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Abstract—A distributed sensor array network consisting of
sub-arrays with arbitrary locations and rotation angles placed
on unmanned aerial vehicle (UAV) platforms is studied, where
narrowband electro-magnetic waves are sent out by a transmitter,
and the echo signals reflected from the targets are then received
by the distributed UAV system. Based on this model, a joint
reference signal based beamformer is proposed, leading to
improved performance by exploiting the collected information
across different sub-arrays simultaneously. Simulation results
show that this novel beamformer is capable of extracting the
signals of interest while suppressing interfering signals, and a
lower mean square error (MSE) and higher output signal to
interference plus noise ratio (SINR) are achieved compared with
a regular reference signal based beamformer performed using a
single sub-array.

Index Terms—Adaptive beamforming, distributed sensor net-
work, unmanned aerial vehicle (UAV), reference signal based
beamformer.

I. INTRODUCTION

To enhance the signals of interest (SOIs) from certain di-

rections, adaptive beamformers (also known as spatial filters),

which adjust their weight vector in a data-dependent manner

to extract the SOIs while suppressing the interfering signals

from other directions, play a very important role in various

applications including wireless communications, radar, sonar,

navigation, microphone array processing, and so on [1]–[3].

The linearly constrained minimum variance (LCMV) beam-

former and the reference signal based (RSB) beamformer are

two classes of well known beamformers [4]–[7]. With known

or prior estimated direction of arrivals (DOAs) of the SOIs,

the LCMV beamformers and their extensions [8], [9] offer

improved robustness against inaccurate DOA estimates and

sensor position errors by imposing constraints to the minimiza-

tion problem of the output variance. For RSB beamformers

[10], [11] where a reference signal is assumed to be available,

adaptive beamforming is achieved by minimizing the mean

square error (MSE) between the reference signal and the

beamformer output. For adaptive beamformers [12]–[15], most

of the adaptive algorithms employed are derived based on

some stochastic gradient (SG) methods [16].

Traditionally, an adaptive beamformer is usually based

on a single array with its sensors considered as part of a

whole centred system, and distributed sensor arrays such as

∗Corresponding authors: W. Liu and L. Wang

distributed microphone arrays [17], multistatic radar systems

[18], and MIMO radars with widely separated antennas [19],

[20] have attracted increasing attention in recent years.

In this paper, a distributed sensor array network consist-

ing of sub-arrays based on unmanned aerial vehicle (UAV)

platforms is first introduced, where the sub-array on each

UAV may have an arbitrary rotation angle in the predefined

Cartesian coordinate system, leading to different incident

angles for different UAVs. Due to the extremely large spacing

among the UAV platforms compared to half wavelength at

the working frequency, SOIs received at different sub-arrays

should not be considered as narrowband any more. Further-

more, since the UAVs may have unknown positions, velocities,

moving directions, and rotation angles, the enhancement of

the received SOIs by jointly exploiting information across all

distributed sub-arrays is a very challenging problem. In this

studied scenario, one transmitter sends out a known signal

and it is then reflected back from the target and received by

the distributed sensor array system. By considering the known

transmitted signal as the reference signal, a joint reference

signal based beamformer (JRSB) is then proposed to exploit

the information acquired by all sub-arrays simultaneously,

leading to improved performance compared with that of a

regular RSB applied to a single UAV.

This paper is structured as follows. The distributed sensor

array network with different sub-arrays carried by distributed

UAV platforms is presented in Section II. The developed joint

reference signal based beamformer (JRSB) is proposed in

Section III. Simulation results are provided in Section IV, and

conclusions are drawn in Section V.

II. SYSTEM MODEL FOR DISTRIBUTED UAV PLATFORMS

Consider a distributed sensor array network consisting of M
linear sub-arrays shown in Fig. 1, where each sub-array is fixed

on a UAV platform, and Um(xm, ym) represents the location

of the m-th UAV in a predefined Cartesian coordinate system.

A transmitter is employed to send out relatively narrowband

(compared to the sub-array aperture) signal, and the echo

signals reflected back from far-field targets together with the

interferences from unknown directions are then received by

the UAV-based sub-arrays.

Fig. 2(a) gives the general structure of the linear sub-

array with Lm sensors placed on the m-th UAV. Assume that
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Fig. 1. A general model for a distributed sensor array system based on UAV
platforms.
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Fig. 2. A general structure and the time delay for the m-th UAV.

there are K narrowband signals (including the echo signals

and interferences) with incident angles φk, k = 1, 2, . . . ,K
(φk is measured between the direction of the signal and the

y-axis of the Cartesian coordinate system). It is clear that

θm,k = φk+ϕm, where the arbitrary rotation angle ϕm for the

m-th sub-array is defined between the end-fire direction of the

linear sub-array and the x-axis, while the incident angle θm,k

of the k-th signal observed at the m-th sub-array is measured

between the direction of the signal and the broadside of the

array. The set of sensor positions for the m-th UAV is

Sm =
{

~
m
lm
d, 0 ≤ lm ≤ Lm − 1, lm ∈ Z

}

, (1)

where Z is the set of all integers, and d ≤ λ/2 is the unit

spacing with λ being the signal wavelength.

Denote xm(t) as the LM × 1 array observed signal vector,

and the sub-array output model is given by

xm(t) = A(θm, t)sm(t) + n̄m(t) , (2)

where sm(t) = [sm,1(t), sm,2(t), . . . , sm,K(t)]
T

represents

the signal vector consisting of all the impinging signals

with {·}T denoting the transpose operation, n̄m(t) is the

noise vector of the m-th sub-array, and A(θm, t) =
[a(θm,1, t), . . . , a(θm,K , t)] is the Lm × K steering matrix,

with its k-th column vector a(θm,k, t) being the steering vector

corresponding to the k-th signal, expressed as

a(θm,k, t) =
[

am0,k(t), a
m
1,k(t), . . . , a

m
Lm−1,k(t)

]T
, (3)

with

amlm,k(t) = bmlm,k(t)e
−j

2π~
m
lm

d

λ
sin(θm,k) , (4)

where the reflection coefficient bmlm,k(t) of the k-th target

corresponding to the lm-th sensor of the m-th sub-array may

be time-varying due to target motion or radar cross section

(RCS) fluctuations, and it is assumed to be nearly unchanged

in the observation time window.

Although the received signals are narrowband, the differ-

ence between those signals across sub-arrays from the same

target can not be considered as a phase shift due to the much

larger spacing between sub-arrays compared with the signal

wavelength. As shown in Fig. 2(b), we take the origin O(0, 0)
as the reference, and the angle ∠XOUm between the x-axis

and the direction from O(0, 0) to the m-th UAV position

Um(xm, ym) can be calculated by

∠XOUm = arctan 2(ym, xm) , (5)

where arctan 2(ym, xm) ∈ (−π, π] returns the four-quadrant

inverse tangent of ym and xm.

Then, we can obtain ROUm
=

√

x2
m + y2m and angle

∠Pm,kOUm = π
2 − ∠XOUm + φk, where ROUm

is the

distance between O and Um. Therefore, we have ROPm,k
=

ROUm
· cos(∠Pm,kOUm), and the time delay between the

origin and Um is

∆τm,k = −ROPm,k

c
= −

√
x2
m+y2

m·cos(∠Pm,kOUm)

c
, (6)

where c is the wave propagation speed.

Denote sk(t), k = 1, 2, . . . ,K as the k-th signal observed

at the origin O(0, 0). Then the array output model of the m-th

sub-array is updated to

xm(t) = A(θm, t)sm(t) + n̄m(t)

= A(θm, t)s(t− τm) + n̄m(t) ,
(7)

where s(t− τm) = [s1(t−∆τm,1), . . . , sK(t−∆τm,K)]
T

.

III. JOINT REFERENCE SIGNAL BASED BEAMFORMER FOR

DISTRIBUTED UAV PLATFORMS

A. The Structure of the Proposed Beamformer

To exploit the information acquired by all sub-arrays simul-

taneously, a joint reference signal based beamformer (JRSB)

is proposed with its structure after sampling with a frequency

fs given in Fig. 3, where J − 1 delay elements are allocated

for each sensor channel with Ts = 1/fs being the time

delay between adjacent taps of the tapped delay-lines, which

are actually equivalent to a series of finite impulse response

(FIR) filters. xm,lm [n] is the signal received at the lm-th

sensor of the m-th sub-array, the reference signal r[n] is

a properly delayed copy of the known transmitted signal,

and wm[n] =
[

{wm
0 [n]}T , {wm

1 [n]}T , . . . , {wm
J−1[n]}T

]T
is
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Fig. 3. A general structure of the proposed joint reference signal based
beamformer.

the weight vector holding LmJ complex coefficients, where

each wm
j [n] =

[

wm
0,j [n], w

m
1,j [n], . . . , w

m
Lm−1,j [n]

]T
, j =

0, 1, . . . , J − 1, and {·}∗ is the complex conjugate operation.

Define x̃m[n] =
[

xT
m[n],xT

m[n− 1], . . . ,xT
m[n− (J − 1)]

]T

as the LmJ ×1 observed signal vector. With L =
∑M

m=1 Lm,

we construct an LJ × 1 weight vector w[n] and an LJ × 1
observed signal vector x̃[n] by

w[n] =
[

wT
1 [n],w

T
2 [n], . . . ,w

T
M [n]

]T
.

x̃[n] =
[

x̃T
1 [n], x̃

T
2 [n], . . . , x̃

T
M [n]

]T
,

(8)

Then, the beamformer output y[n] is

y[n] = wH [n]x̃[n] , (9)

with {·}T denoting the Hermitian transpose.

Finally, the error between the reference signal r[n] and the

output y[n] is obtained by

e[n] = r[n]− y[n]

= r[n]−wH [n]x̃[n] .
(10)

B. Adaptive Algorithms for the Proposed Beamformer

Based on the proposed structure, the joint reference signal

based beamformer can be constructed by employing all kinds

of standard adaptive filtering algorithms, such as the least

mean square (LMS) algorithm and the recursive least squares

(RLS) algorithm [3]. In this paper, the Wiener solution basd

on finite sample approximation and the normalized least mean

square algorithm (NLMS) are employed for beamforming as

representative examples. The cost function ξ[n] at the time

instant n, constructed by the mean square error (MSE), is

formulated as

ξ[n] = E {e[n]e∗[n]}
= E

{

(r[n]−wH [n]x̃[n])(r[n]−wH [n]x̃[n])∗
}

= σ2
r −wH [n]p− pHw[n] +wH [n]Rxxw[n] ,

(11)

where E{·} is the expectation operation, σ2
r = E {r[n]r∗[n]}

is the power of the reference signal, p = E {x̃[n]r∗[n]} is

the cross-correlation vector between the received array signals

and the reference signal, and Rxx = E
{

x̃[n]x̃H [n]
}

is the

covariance matrix of the received signals.

The gradient vector of the cost function ξ[n] with respect

to wH [n] is given as

∇ξ[n] = −p+Rxxw[n] . (12)

The optimum weight vector wopt corresponding to the

minimum MSE can be obtained by solving ∇ξ[n] = 0, leading

to the well-known Wiener solution [3], [16],

wopt = R−1
xx

p . (13)

In practice, the covariance matrix Rxx and the cross-

correlation vector p can be estimated by

R̃xx =
1

N

N−1
∑

n=0

x̃[n]x̃H [n] ,

p̃ =
1

N

N−1
∑

n=0

x̃[n]r∗[n] ,

(14)

where N is the number of data samples.

Then, by replacing Rxx and p with the above sample

covariance matrix R̃xx and sample cross-correlation vector

p̃, we can obtain the sample matrix inversion (SMI) solution

based on finite sample approximation, given by

wSMI = w̃opt = R̃−1
xx

p̃ . (15)

However, a sufficient number of data samples is required

for accurate second-order statistics approximation, and the

complexity of the SMI solution is extremely high due to the

inverse operation.

To reduce the computational complexity, each of the expec-

tation values can be simply replaced by an instantaneous single

sample estimate based on x̃[n] and r[n], i.e., p̂ = x̃[n]r∗[n]
and R̂xx = x̃[n]x̃H [n], and the gradient vector ∇ξ[n] is

approximately

∇ξ[n] ≈ −p̂+ R̂xxw[n] = −e∗[n]x̃[n] . (16)

Then, we can update the weight vector w[n] with each new

data sample in the negative direction of the gradient with a step

size µ0, leading to the least mean square (LMS) algorithm,

shown as

w[n+ 1] = w[n] + µ0e
∗[n]x̃[n] , (17)

where the step size µ0 is a positive real-valued constant

weighting the amount of innovation applied at each step, and

it can be normalized in a data dependent manner to ensure an

approximately constant rate of adaptation by defining

µ0 =
µ

x̃H [n]x̃[n]
. (18)



Then, the resultant normalized least mean square algorithm

(NLMS) can be expressed as

w[n+ 1] = w[n] +
µ

x̃H [n]x̃[n]
e∗[n]x̃[n] , (19)

where we normally choose 0 < µ < 0.5 to ensure stability of

the NLMS algorithm.

IV. SIMULATION RESULTS

Consider M = 3 sub-arrays carried on three UAV platforms.

Each sub-array is a uniform linear array with Lm = 6
sensors, ∀m = 1, 2, 3, and the unit spacing d = λ/2. The

positions of the three sub-arrays are U1(0,−40), U2(25, 20),
and U3(−60, 70), while their rotation angles are 55◦, 30◦,

and −20◦, respectively. The reference signal is adjusted with a

proper time delay compared to the transmitted signal according

to a coarse estimation of the target range of interest. For

the far-field targets, the reflection coefficients bmlm,k(t) are

randomly generated constant complex values sharing the same

amplitude for all sensors. We set the signal to noise ratio

(SNR) to 20dB, J = 80, and µ = 0.1. The working frequency

is 10 GHz and the signal propagation speed c = 3 × 108

m/s with the signal wavelength λ = 0.03m. The spacings

among the UAV platforms are 65.00m, 98.62m, and 125.30m,

respectively, and all of them are extremely larger than the

signal wavelength. Note that these information are unknown

for the beamformers.

In the first scenario, there are K = 3 impinging signals

with one far-field target coming from −10◦, while the incident

angles of the two interferences are −30◦ and 20◦, respectively.

The signal to interference ratio (SIR) for each interfering

signal is 0dB. Then, we focus on the ensemble mean square

error (MSE) results of e[n] with respect to the number of

samples, defined as

EMSE[n] =

√

1

Q

∑Q

q=1
|êq[n]|2 , (20)

where Q is the number of independent simulation runs, and

êq[n] is the error at iteration number n of the q-th trial.

Fig. 4(a) gives the ensemble MSE results for different

beamformers based on Q = 500 Monte Carlo simulation

trials, where the NLMS JRSB represents the proposed JRSB

using the NLMS algorithm, the SMI JRSB is the proposed

JRSB employing the SMI solution, and the regular NLMS

RSB represents the RSB using the NLMS algorithm based

on a single sub-array located at U1(0,−40) with a rotation

angle 55◦. Obviously, both the NLMS JRSB and the SMI

JRSB provide a much faster convergence speed as well as

lower MSEs than the regular one. Furthermore, the SMI JRSB

provides the best results for a sufficient number of samples

involved. It is noted that R̃xx is a matrix with a size of

1440 × 1440, and there exists serious degradation in the

performance of the SMI JRSB for a small number of samples

less than 1000 due to worse approximations to the second-

order statistics.

The output signal to interference plus noise ratio (SINR)

of different beamformers are shown in Fig. 4(b). It is clear
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Fig. 4. Ensemble MSE and Output SINR of different beamformers for K = 3

with one target.
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Fig. 5. Ensemble MSE and Output SINR of different beamformers for K = 4

with two targets.

that the output SINR of the regular NLMS RSB is the worst

among the three beamformers, while the output SINR of the

two JRSBs are close to each other with that of the SMI JRSB a

bit higher, which is consistent with the ensemble MSE results

in Fig. 4(a).

In the second scenario, we add another far-field target with

incident angle of −50◦, and other settings remain the same

as the first scenario. Now there are K = 4 impinging signals

with two being of interest. The ensemble MSE results and

the output SINR of different beamformers are shown in Figs.

5(a) and 5(b), respectively, which again verify the superior

performance of the proposed NLMS JRSB and SMI JRSB.

V. CONCLUSIONS

In this paper, a distributed sensor array network consisting

of sub-arrays placed on UAV platforms has been studied,

where arbitrary locations and rotation angles are allocated to

each UAV-based sub-array. In this studied model, a trans-

mitter is used to send out a single signal while the echo

signals reflected from far-field targets are then received by the

distributed sensor array system. To enhance the SOIs while

suppressing interfering signals, a joint reference signal based

beamformer (JRSB) was proposed to exploit the information

acquired by all the sub-arrays, where the NLMS algorithm and

sample matrix inversion (SMI) solution based on finite sample

approximation are employed for adaptive beamforming. It has

been shown by simulations that the proposed JRSB offers a

much better performance than the regular beamformer applied

to a single sub-array.
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