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Spatial Coverage Without Computation

Anıl Özdemir1, Melvin Gauci2, Andreas Kolling3, Matthew D. Hall1, and Roderich Groß1

Abstract— We study the problem of controlling a swarm of
anonymous, mobile robots to cooperatively cover an unknown
two-dimensional space. The novelty of our proposed solution
is that it is applicable to extremely simple robots that lack
run-time computation or storage. The solution requires only a
single bit of information per robot—whether or not another
robot is present in its line of sight. Computer simulations show
that our deterministic controller, which was obtained through
off-line optimization, achieves around 71–76% coverage in a
test scenario with no robot redundancy, which corresponds
to a 26–39% reduction of the area that is not covered, when
compared to an optimized random walk. A moderately lower
level of performance was observed in 20 experimental trials
with 25 physical e-puck robots. Moreover, we demonstrate that
the same controller can be used in environments of different
dimensions and even to navigate a maze. The controller provides
a baseline against which one can quantify the performance
improvements that more advanced and expensive techniques
may offer. Moreover, due to its simplicity, it could potentially
be implemented on swarms of sub-millimeter-sized robots. This
would pave the way for new applications in micro-medicine.

I. INTRODUCTION

We consider the multi-robot spatial coverage problem

for which a group of robots is required to cooperatively

cover an environment or specific regions of interest within.

The problem is relevant for a number of applications. For

instance, robots may be required to monitor a given area,

perhaps to log data, or to detect abnormal events and relay

an alarm to a central station. The robots may also be required

to service the environment, such as watering or applying

chemicals to a field of crops. Finally, complete coverage

constitutes a systematic strategy for search. In this work, we

assume that the environment is bounded, and that all parts

are to be covered continuously. This differs from the problem

of visiting every location once [1], or repeatedly [2], [3].

Howard et al. [4] showed that a swarm of robots, by

emulating the movements of charged particles in a potential

field, could disperse within an office-like environment. Each

robot used relative position information about nearby robots

and obstacles. While the attained formations may not be

uniform, they are guaranteed to be stable. McLurkin and

Smith [5] studied a strategy to deploy a swarm of robots

in a bounded environment, where each robot moved away
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from its k nearest neighbors. For k = 2, the robots obtained

an almost uniform distribution, whereas for k ≫ 2, they

ended up at the boundary. They could also disperse in open

space while maintaining connectivity. The robots used an

infra-red communication system to obtain relative positions.

Schwager et al. [6] studied a swarm of robots that, when put

in a bounded environment, assume positions that optimize an

a priori unknown utility function. This could allow regions of

importance to be monitored more densely. The robots used

local sensing to sample and approximate the utility function.

Their controller achieves near-optimal coverage, and was

tested on the same platform as in [5]. Ramaithitima et al. [7]

proposed a solution to the coverage problem that relies on

only touch and bearing sensors. As the environment is not

known in advance, the robots get sequentially deployed, until

complete coverage is guaranteed.

Gauci et al. [8] proposed a computation-free swarming

concept, which is applicable to robots that lack arithmetic

logic units, run-time memory, and communication capabili-

ties. In the simplest form, each robot has a single binary line-

of-sight sensor that tells whether another robot is detected or

not. The concept was first applied to the problem of multi-

robot rendezvous [8], [9], and was further investigated by

Brown et al. [10], who used novelty search to discover what

other behaviors it could produce. One of these behaviors

turned out to be dispersion; however, it was not further ana-

lyzed. The computation-free swarming concept has also been

used with ternary line-of-sight sensors, allowing the robots to

detect both robots and objects (though not simultaneously).

This enabled swarms of physical robots to collectively

cluster a group of objects [11] and to choose collectively

between one of multiple options [12]. Recently, Wareham

and Vardy [13] formally examined the computational-free

swarming concept for grid-based environments, showing that

the design problem, given an arbitrary task, cannot be solved

in polynomial time, but that efficient solutions exist for a

restricted class of problems.

In this paper we present the first solution to the spatial

coverage problem that is applicable to anonymous robots that

lack the ability to compute, store run-time information, or

communicate. Despite their simplicity, the robots are shown

to cover around 71–76% of an unknown two-dimensional

space in situations without robot redundancy. They outper-

form random walks—reducing the area that is not covered

by 26–39%. Although alternative approaches that require

computation, localization, and more elaborate coordination

may perform better, our minimalist approach serves a number

of important functions. For one, it establishes a baseline

on what should be expected from any system and therefore



allows a quantification of the performance improvements that

any advanced and expensive techniques add to the baseline.

Secondly, the approach could be used on extremely simple

robot-like systems, such as micro- and nano-scale mobile

machines that lack fully-fledged CPUs or wireless radios.

II. PROBLEM DEFINITION

A. Environment and Robots

Consider a two-dimensional, bounded environment, E ⊂
R

2, with n autonomous mobile robots. The robots are

indistinguishable from each other and execute an identical

controller. They lack the capability of performing arithmetic

computation, and have no run-time memory. Moreover, they

are unable to communicate with each other, cannot localize,

and have no knowledge of E nor of n.

At time t, robot i’s position and orientation is written

as xi(t) ∈ E and θi(t) ∈ [0, 2π), respectively. Robots are

modeled as open disks of radius r which are fully contained

in E .

Each robot moves using a differential drive. Its linear

velocity in its local reference frame is
vℓ(t)+vr(t)

2 vmax, and

its angular velocity is
vr(t)−vℓ(t)

dwheel

vmax, where vℓ(t), vr(t) ∈
[−1, 1] are the normalized wheel velocities along the ground,

vmax is the maximum velocity, and dwheel ≤ 2r is the inter-

wheel distance.

Each robot has an unlimited-range sensor that detects

whether another robot is present in the line of sight directly

ahead of the robot. It reports s(t) = 1 at time t if another

robot is present and s(t) = 0 otherwise.

The robot executes a deterministic controller, c : {0, 1} →
[−1, 1]× [−1, 1]. At time t, c assigns sensor reading s(t) to

a pair of wheel velocities. Formally,

(vℓ(t), vr(t)) = c(s(t)) =

{

(vℓ,0, vr,0) if s(t) = 0,

(vℓ,1, vr,1) otherwise.
(1)

Using (vℓ,0, vr,0, vℓ,1, vr,1) ∈ [−1, 1]4, any reactive control

strategy can be expressed.

B. Objective

The coverage literature has used a number of performance

criteria for coverage that either relate to the area a robot

covers, special positions robots should occupy, or special

measures of importance of parts of the space. In our work,

we consider the following two performance criteria. The

first criterion, cell coverage, determines coverage quality

by relating robot positions to a given partitioning of the

environment into cells. The goal is to occupy every cell with

at least one robot. Such a partitioning may be provided by

a user, derived from a utility function that represents the

importance of the space, or simply be uniform (as in our

scenarios). The second criterion, area coverage, measures

the joint area that is close to some robot.

The cell coverage at time t is defined by

Pcell(t) =
moccupied(t)

m
, (2)

(a) (b)

Fig. 1. A group of 25 robots performing coverage with two performance
measures illustrated at the beginning (top) and end (bottom) of a trial:
(a) Cell coverage uses a decomposition of the environment (square cells),
and reports the fraction of cells with at least 1 robot; (b) area coverage
assumes that each robot covers all points within a certain range, and reports
the fraction of the environment’s area that the robots collectively cover.
The corresponding coverage (percentage) for (a) is 4.0% (top) and 84.0%
(bottom). For (b) it is 11.6% (top) and 69.8% (bottom).

where moccupied(t) is the number of cells that contain at

least one robot at time t. It follows that 1/m ≤ Pcell ≤
min(n/m, 1).

The area coverage at time t is defined by

Parea(t) =
A
(
⋃n

i=1 Ni

)

A(E)
, (3)

where Ni = {p ∈ E| : ‖p − xi(t)‖ ≤ rcover}, rcover >
r denotes the distance up to which the robot covers the

environment, and A(S) is the area of S. It follows that
πr2

cover

A(E) < Parea ≤ min(
nπr2

cover

A(E) , 1).
Note that the cell partitions and coverage radius have no

bearing on the robot’s behavior. They are merely used to

measure performance. Figure 1 illustrates both performance

measures in a square environment with n = 25 robots. The

environment is partitioned into 25 equally-sized square cells.

III. CONTROLLER DESIGN

We use an evolutionary robotics approach [14], [15], [8]

for designing the deterministic controller.

A. Evaluation of Candidate Solutions

Candidate solutions are controllers that are considered by

the optimization process. They are represented in continuous

space, by tuples v = (vℓ,0, vr,0, vℓ,1, vr,1) ∈ [−1, 1]4.

To assess the performance of a candidate solution, sim-

ulations are conducted with Enki [16], a 2-D rigid bodies

physics engine. The robot platform is the e-puck [17]. It is

modelled as a disk of radius r = 3.7 cm and mass 152 g. Its

maximum velocity is vmax = 12.8 cm/s. The inter-wheel

distance is dwheel = 5.1 cm. Throughout all simulation runs,

5% uniform noise is affecting the velocity of each wheel.



Fig. 2. Fitness dynamics of 50 evolutionary runs.

For each candidate solution, 20 simulation trials are per-

formed using E = [0, 300]×[0, 300] (cm) and n = 25 robots.

Each trial lasts for T = 120 s, corresponding to 1200 updates

of the robot’s control cycle.

The environment is decomposed into a 5 × 5 grid of

cells, as shown in Figure 1(a). At the beginning of the trial,

all robots are placed with uniformly random position and

orientation at a distance of up to 30 cm from the center of

a uniformly randomly chosen cell.1 All candidate solutions

in a generation are evaluated on the same set of initial

configurations.

The performance of the swarm in a trial is measured using

the cell coverage measure2. Formally,

F =
2

T (T + 1)

T
∑

t=1

tPcell(k). (4)

The performance at time t < T is taken into account,

weighted by t, to reward solutions that reach good coverage

faster. The constant factor normalizes F to [0, 1].3 The over-

all fitness of the candidate solution is the mean performance

across 20 trials.

B. Evolutionary Algorithm

Candidate solutions are synthesized using the Covariance

Matrix Adaptation-Evolution Strategy, a black-box optimiza-

tion method that is quasi parameter-free [18]. We use a pop-

ulation of λ = 12 candidate solutions. Initially the candidate

solutions are generated randomly using uniform distributions.

In every generation, each candidate solution is evaluated

via simulation as described above. The evolutionary run

terminates after 500 generations.

C. Controller Selection

In total, 50 evolutionary runs were conducted. The fitness

dynamics are shown in Figure 2. In 4 runs, the evolution

prematurely converged towards solutions of lower quality

than in the other 46 runs.

To choose the best controller out of the 50 evolutionary

runs, we post-evaluated the candidate solutions from the

last generation of each run using 200 additional simulations,

and chose the one with the highest mean performance. The

following section examines the performance of the best

controller across a range of scenarios.

1Initializing the robots in a circular region prevents orientation bias.
2The area coverage measure was not used during the evolutionary process

because it is computationally more demanding.
3In principle, a 0-value is not possible, as at least 1 cell has to be covered.

D. Behavioral Analysis

The parameters of the best controller are: vℓ,0 = 0.719558,

vr,0 = 0.412543, vℓ,1 = −0.998071, vr,1 = −0.911843.

As long as the sensor reading does not change, the

robot follows a circular trajectory of radius R, with an

angular velocity ω [19]. We obtain R0 = 9.40 cm and

ω0 = −0.77 rad/s for s = 0, and R1 = 56.48 cm and

ω1 = 0.22 rad/s for s = 1. When the robot detects

another robot in its line of sight, s = 1, it moves rapidly

backward (with 95.5% of the maximum linear speed) along a

circular trajectory, in a counter-clockwise fashion. Otherwise,

it moves forward (with 56.6% of the maximum linear speed),

along a circular trajectory, in a clockwise fashion. If the two

radii, R0 and R1 were the same, the robot would remain

on its orbit indefinitely (assuming no collisions), and hence

would be unable to spatially disperse. We hypothesize that

for any R0 ≪ R1, spatial separation can be achieved.

IV. SIMULATION STUDIES

In this section, we evaluate the performance of the con-

troller (Section III-C) using a series of simulation studies.

Unless otherwise stated, we use the same experimental setup

as during the optimization process (see Section III-A).

We report the coverage performance observed at the end of

the simulation trials using (2) and (3). For area coverage, we

use a coverage radius of rcover = 37.22 cm—a lower bound

for the smallest radius that can obtain complete coverage.4

A. Performance Comparison with Different Strategies

We compare the computation-free controller against three

other controllers:

• Open-loop: The robot moves backward with maximum

speed; (vℓ,0, vr,0) = (vℓ,1, vr,1) = (−1,−1).5

• Greedy: The robot moves backward with maximum

speed if another robot is detected, (vℓ,1, vr,1) =
(−1,−1), and otherwise turns clockwise on the spot

with maximum angular velocity; (vℓ,0, vr,0) = (1,−1).
• Random walk: We use the random walk framework

studied in [21]. The random walk consists of alternating

straight-line segments of random length and on-the-

spot rotations by random angles. The nature of the

random walk is characterized by a 3-tuple, (ρ, α, β).
The first parameter, ρ ∈ (0, 1) controls the correlation

between angles of subsequent segments, while the other

two parameters, α ∈ (0, 2] and β ∈ (0,∞), control,

respectively, the shape and scale of the distribution from

which the lengths of the segments are drawn (for details,

see [21]). To optimize (ρ, α, β), we follow the same

process that was used for optimizing our computation-

free controller. As in Section III-C, 50 evolutionary runs

were conducted, and the best controller of each run was

post-evaluated to select the overall best random walk for

the present environment.

4This is obtained by solving nπr2cover = (2π
√
3/9)A(E) [20].

5Due to symmetry, this strategy is identical to (1, 1).
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Fig. 3. Histogram showing the frequency of cell coverage (left) and
area coverage (right) percentages, as observed in 1000 simulation trials
with n = 25 robots, controlled by (a)–(b) our optimized controller, (c)–(d)
an open-loop controller, and (e)–(f) the greedy controller, all of which are
deterministic and computation-free, as well as (g)–(h) the optimized random

walk controller, which uses computation to count control cycles while
moving forward and turning, and to generate pseudo-random numbers from
tailored distributions for the step length and turning angle. The environment
has dimensions 300 cm× 300 cm.

For each strategy, 1000 trials were performed. Figure 3

shows the results. Regarding cell coverage (left), the mean

performance is 76.0% for the proposed controller, 22.4%

for the deterministic open-loop controller, 60.8% for the

deterministic, greedy controller, and 60.8% for the optimized

random walk controller, respectively. Regarding area cover-

age (right), the mean performance is 71.2% for the proposed

controller, 16.0% for the deterministic open-loop controller,

51.8% for the deterministic, greedy controller, and 61.3%

for the optimized random walk controller, respectively. The

proposed controller achieves a 25.6–38.8% reduction in

the uncovered area when compared to the random walk

controller. In addition, its performance is more consistent:

the variances for cell and area coverage are 4.99% and 6.36%

for the proposed controller and random walk controller,

respectively.

B. Effect of Sensory Noise

We examine the situation that noise is affecting the reading

values of the binary line-of-sight sensor. This noise is in

addition to the noise affecting the wheel velocities.

We consider three types of noise:

• False-negative: For s(t) = 1, with probability p ∈ [0, 1]
the reading value is replaced by a random value, X(t) ∈
{0, 1}, which is uniformly chosen at time t. For s(t) =
0, the original value is retained.

• False-positive: For s(t) = 0, with probability p ∈ [0, 1]
the reading value is replaced by a random value, X(t) ∈
{0, 1}, which is uniformly chosen at time t. For s(t) =
1, the original value is retained.

Fig. 4. Cell coverage (blue) and area coverage (orange) of n = 25
robots with noisy sensors and the computation-free controller. Three types of
noise: (a) false-negative (solid), (b) false-positive (dashed), and (c) combined
(dotted). Mean values and standard deviations based on 100 simulation trials
per level and type of noise. The environment has dimensions 300 cm ×
300 cm.

Fig. 5. Cell coverage (blue) and area coverage (orange) of n =
5, 10, 15, . . . , 100 robots in a 300 cm × 300 cm environment using the
computation-free controller. Mean values and standard deviations based on
100 simulation trials.

• Combined: With probability p ∈ [0, 1] the reading value

is replaced by a random value, X(t) ∈ {0, 1}, which is

uniformly chosen at time t.

We run 100 simulation trials for each p ∈
{0, 0.1, 0.2, . . . , 1}.

Figure 4 shows the results. The controller is very robust to

noise on only one sensor reading (i.e., either false-negative

or false-positive), with both performance measures reporting

over 60% coverage with 100% noise. The performance

degrades faster if noise is present on both sensor readings

(i.e., combined), down to around 20% at 100% noise. Note,

however, that in this case 100% noise represents a purely

random sensor reading.

C. Scalability

The default setup contains no redundancy. If a sin-

gle robot fails, complete coverage can no longer be

achieved. We investigate the performance of swarms of n =
5, 10, 15, . . . , 100 robots in an environment of constant size

(the default environment). Irrespective of the group size, the

robots are initialized in a circular region of radius 60 cm,

which is uniformly randomly placed within the boundaries

of the environment. We run 100 simulation trials per group

size.

Figure 5 shows the results. The average performance

rapidly improves for up to around 40 robots, then plateaus,

and finally improves again for 50 and more robots. The

presence of the plateau, where the performance may even

slightly decrease, is a counter-intuitive result, to be further

investigated in the future.

D. Effect of the Environment Shape

We investigate the spatial distribution of robots in more

detail, and consider the impact of the environment shape.



Fig. 6. Spatial distribution of n = 25 robots in a 300 cm × 300 cm
environment. Each cell indicates the mean number of robots present at the
end of 1000 simulation trials.

Fig. 7. Spatial distribution of n = 25 robots in an elongated, narrow
corridor environment, of dimensions 1500 cm × 60 cm. All robots start
from the cell in the center and execute the computation-free controller for
T = 600 s. Each cell indicates the mean number of robots present at the
end of 1000 simulation trials.

Figure 6 presents a heat map of the mean number of

robots that ended up in the 25 cells at the end of 1000

simulation trials. On average, the robots are more likely to

be present at the environmental boundary, and in particular,

in the four corners. Note that the robots are unable to detect

the boundary. They repel from each other in an attempt to

cover as much area as possible.

To investigate the swarms’ ability to spread through an

elongated, narrow corridor, a further 1000 simulation runs

are performed in a 25 × 1 cell environment, of 1500 cm ×
60 cm dimensions. Figure 7 shows a heat map of the spatial

distribution. The results are consistent with those obtained in

the square environment—the robots are more likely to end

up near the corner than in the center. However, every cell is

covered, on average, by 0.65 robots or more.

Figure 8 shows heat maps for three 600 cm × 300 cm
environments. We assume a 10×5 cell composition. The first

environment is free of obstacles. The second environment

is split into two, by a thin vertical wall in the center. The

wall contains an orifice in the middle. The third environment

contains two vertical walls, creating a z-shaped parkour. As

the environment is twice the size of the original environment,

we used n = 50 and T = 240 s. In general, the swarm

copes well with the restrictions. It can be noted that the

distributions are not fully symmetric in Figure 8b.

E. Navigating a Maze

In the following, we test the ability of the computation-free

controller to make a swarm navigate a simple but unknown

maze. The maze, shown in Figure 9a, contains a number of

challenges, including two dead-ends. The robots enter the

maze on the left-hand chamber, at a rate of one per 10 s,
12 s, 15 s, or 30 s. They execute the same controller as used

in the coverage experiments. Robots are removed as soon

as they are fully contained within the right-hand chamber.

Figure 9b shows the number of robots within the maze over

time. As one can see, the swarm can navigate the maze

with a throughput of 1 robot per 15 s. However, as the input

rate of new robots increases, the maze becomes increasingly

crowded, up to the point that no new robots can be placed.

(a)

(b)

(c)

Fig. 8. Spatial distribution of n = 50 robots in a 600 cm × 300 cm
environment, with (a) no obstacles, (b) a pair of internal walls, creating
an orifice, and (c) a pair of internal walls, creating a z-shaped parkour.
Each cell indicates the mean number of robots present at the end of 1000
simulation trials.

V. EXPERIMENTS

A. Experimental Setup

To validate the feasibility of computation-free coverage in

a real environment, we conducted experiments using n =
25 physical e-puck robots in a bounded 300 cm × 300 cm
environment. The arena was logically split into a 5× 5 grid

of cells of 60 cm× 60 cm dimensions.

The e-puck has a CMOS-RGB camera that faces in the

forward direction, and is used to emulate the line-of-sight

sensor. Each e-puck is wrapped in a red ‘coat’ and operates

in a well lit, white environment to improve the reliability of

detection. The e-puck is also equipped with a red ‘topper’ to

enable easier detection from the overhead camera for post-

analysis. Each e-puck is slightly physically different and, due

to only having two wheels, the camera direction, along the

pitch axis, may slightly change during a robot’s movement.

To account for these misalignments, the line-of-sight sensor

probes not 1 pixel, but rather a vertical column of 7 pixels,

taken symmetrically from the center of the image. The line-

of-sight sensor returns a positive reading (s = 1) if the color

of any of the 7 pixels is not bright6, and a negative reading

(s = 0), otherwise.

For each experimental trial, the e-pucks are initialized in

a different cell, as was done in the computer simulations.

The cells are selected using a uniformly random distribution.

6We test (R,G,B) ≺ (180, 180, 140), where (R,G,B) is the RGB
triplet of the color, and ≺ induces the partial order called product (or
component-wise) order. Whereas a test if a value is smaller than another
requires computation when implemented by digital circuits, an implementa-
tion in the analogue world is trivial (single high-gain differential amplifier).
Note that irrespective of how the line-of-sight sensor is implemented on the
e-puck, the control logic remains free from arithmetic computation.



(a)

(b)

Fig. 9. A swarm of robots using the computation-free controller to navigate
a maze. New robots enter the left chamber of the maze environment at a
constant rate of one per 10 s, 12 s, 15 s, 30 s. Robots are removed as soon
as they are fully within the right chamber. (a) Snapshot taken after 3600 s
with a rate of one per 15 s. (b) Number of robots that are, or have been,
within the maze over time for each of the rates.

(a) (b)

(c) (d)

Fig. 10. Sequence of snapshots taken from a typical experimental trial with
n = 25 physical e-pucks operating in a 300 cm × 300 cm environment.
The snapshots were taken at (a) 0 s, (b) 10 s, (c) 30 s, and (d) 120 s.

Moreover, the robots’ assume random orientations during

initialization. The robots operate for T = 120 s.

B. Results

We performed 20 experimental trials. All trials were

recorded by the overhead camera, and are available in the

online supplementary material [22]. From these video record-

ings, the positions of robots could be tracked. Figure 10

shows an example sequence of snapshots from a typical trial.

Figure 11 summarizes experimental results for all trials.

On average, the swarm achieved a cell coverage and area

coverage of 65.2% and 64.9%, respectively, which outper-

forms the previously obtained benchmarks (recall that the

corresponding values for the random walk controller were

(a) (b)

Fig. 11. Histogram showing the frequency of cell coverage (left) and area
coverage (right) percentages, as observed in 20 experimental trials with n =
25 robots, controlled by our optimized controller, which is deterministic and
computation-free. The environment has dimensions 300 cm× 300 cm.

60.8% and 61.3%, in simulation). The reduction in perfor-

mance may be attributed to the increased friction between the

walls and robots, which could prevent them from continuing

to rotate upon collision. Other factors include sensory noise

and unknown hardware failures. Out of the 20 trials, 3 robots

powered off during a trial, possibly due to low battery, which

was rectified for the following trials.

VI. CONCLUSIONS

This paper presented the simplest solution so far to

the problem of cooperatively covering an unknown two-

dimensional space with a swarm of anonymous mobile

robots. The proposed controller is applicable to robots that

lack run-time computation or storage. The solution requires

only a single bit of information per robot—whether or not

another robot is present in its direct line of sight.

A series of computer simulations showed that the con-

troller outperformed a random walk (both solutions being

optimized off-line). On average, in situations with no robot

redundancy, it covered around 71–76% (depending on the

coverage measure being used) of the space, whereas the

random walk covered around 61% of the space. The swarm

performance was found to degrade gracefully in the presence

of noise. In the case of either false-negative or -positive

noise, the swarm showed robust performance up to a noise

level of 100%. Moreover, the performance was not particu-

larly affected by the robot density in the environment. An

analysis of the spatial distribution revealed that on average

more robots ended up near the boundary, and in particularly

any corners, reducing the efficiency in scenarios without

robot redundancy. A further simulation experiment revealed

that a constant-rate inflow of robots can navigate a maze up

to a critical rate.

Experiments with swarms of 25 physical e-puck robots

demonstrated the feasibility of computation-free coverage on

a real physical platform. They revealed a moderate decrease

in performance, when compared to simulation trials.

In the present study, we focused on the coverage per-

formance and bounded regions that were to be uniformly

covered. In the future, one could equip the robots with an

additional sensor to detect specific features of the environ-

ment, such as the presence of polluting chemicals. Future

studies could take the energy consumption of the robots into

account, when designing the strategies. In the medium- to

long-term, strategies of the simplicity as presented here could

inform the design of novel micro-scale or nano-scale robot-

like systems. This would enable novel applications of multi-

robot coverage, which are not possible with present systems.
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