmathresh") 

 

The supplementary material contains detailed code for each example presented in this paper. 
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