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A modelling paradigm for RNA virus assembly
Reidun Twarock1,2,3, Richard J Bingham1,2,3, Eric C Dykeman1,2 and
Peter G Stockley4

Virus assembly, a key stage in any viral life cycle, had long

been considered to be primarily driven by protein–protein

interactions and nonspecific interactions between genomic

RNA and capsid protein. We review here a modelling

paradigm for RNA virus assembly that illustrates the crucial

roles of multiple dispersed, specific interactions between

viral genomes and coat proteins in capsid assembly. The

model reveals how multiple sequence-structure motifs in the

genomic RNA, termed packaging signals, with a shared coat

protein recognition motif enable viruses to overcome a viral

assembly-equivalent of Levinthal’s Paradox in protein

folding. The fitness advantages conferred by this mechanism

suggest that it should be widespread in viruses, opening up

new perspectives on viral evolution and anti-viral therapy.
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Introduction
The formation of a viral protein container encapsulating a

virus’ genomic cargo is a prerequisite for the successful

propagation of a viral infection. A better understanding of

this process can therefore be exploited for therapy, either

via the development of antiviral strategies inhibiting

assembly, or the repurposing of the self-assembly process

for the design of gene vectors and vaccines.

The initial focus in the study of virion assembly was

directed towards in vitro studies of capsid self-assembly in

the absence of other viral components. Models developed

in tandem with such experiments provided an

understanding of the kinetics [1–3] and thermodynamics

[4,5] of spontaneous capsid self-assembly, and of the roles

of protein–protein interactions in defining quasiequiva-

lent capsid geometries [6,7]. They also elucidated the

local rules underpinning coat protein (CP) self-association

during capsid formation [8,9]. Many viruses, especially

double-stranded DNA viruses, assemble their capsids

prior to genome packaging via an ATP driven packaging

motor. The protein-centric models, with the addition of

scaffolding proteins in the case of larger capsid shells, are

therefore an adequate context to study capsid assembly in

these cases. By contrast, single-stranded RNA viruses, the

largest family of viruses and containing many important

human pathogens, package their genomes during capsid

assembly, exhibiting a co-assembly process. For these

viruses, capsid assembly has to be modelled in tandem

with genome packaging. An important aspect of virus

assembly in the presence of genomic RNA is the need for

genome compaction [10], and several groups have made

important contributions to the modelling of this aspect of

virus assembly [11�,12,13�,14�]. The impact of non-spe-

cific electrostatic interactions between genomic RNAs

and CP [15–18,19��] and of the stiffness of the RNA

molecule on the assembly process [20�] have been

analysed. It has also been shown that the secondary

structure of the RNA molecules play an essential role

in determining capsid morphology in the self-assembly of

Cowpea Chlorotic Mottle Virus (CCMV)-like particles

[21]. The roles of genomic RNA have been studied in the

assembly of helical viruses [22��]. Moreover, molecular

dynamics simulations of capsid assembly, both in the

absence and presence of different types of cargoes, have

made important contributions to our understanding of

virus assembly [23��,24]. Indeed, viral capsids can be

assembled in vitro around different types of cargoes,

including anions [25–27]. The models presented here

go one step further. Instead of viewing viral genomes

as passive passengers with at most non-specific electro-

static contributions to the assembly process, they demon-

strate the consequences of the cooperative action of

multiple, sequence-specific contacts between genomic

RNA and CP.

Genomic RNA is not a passive passenger
Even in the absence of the genomic RNA, the CP of most

single-stranded RNA viruses can self-assemble in vitro,

but the process is typically much faster and more efficient

in the presence of genomic RNA. This is the case, for

example, for the assembly of the MS2 capsid (Figure 1) in

the presence of multiple copies of the translational
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repressor (TR) [28], a stem–loop in the genomic RNA

known to function also as a packaging signal. This obser-

vation suggests that the contributions from genomic RNA

to the assembly process are significant and therefore

cannot be neglected in the assembly models.

There is only one copy of TR in the MS2 genome.

Binding of TR to the CP dimer triggers a conformational

switch from the symmetric dimer, the dominant form in

solution, to its asymmetric conformation [29] that is

needed in a 2:1 ratio for the construction of the capsid

(Figure 1a). Normal mode analysis has revealed the

structural features of TR that are required for this allo-

steric effect [30,31], demonstrating that many other,

multiple dispersed, stem–loops in the MS2 genome could

trigger the same effect [32]. This has resulted in the

packaging signal (PS) hypothesis: Multiple dispersed

secondary structure elements in the genomic RNA, with

CP recognition features akin to those of the known high

affinity PS, also trigger conformational changes of the CP

dimer to its asymmetric conformation. These multiple

dispersed sites have been called PSs, in analogy to the

high affinity PS with which they share their characteristic

feature for CP recognition. In the case of MS2, assembly

mediated by these multiple dispersed PSs is also known

as the dimer-switching model [33]. In other viruses, PSs

can play a number of different roles in promoting capsid

formation [35��,36�,45]. However, these different scenar-

ios all share the same basic mechanism of PS-mediated

assembly, in which multiple dispersed sites in the (pre)

genomic viral RNA with affinity for CP promote efficient

formation of a viral capsid with the correct geometry.

A mathematical model of PS-mediated
assembly
In order to investigate how such multiple dispersed PS

sites mediate capsid assembly, we developed a

mathematical model that captures their collective impact

on virus assembly efficiency (Figure 2) [37,38��]. From a

geometric point of view, the simplest model of an icosa-

hedral capsid is a dodecahedral shell formed from 12 pen-

tagonal capsid building blocks (pentamers). This is rep-

resentative of small plant viruses (T = 1 geometries in the

Caspar–Klug classification [39]), or the structures of Picor-

naviruses ((Pseudo)T = 3 structures in which pentamers

are formed by five protomers, each consisting of different

polypeptides corresponding to the structural protein (VP)

units). The model captures the assembly of 12 pentamers

into a dodecahedral shell according to a set of simple local

rules (Figure 2b): pentamers associate with, and disasso-

ciate from, PSs on the genomic RNA with rates depend-

ing on CP:PS affinity. As the precise nucleotide

sequences of the PSs vary around their shared recognition

motif, their affinities for CP can be distinct. In our model,

they fall into three categories, weak (from 0 to �4 kcal/

M), intermediate (from �4 kcal/M to �8 kcal/M), and

strong (from �8 kcal/M to �12 kcal/M), reflecting affini-

ties seen in MS2 [40,41]. If two pentamers are bound to

adjacent PSs, they form (or subsequently break) CP–CP

interactions with rates determined by the free energy of

the CP:CP bonds, chosen to be �2.5 kcal/M following

estimates in Ref. [4]. This model allows us to study the

determinants of PS-mediated assembly in a scenario of

reduced computational complexity.

A systems approach is key
Assembly against a backdrop of cellular competitor RNAs

(in a 1:300 ratio consistent with experimental studies)

[38��] reveals relatively low yields of viral particles com-

pared with an abundance of misencapsidated particles

(Figure 3), implying that in this simple form the model

would not account for the assembly efficiency expected in

vivo. This suggests that a key feature of the assembly

process in vivo is missing in the model. Bacteriophage Qb
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Figure 1
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Genomic RNA defines capsomer conformation in MS2. (a) The MS2 capsid (based on pdb-id 1ZDH) is formed from asymmetric (blue/green) and

symmetric (pink) forms of the coat protein dimer in a 2:1 ratio. (b) The stem–loop TR triggers a conformational change from the symmetric to the

asymmetric form of the coat protein dimer. The characteristic packaging signal recognition motif is given by (x)xYA in the apical loop of the stem–

loop, and the A in the 50 bulge. Other stem–loops in the viral genome sharing aspects of this motif can also function as packaging signals [29,32].
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assembly has been studied by Eigen and collaborators

[42], demonstrating that CP concentration gradually

builds up while virion assembly is taking place, a phe-

nomenon known as the protein ramp. Therefore, instead

of adding the entire aliquot of CP (corresponding to the

number of CP needed to fully encapsulate all viral RNAs

in the simulation) at the start, a protein ramp was built

into the model that reflects the gradual build-up of CP

concentration, as is the case in a viral infection in

vivo. Under these conditions, the model outcome reflects

the observed in vivo behaviour for MS2 and other single-

stranded RNA viruses [43,44], with viral particles now

being the dominant species at the end of the simulation.

These results enable an important biological conclusion.

They imply that the cooperative action of the PSs in

enhancing assembly efficiency is best observed in experi-

ments thatarecarriedoutundertheconditionsof theprotein

ramp, that is, a CP titration, explaining perhaps why PSs

have long been missed by in vitro experiments. Indeed,

experiments carried out in the context of a protein ramp

reveal the hallmarks of PS-mediated assembly in a model

virus, demonstrating that both the spacing between PSs and

their recognition motifs impact on virion assembly [45��].

A solution to a viral-equivalent of Levinthal’s
Paradox
The model also reveals the mechanism by which viruses

efficiently navigate the landscape of possible assembly

intermediates [38]. In protein folding, the ensemble of

potential folding pathways of an amino acid sequence into

its native conformation is so complex that a random

exploration of different options would take longer than

the known age of the universe. Despite this, proteins fold

within biologically meaningful timeframes, a phenome-

non known as Levinthal’s Paradox, which we now under-

stand, because protein chains do not sample all possible

conformations on their way to their folded state. Similarly,

the number of geometrically distinct ways in which a viral

capsid can be built from CP is vast, yet virus assembly

must have evolved strategies to bias assembly to the most

efficient assembly pathways in order to sustain a produc-

tive infection against host defence mechanisms. Our

model of PS-mediated assembly demonstrates how mul-

tiple dispersed PSs with varying affinities for CP can

achieve this under the condition of the protein ramp

(Figure 3). In particular, variations in PS affinities for

CP across the genomic sequence result in nucleation of

assembly at specific sites, as opposed to nonlocalised

nucleation across the full length of the RNA genome

in the absence of the protein ramp, that is, PSs impact on

nucleation behaviour. Only a small number of distinct

assembly pathways from the ensemble of geometrically

possible ones are actually realized during PS-mediated

assembly, which are characterized by assembly inter-

mediates that deviate only minimally from those max-

imising CP:CP contacts. This demonstrates that the PS

distribution mitigates the combinatorial complexity of the

assembly process. In short, it solves a virus-equivalent to

Levinthal’s Paradox in protein folding.
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A modelling paradigm for packaging signal-mediated assembly. (a) A dodecahedral model system is used as a coarse-grained representation of

capsid geometry. (b) The order in which the protein building blocks of the capsid (pentamers) are recruited is indicated by a connected line (path)

that connects midpoints of adjacent pentamers. A connected subset of such a path is shown superimposed on capsid assembly intermediates

formed from four pentamers; the two examples represent different assembly scenarios. (c) The assembly of the dodecahedral model system from

12 pentamers is modelled in the presence of RNAs, that are represented by 12 beads, each of which represents a PS. Beads are colour-coded

according to their affinities for CP, as green (strong), blue (intermediate) and red (weak). (d) The system assembles based on a set of local rules

that are formulated as assembly reactions, describing RNA:CP and CP:CP interactions.
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Hamiltonian paths analysis
Different assembly scenarios can be encoded by geomet-

ric book-keeping devices that capture the order in which

PSs make contact with CP during virus assembly. In

particular, by connecting PS binding sites on the capsid

interior in the order in which the corresponding PS:CP

contacts are made, a connected string is obtained that

provides a geometric representation of the assembly

pathway. Superposition of all possible such strings results

in a polyhedral shape with vertices at the PS binding sites

at the capsid’s interior surface, and edges connecting

vertices on neighbouring capsomers. From a mathemati-

cal point of view, each individual string corresponds to a

Hamiltonian path on this polyhedron, that is, a connected

path visiting every polyhedral vertex precisely once.

They do not represent, however, the exact location of

the viral genome, which can make excursions into the

capsid interior (Figure 4a). The (local) geometric proper-

ties of these paths can be classified for different types of

capsid geometries. These local properties of the paths (as

illustrated in Figure 4b for MS2) can then be used, in

combination with a bioinformatics search for potential PS

A modelling paradigm for RNA virus assembly Twarock et al. 77

Figure 3
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The cooperative effects of PS distributions can only be observed in the presence of the protein ramp. (a) Differences in the PS affinity distributions

for different RNAs, that is, different bead configurations in the mathematical model, result in differences in particle yield. The spectrum of different

particle yields over 30 000 random RNAs is shown, with the best (RNA1) and worst (RNA2) performing RNA shown to the right. Cellular RNAs are

modelled by strings of low affinity PSs (red beads). (b) In a viral infection, protein is synthesized while capsid assembly already takes place, a

phenomenon known as the protein ramp. It is modelled via gradual addition of CP according to the graph shown. (c) The assembly of virus and

malformed particles in the absence (left) and presence (right) of the protein ramp reveals the importance of the protein ramp for virion yield. In

particular, in the presence of the protein ramp, assembly of RNAs (shown here for RNA1) is more efficient than in its absence, where malformed

species deplete the protein resource. (d) Nucleation behaviour depends on the protein ramp: it is dispersed across the genome (indicated by

hooks together with an indication of the percentage of sequences nucleating at any given pair of PSs) in the absence, and localized at the 50 end

in the presence of the protein ramp.
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candidates, to identify the likely PS distribution

[32,46,47��]. Note that it is not necessary for all binding

sites to be occupied, and that the Hamiltonian path

constraints can be more restrictive in some regions of

the genome than in others. For example, our Hamiltonian

Paths Analysis predicted PSs for bacteriophage MS2, that

are in excellent agreement with the RNA:CP binding

sites identified via cross-linking immunoprecipitation

(CLIP) experiments [48��]. Our analysis shows that

PSs are more constrained in one half of the MS2 capsid

78 Virus structure and expression

Figure 4
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Hamiltonian Path Analysis. (a) Example of a Hamiltonian path in MS2, together with the 3D structure of a genomic fragment encompassing two

neighbouring PSs (The stem–loops (PDB ID: 5TC1) and the backbone connecting them have been taken from the high-resolution structure in Ref.

[50��], and the coat protein shell is shown as ribbons based on the icosahedrally averaged X-ray structure (PDB ID: 1ZDH). The example

demonstrates that Hamiltonian paths are mathematical idealization of more complex RNA configurations. (b) A classification of all possible

Hamiltonian paths for a given capsid geometry results in a set of local rules, that can be used to formulate combinatorial constraints in a

bioinformatics search for PS motifs. (c) PSs identified in a cryo-EM reconstruction of MS2 at 8.7 Å resolution (left; adapted from Ref. [49��]) are

located predominantly in one half of the capsid. This is in agreement with model predictions (right; based on results from Ref. [32]), showing that

positions of strongly constrained PSs (PS bound to CP indicated as red rhombs) are predominantly located in one half of the capsid surface (here

shown as a planar embedding of an icosahedral surface, with capsid protein dimers indicated as rhombs in colour-coding from Figure 1a). (d) PS

positions predicted by Hamiltonian Path Analysis are shown relative to the primary and secondary structure of the MS2 genome, with green, red

and blue dots or lines representing PS with high, intermediate and low affinity for capsid protein. All 15 PSs identified in a cryo-EM reconstruction

of MS2 at 3.6 Å resolution [49��] (boxed) have been predicted by Hamiltonian Path Analysis.
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(see red rhombs in Figure 4c based on Ref. [32]), which

agrees well with an asymmetric EM reconstruction of

MS2 at 8.7 Å resolution [49��]. Moreover, all PSs identi-

fied in a subsequent EM reconstruction at 3.6 Å resolu-

tion [50��] had previously been identified via our Hamil-

tonian Path Analysis method (Figure 4d). This

demonstrates the utility of mathematical tools in identi-

fying salient features in the organization of a packaged

viral genome.

Conclusions
Modeling of PS-mediated assembly demonstrates the

distinct advantages of PSs for efficient capsid formation.

As PS-mediated assembly confers fitness advantages to

viral particles assembling via this mechanism, it is likely

that it is widespread in nature. The discovery of PSs in a

number of viral families infecting different hosts includ-

ing humans supports this hypothesis. Even Hepatitis B

virus, a DNA virus, has been shown to reveal packaging

signals in its pregenomic RNA, that impact on capsid

geometry by biasing assembly towards formation of

T = 4 shells [36�]. It is likely that multiple dispersed

PSs will be discovered in many more viral systems over

the next decade, for example, in the alphaviruses [51].

Similar assembly mechanisms may even occur more

widely in nature, for example in the assembly of repur-

posed Gag-like proteins [52�] with roles in intercellular

RNA transfer across synaptic boutons [53�].

The models of PS-mediated assembly have provided

mechanistic insights that could not have been obtained

via experiment alone. They revealed that hallmarks of

PS-mediated assembly can only be observed in the

context of scenarios reflecting in vivo infections, and

demonstrated the importance of the PS affinity distribu-

tion for efficient capsid formation. The Hamiltonian

path approach has moreover served as a tool for the

identification of PSs [32]. The discovery of PS-mediated

assembly has opened up novel opportunities for anti-

viral therapy, for example, via small molecular weight

compounds blocking either the PS or CP sites of the PS:

CP interactions. The modelling paradigm reviewed here

provides a basis for the study of viral infections and viral

evolution, and such models have been constructed in

order to study the merits of different anti-viral strategies

[54�] and the resilience of PS-mediated assembly under

mutational pressures [55�]. The detailed understanding

of the characteristics and functional roles of the PS

distribution has moreover enabled novel applications

in bionanotechnology. The PS assembly code can be

isolated and repurposed for the construction of stable

virus-like particles with improved assembly efficiency

compared with their viral counterparts, as demonstrated

for Satellite Tobacco Necrosis Virus [56��]. Such parti-

cles might be used as decoys, gene delivery vectors, or

for vaccination purposes.
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