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Abstract

In this article we propose the use of an information-content based measure

as a proxy for supply chain complexity. The focus of our research is the prob-

lem of structural complexity in the supply chain, i.e. the complexity emanating

from the proliferation of products, channels and markets. Notwithstanding it is

widely agreed among practitioners that this proliferation damages supply chains,

rendering them less efficient, there is still need for a mechanism for measuring

structural complexity and evaluating its impact on the firm’s performance. In

an attempt to filling this void, we propose a definition that originates from the

firm’s business strategy and, based on it, suggest the direct use of entropy as

a more austere measure for structural complexity than other available alterna-

tives, which rely heavily in the use of typically hard to acquire data. We show

that the suggested measure has some interesting mathematical properties (to

which we refer to as internal consistency) together with the capability of re-

producing certain empirical regularities observed in supply chain management

(external consistency). Moreover, the proposed measure has attributes that are

not present in other measures: it requires a limited and easily accessible amount

of data, it allows direct comparison between firms or business units, and it is a

useful tool for assessing the impact on structural complexity of alternative man-

agerial decisions (the look-ahead property). Numerical examples are provided.
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1. Introduction

The aim of this article is providing a framework which, on one hand, offers a

conceptualisation of the term supply chain structural complexity, which is suit-

able for academic work and, on the other, provides a justification for the use of

entropy as an information-content based measure of complexity that can be ap-

plied at the strategic-level analysis. This is achieved by associating the amount

of information dealt with by a manager –in the form of messages originating

from stock keeping units (SKUs), markets and channels- with what practition-

ers refer to as “complexity”. In this process, we detach our discussion from

administrative and operational-level issues in supply chain. Moreover, instead

of identifying structural complexity with factors such as the complicatedness of

transformation processes, intricateness of managerial procedures, or the uncer-

tainty inherent to supply and demand, we consider it a phenomenon emanating

from the proliferation of products, channels and markets (Heywood et al., 2007),

which can potentially aggravate the negative effects of those factors on the firm’s

performance.

In this work we adopt a notion of complexity voiced by practitioners in

supply chain management, who associate complexity with numerousness or pro-

liferation2. Three examples must suffice to illustrate this. By 2006, researchers

from George Group (2006) affirmed: “as businesses increase their product and

service portfolios in response to evolving customer demands ..., they run the

risk of adding too much complexity, which can tax existing resources and ul-

timately harm returns”. In turn, John Mariotti (2008) wrote: “In the quest

for high growth in low/no-growth markets, companies have proliferated nearly

every-thing: products, customers, markets, suppliers, facilities, locations, etc.

Some of the time, the proliferation actually does lead to top-line revenue growth,

but as the top line goes up, the bottom line actually goes down dramatically”.

Finally, Fisher et al. (2017) affirm that in the quest for increasing revenue.

2We hereby stress that our work distinguishes between complexity, associated with numer-
ousness, and risk, mostly associated with uncertainty.
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businesses “had continued to chase growth by opening new stores far past the

point of diminishing returns... [and] keep expanding until their chains begin to

collapse under their own weight” .

An important message emerges from this discussion: supply chain complex-

ity stems from strategic choices and other organisational and operational deci-

sions made without considering their systemic effects (Saeed and Young, 1998).

The costs are huge: it erodes profit, increases inventory, hinders the agility of

the supply chain (Adams et al., 2016) and may even increase capital investment

costs (Saeed and Young, 1998). In 2007, a study by A.T. Kearney suggested

that complexity management could lead to an upturn in EBIT of 3 to 5 percent-

age points (Scheiter et al., 2007). More recently, Adams et al. (2016) mention

the case of a large food manufacturer facing about 10% margin loss due to in-

creasing complexity; likewise, in the complexity analysis of a large manufacturer

Menezes and Ruiz-Hernández (2019) find that for every unit of increase in com-

plexity, based on the measure proposed in this article, there may be a reduction

of between 1.4 and 3.4 percentage points in gross margins3.

The discussion above stresses the need for a measure of supply chain com-

plexity that can be used for evaluating its impact on costs and financial perfor-

mance. This article constitutes an attempt for providing such framework. We

present a theoretical framework that satisfies the requirement, established by

Wittgenstein (1922), of double logical consistency for any model of the physical

world to be valid (namely, self-logical or internal consistency and consistency

with the world it is describing). An in depth discussion on the empirical and

practical implications of the proposed measure is presented in Menezes and

Ruiz-Hernández (2019).

In section 2 a working definition of supply chain structural complexity is

provided. The theoretical framework for the measurement of supply chain com-

plexity and its mathematical properties are presented in Section 3. In that sec-

tion we also present a collection of examples illustrating the application of the

measure to questions that frequently rise in supply chain management and de-

sign. In Section 4 the theoretical results and conclusions are contrasted against

395% confidence interval.
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a collection of so-called stylised facts, i.e. managerial decisions about whose

consequences there is general consensus supported by empirical evidence. The

rationale behind is that a measure which is externally consistent should be able

to reproduce well established facts or empirical regularities. Section 5 concludes

this article.

2. A conceptual framework for supply chain complexity

As Weber (2005) points out, there seems to be some general agreement that

something is complex if it is “made of (usually several) closely connected parts”.

Referring to Heylighen (1999), Weber suggests that complexity increases when

the variety (distinction) and dependency (connection) increases; a notion that

was already suggested, among others, by Simon (1962) and Waldrop (1993).

This highlights a common trait in most definitions of supply chain complexity:

proliferation. Indeed, proliferation of activities, channels, customers, processes,

products, markets, and so on, is at the root of the definition of complexity for

both, practitioners (George and Wilson, 2004; Heywood et al., 2007; Mariotti,

2008; Golfmann and Lammers, 2015; Adams et al., 2016; Hirose et al., 2017)

and academics (Rutenberg and Shaftel, 1971; Wilding, 1998; Fisher and Ittner,

1999; Choi et al., 2001; Novak and Eppinger, 2001; Blecker and Kersten, 2006;

Choi and Krause, 2006; Abdelkafi, 2008; Schaffer and Schleich, 2008; Bozarth

et al., 2009; Subramanian and Rahman, 2014; Aitken et al., 2016). We base our

work on the definition provided by Saeed and Young (1998):

Complexity is the systemic effect that numerous products, cus-

tomers, markets, processes, parts, and organizational entities have

on activities, overhead structures, and information flows.

Once it has been agreed that complexity is a consequence of proliferation, we

still need to bind the sphere of complexity that we encompass in our definition

of supply chain complexity. Several categories have been proposed in litera-

ture for classifying complexity, see Table 1. Serdarasan (2013) and de Leeuw

et al. (2013) provide excellent reviews of these and other classifications found

in literature. Parallel to this, an important amount of work has been devoted

to the analysis and measure of product portfolio complexity and its relation to
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operational performance. Jacobs and Swink (2011) provide a detailed account

of the available work in this area.

Focus Categories Reference

Value Good and bad Abdelkafi (2008)
Source Internal and external
Dynamics Static and operational
Coordination Objectives, customers and variety
Aggregation Systems or business unit level Aitken et al. (2016)
Scope Structural (market, product, Lindemann et al. (2008)

organisational) and process complexity
Source External and internal (organisational, Kaivola (2017)

products and processes)
Source Internal or external (originated by Isik (2010)

customers or suppliers)
System related Detail or dynamic complexity Bozarth et al. (2009)
Supply chain related Up-stream, internal, or

downstream complexity
Source Horizontal, vertical, or Bode and Wagner (2015)

spatial complexity
Scope Depth and breadth complexity Wang et al. 2000

Table 1: Business complexity categories found in literature

The notion of supply chain complexity that we use in this article, the one

associated to the proliferation of products, markets and customers, fits within

many of these categories but, unfortunately, does not have a direct correspon-

dence with any of them. It can be good or bad depending on its magnitude;

can be considered static, but it affects the overall system dynamics; it is closely

related to the notion of detail complexity, but at the same time puts focus at

both system and business unit levels, etc.

In order to fill this gap, we propose an alternative category: structural com-

plexity. It originates from the firm’s business strategy and is linked to the

answer given to questions regarding what do customers want, where they are,

and how can they be reached in the form of products, markets and channels,

respectively. This category fits within the class of breath complexity (Wang

and von Tunzelmann, 2000) and is closely related to the notion of structural

complexity proposed by Lindemann et al. (2008).

The three dimensional nature of our definition comes from the observation

that the physical movement of a product, and therefore the origins of the in-
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formation that a manager has to deal with, can be summarised by identifying

the SKU where it comes from, the market where it is sold and the distribution

channel by means of which it is delivered to the market. Each unique combina-

tion of these three elements within the supply chain constitutes what we refer

to as a pars (plural partes). In what follows, we consider that a pars is fully

characterised by the triple {SKU,market, channel}.

As discussed earlier, there is substantial agreement by academics and prac-

titioners that it is precisely the proliferation of those three elements (products,

channels and markets) or –in our terminology- the proliferation of partes, which

constitutes the main source of complexity in the supply chain. As this prolifer-

ation results in an increased amount of information delivered to the manager,

measuring the amount of information created by the physical flow of products

and services stands for measuring complexity in the supply chain. This ap-

proach is supported by some practitioners, see for example Hirose et al. (2017),

who suggest that growth in total revenue is driven by the contribution of a lim-

ited number of ”cells“ (out of the thousands typically managed in a firm), which

they define as specific combinations of products and geographies. Consequently,

they argue, complexity can often be mitigated by reducing the number of low

revenue-growth cells.

It is convenient to make here a pause and remember that our notion of

structural complexity does not account for complicatedness or uncertainty. Con-

versely, we consider structural complexity as a factor that may potentiate –or

mitigate- the negative effects brought, in one hand, by complicated industrial

processes or administrative procedures; and, in the other, by the random nature

of the supply, transformation or demand. It can be argued, for example, that

proliferation of products or markets is a mechanism for diversifying risk. In

such case, the manager of a single line of a seasonal product may be facing a

low level structural complexity but still dealing with high uncertainty; whereas

a person in charge of a larger number of products may face higher levels of

structural complexity but lower total demand variability. Likewise, a complex

supply chain serving many differentiated products in a national market may face

few administrative challenges; whilst a producer exporting a couple of perish-

able products will need to deal with numerous and complicated administrative
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procedures.

In the following section we provide a measure for structural complexity that

is simple and independent of the supply chain’s scope considered. Moreover, it

is shown that this measure satisfies the double logical consistency requirement

mentioned in the introduction to this article.

3. A theoretical framework for measuring complexity

In the following lines we present, and analyse, a measure for pars-Complexity

based on the Theory of Communication developed by Shannon (1948) and Shan-

non and Weaver (1949). Shannon’s measure of information quantifies the ex-

pected amount of information required for describing the state of a system. In

our context, it provides a measure of the information generated by the physical

flow of goods in the supply chain and, therefore, can be used as a measure for

a supply chain’s structural complexity.

Several measures for supply chain complexity have been proposed in liter-

ature. In a classification proposed by de Leeuw et al. (2013), the authors dis-

tinguish two main directions of research: “exploratory studies” and “entropy-

based studies”. The first group, exploratory studies, includes work aimed at

evaluating the cost of complexity –or its impact on performance- by indirectly

measuring it through a number of indicators or ”drivers“ without providing a

closed form expression for its measurement. The second group includes efforts

made for quantifying complexity by means of a entropy-based measure. Table

2 shows some of the available work on each of these categories. Entropy-based

measures have also been deployed for measuring decision-making efficiency, e.g.

Gong et al. (2014); Fan et al. (2017b); Wang et al. (2017). An alternative line

of research, leaded by Blecker and Abdelkafi (2006b), proposes a measure of

complexity based on the work by Suh (1999).

As de Leeuw et al. point out, the available measures of complexity require a

large amount of data of different nature. For example, Deshmukh et al. (1998)’s

measure is defined in terms of parts, routing, and resources from the workshop;

Sivadasan et al. (1999) use information on orders, sales, deliveries, production

schedule, purchases and so on. Likewise, Isik (2010) proposes a modified version

of Shannon’s measure that requires information on demand (actual and sched-

7



Exploratory Studies Entropy Based Studies

Novak and Eppinger (2001) Palepu (1985)
Vachon and Klassen (2002) Karp and Ronen (1992)
Perona and Miragliotta (2004) Frizelle and Woodcock (1995)
Kaluza et al. (2006) Deshmukh et al. (1998)
Schaffer and Schleich (2008) Sivadasan et al. (1999)
Bozarth et al. (2009) Sivadasan et al. (2002)
Garbie and Shikdar (2011) Sivadasan et al. (2006)
Jacobs (2013) Wu et al. (2007)
de Leeuw et al. (2013) Frizelle and Suhov (2008)
Subramanian and Rahman (2014) Jacobs (2008)
Bode and Wagner (2015) Isik (2010)
Hendricks and Singhal (2016) Sivadasan et al. (2010)
Fan et al. (2017a) Isik (2011)

Table 2: Alternative measures of complexity in literature

uled) and its variations. Our work departs from this line of by proposing a more

parsimonious measure of information, based on the contribution of each pars to

the total monetary value of sales of the firm or business unit (notwithstanding

the fact that other sales-related measures can also be used, monetisation is an

important aid for comparability between different SKU’s). This approach has

already been used, from an economics point of view, by Jacquemin and Berry

(1979) and Palepu (1985), who use sales-based entropy as a measure of an in-

dustry’s or a firm’s total diversification, respectively. The main difference lies on

the scope: whilst earlier works focused on product diversification, our analysis

considers not only products but also channels and markets and encompasses the

whole breadth of the supply chain. Moreover, the aim of those studies was es-

tablishing a link between diversification and performance, whereas the intention

of this work is providing a complete theoretical framework for the measurement

of structural complexity and the analysis of the complexity implications of dif-

ferent managerial decisions and supply chain strategies.

Before introducing our measure, we propose a toy model of a supply chain

aimed at helping the reader to put the ideas developed in this section into focus.

Consider a factory –illustrated in Figure 1- producing four different products or

SKUs. The markets are represented by two different stores, namely, A and B.

The arrows in the figure represent the direction of the product flow. Following

the terminology introduced above, this supply chain can be characterised as a
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set P of partes, each represented by the triplet {SKU,market, channel}. Notice

that, because in this example SKU1 is sold in two different shops, |P| = 5.

Figure 1: Factory producing four SKUs distributed through two different shops, |P| = 5.

We can now focus on the discussion of the complexity measure. Take a

supply chain with a set P of partes and consider a fixed period for discus-

sion. Each pars i ∈ P contributes a fraction p(i) of the total sales, with

p =
(
p(1), . . . ,p(|P|)

)
representing the vector of weights of each of the partes in

P. Clearly,
∑|P|

i=1 p(i) = 1. It will help our following discussion if we notice that

these proportions can also be understood as the probability that one monetary

unit of revenue has been generated by certain pars.

Let, X ∈ {1, . . . , |P|} be a random variable representing the pars associated

with one money unit taken at random from the sales pool within the chosen

period. The probability of X = i is given by p(i) and, therefore, X is fully

characterised by p.

Definition 1. We define pars-Complexity as the expected amount of informa-
tion (measured in bits) necessary to express all possible values of X, i.e.

Cp(X) , Cp (p) =
∑

i

p(i) log2

(
1

p(i)

)
. (1)

Notice that our pars-Complexity measure, Cp, is Shannon’s information mea-

sure (Shannon, 1948) directly applied to a random variable representing the sales

distribution among partes.

It is important to underline the fact that our approach is in sharp contrast

with the views of other authors (e.g. Calinescu et al., 1998; de Leeuw et al.,

2013), who consider that entropy-based measures demand a large amount of

data, making it a “costly and time consuming exercise”. Moreover, by respect-

ing Shannon’s formulation, we keep the Information Theory framework intact,

therefore inheriting all its properties. This allows us to bring forward a measure

that, unlike other exploratory approaches, can be applied and used to making
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comparisons between business units with different complexity levels (Allesina

et al., 2010; de Leeuw et al., 2013); and to establishing a relationship between

structural complexity and the firm’s financial performance (Menezes and Ruiz-

Hernández, 2019).

It is important at this point to highlight that, whereas other proposed mea-

sures for complexity rely in actual performance measures and other values which

are assumed to be known, but in practice hard to obtain (revenue, sales, pro-

cessing and set-up times, number of SKU’s, markets, facilities, employers or

suppliers, and so on), the measure proposed in this article only requires infor-

mation about the market share that each pars in the system represents. This

confers our measure a computational simplicy and ease of interpretation that

cannot be found in other existing measures of complexity. Please see the Ap-

pendix to this work and Table 4 therein for a more in depth discussion of this

issue.

In the following section we review the theoretical properties of our pars-

Complexity measure, and provide some examples which illustrate certain fea-

tures of the measure which are relevant within the supply chain complexity

framework.

3.1. Theoretical Properties and Internal Consistency

The internal consistency of the measure, the fact that it does not lead to

contradiction or paradoxes, stems from its definition and its mathematical prop-

erties. These properties have been well established by Boltzmann’s work (see for

example Tolman, 1938) and -regarding its use as a measure for information- by

Shannon (1948) and by Shannon and Weaver (1949). In this section we recall

some of those properties, together with other useful features that contribute

simplify the analysis of a supply chain’s structural complexity.

Property 1. Shannon (1948) Let P be the set of partes constituting a supply
chain and X be an associated random variable characterised by the probabilities
vector p. The complexity measure Cp (X) defined in (1) satisfies:

1.1. Cp (X) is continuous and concave in X.

1.2. If |P| = 1, then the system’s complexity is zero, i.e. Cp (X) = 0.

1.3. Cp attains a maximum when p(i) =
1

|P| for all i = 1, . . . , |P|. Such maxi-

mum is equal to log2 |P|.
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Proof Properties 1.1 to 1.3 are immediate consequences of the definition of Cp.

The following properties show certain attributes of Cp which are desirable in

a good measure for structural complexity. Moreover, they guarantee the absence

of paradoxes or contradictions in the computation of pars-complexity values for

different supply chain configurations. For the sake of clarity, and withou loss of

generality, these properties will be motivated within the context of supply chain

management and structural complexity.

Property 2. Consider a collection S◦ of N independent systems P◦
1 , . . . , P

◦
N .

Each of these systems distributes Kj = |Pj | different partes and has an as-
sociated Kj-vector of weights p◦

j , for j = 1, . . . , N . Let S• be a system with
cardinality |S•| = N , whose elements have a one to one correspondence with the
members of S◦, and with weights represented by the N -vector p•, then it holds
that

Cp

(
⊕N

j=1 (p
•
(j) p

◦
j )
)
=

N∑

j=1

p•
(j) Cp

(
p◦
j

)
+ Cp (p

•) ≥
N∑

j=1

p•
(j) Cp

(
p◦
j

)
(2)

where ⊕n
i=1qj = q1||q2|| · · · ||qn, is a notational shortcut for the concatenation of

vectors q1 to qn; and p(j) represents the j-th element of vector p.
Proof The first part of equation (2) can be obtained, by simple algebraic ma-
nipulation, applying the definition of Cp in (1) on the l.h.s. of equation (2); the
second one is a direct consequence of Property 1.1.

Property 3. Let p◦ be a N -vector of weights representing the distribution of
sales in a particular system, S◦. Let Pj be the set of Kj inputs used for the
production of pars j in S◦ and pj their contributions (in percentage) to j. Define
now pI

j = p◦
(j) · pj, for all j = 1, . . . , N , representing the decomposition of the

contribution to sales of pars j in terms of its inputs. With these elements, the
concatenation pI = ⊕N

j=1p
I
j is a vector consisting of the fractions of total sales

attributed to each input-pars combination in system S◦. It holds that

Cp

(
pI
)
≥ Cp

(
p◦
)
.

Proof This result follows directly from Property 2.

Property 4. Consider a system S◦ consisting of N independent subsystems
P◦
1 , . . . ,P

◦
N . The contributions of the subsystems to the total sales of S◦ are

given by the weights vector p◦. Additionally, each subsystem Pj distributes a
number Kj of partes, with an associated vector of weights p◦

j . The complexity
of system S◦ can be readily computed by means of equation (2), and is repre-
sented by C◦

p . Consider now an alternative design where the supply chain is
characterised by a system S• consisting of M independent subsystems (M 6= N)
with weights vector represented by p•. Each subsystem P•

h, delivers Gh partes

with weights p•
h. The complexity of this alternative system is given by C•

p . If∑N

j=1 Kj =
∑M

h=1 Gh, i.e. the number of partes in both systems is the same;

11



and ⊕N
j=1

(
p◦
(j)p

◦
j

)
= ⊕M

h=1

(
p•
(h)p

•
j

)
, i.e. the contributions to the total sales of

each pars is the same in both systems, then

C◦
p = C•

p .

Proof This property is a direct consequence of Property 2.

Property 5. Consider a pars r that contributes a fraction pr of total sales
in system P, and let Cp

(
p[r]

)
be the system’s complexity, where p[r] is used to

emphasize the dependency of Cp on pars r. Assume now that pars r is substituted
by two alternative partes, each contributing to total sales by λpr and (1− λ) pr,
with λ ∈ [0, 1], and let p[r,λ] be the updated vector of percentage contributions to
sales. Then,

Cp

(
p[r]

)
≤ Cp

(
p[r,λ]

)
.

Proof This property is a consequence of the concavity of Cp and Property 2.

Comment

Property 1.2 states that a single SKU generates minimal information and,

thus, shows no complexity. Property 1.3 indicates that maximal complexity is

attained when the market is shared evenly by all SKU’s. Property 2 establishes

that whenever a supply chain consists of two subsystems at different levels,

its total complexity is computed as the weighted sum of the downstream sub-

system’s complexity plus the complexity derived from the composition of the

upper level subsystem. As it will be shown in Section 3.2.6, and it is stated in

Proposition 2, this property can be easily generalised to any number of levels

or subsystems. Property 3 states that up-stream complexity cannot be smaller

than downstream complexity when the system is considered as a whole. Prop-

erty 4 establishes that, as long as the final product mix remains the same, the

total structural complexity is independent of the design of the supply chain.

Finally, Property 5 indicates that whenever a pars is substituted for two alter-

native ones whose contributions to the system add up to that of the one they

substitute, the overall system’s complexity increases.

3.2. Illustrative Examples

In this section we present a set of examples aimed at illustrating the different

attributes and properties of the measure. They will also allow us to derive some

general results which are stated as propositions.

12



3.2.1. Basic configuration

Consider two independent systems, SA and SB , illustrated in Figure 2. Sys-

tem SA produces and distributes two partes with weights vector pA = (0.6, 0.4)ñ

whereas system SB produces and distributes three partes with weights pB =

(0.85, 0.1, 0.05). After applying (1) we obtain

Cp(p
A) = 0.6 log2

1

0.6
+ 0.4 log2

1

0.4
= 0.971; and

Cp(p
B) = 0.85 log2

1

0.85
+ 0.1 log2

1

0.1
+ 0.05 log2

1

0.05
= 0.748,

showing that although there are more SKUs on system SB , its pars-complexity

value is lower than that of system SA. This is so because in SB there is more

concentration of sales on one particular item, while in system SA market shares

are more uniformly spread. This result is closely related to Property 2, which

states that the more evenly distributed are the weights in a system, the more

complex it is.

Figure 2: Supply chain with two distribution centres serving two markets.

Let us now assume that systems SA and SB are distribution centres of the

same company. Assume also that system SA contributes with 75% of the total

sales of the company, system SB with the remaining 25%, and that there is a

central facility, S◦ that supplies both centres. This situation is illustrated in

Figure 3.

Figure 3: Distribution centre serving two markets. On the left panel, S◦ manages two subor-
dinated systems with limited visibility; on the right one, S◦ has full visibility of the market.

.
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The pars-complexity of this system can be computed using the l.h.s. of

expression (2), i.e.

Cp

(
(0.75pA)⊕ (0.25pB)

)
= (0.75× 0.6) log2

1

(0.75× 0.6)
+ (0.75× 0.4) log2

1

(0.75× 0.4)
+

(0.25× 0.85) log2
1

(0.25× 0.85)
+ (0.25× 0.1) log2

1

(0.25× 0.1)
+

(0.25× 0.05) log2
1

(0.25× 0.05)

= 1.726,

Notice that the complexity of the whole system integrated under the man-

agement of S◦ (i.e. Cp

(
(0.75pA) ⊕ (0.25pB)

)
= 1.726) is larger than the

weighted sum of the individual complexities of the two integrating subsystems

(i.e.
(
0.75Cp(p

A)
)
+
(
0.25Cp(p

B)
)
= 0.9153). The difference between these

two values corresponds to the extra complexity introduced in the system when

joining SA and SB together under the management of S◦, i.e. Cp (p
◦) = 0.811.

Indeed, from the right hand side of (2) we have that Cp

(
(0.75pA)⊕(0.25pB)

)
=

Cp(p
◦)+

(
0.75Cp(p

A)
)
+
(
0.25Cp(p

B)
)
. This discussion is summarised in Figure

4.

Figure 4: Measures of supply chain complexity at different levels of aggregation

3.2.2. Supply chain expansion

Consider now the supply chain described in the previous example, with total

pars-complexity is Cp = 1.726. Assume now that the management decides to

expand its network by 20% opening a new facility C that serves four new markets

with weights pC = (3/20, 1/4, 12/25, 3/25). With the new addition, the system’s

weights become p• = (5/8, 5/24, 1/6). It is straightforward to verify that the

expanded system’s pars-complexity increases to Cp = 2.386.
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This suggests that horizontally increasing the scope of a supply chain (i.e.

adding same-level supply chain partners) may also increase the pars-complexity

value of the chain. However, the reader must be aware that, although an increase

in the size of the supply chain will typically result in an increase in complexity,

this may not always be the case. Take for example the (unrealistic) case where

an expansion rebounds in a nine times increase in market size, with the new

market weights given by pC = (3/4, 1/8, 1/16, 1/16) . In such case, the upper-

level weights will be given by p• = (5/72, 1/43, 49/54) and the system’s pars-

complexity becomes Cp = 1.681. This is explained by the following result:

Proposition 1. The larger the market share of a facility is, the closer the
system’s complexity becomes to that particular facility’s complexity value.

Proof The proof goes straightforwardly by considering that
∑N

k=1 p
•
(k) = 1

and taking the limit in the left hand side of (2) when p•
(j) → 1 for a given j in

j = 1, . . . , N .

3.2.3. Supply chain design

Property 4 can be illustrated by introducing an alternative design for the

supply chain described in section 3.2.2. Consider that, instead, the supply

chain consists of three distribution centres with demand shares given by p• =

(13/35, 1/18, 5/96). The distribution centres serve the same nine retailers but

now the weights are distributed in the following way: pA = (37/55, 17/79, 1/9),

pB = (23/51, 35/97, 3/16), and pC = (17/55, 36/55, 2/55). As the final prod-

ucts’ distribution remains the same, it is easy to verify that the pars-complexity

value of the new design remains C ′
p = 2.386.

Going back to the original configuration of the supply chain, consider now

that the management decides to split market A1 into two separate markets, one

of them representing 75% of the original demand and the other the remaining

25%. The weights vector for centre A becomes pA′

= (9/20, 3/20, 2/5) and its

complexity value Cp

(
pA′

)
= 1.458. Consequently, the total system’s complex-

ity is now C ′
p = 2.691. This illustrates Property 5.

3.2.4. Pars consolidation

An important consequence of Property 5 is illustrated by the following ex-

ample. Consider the supply chain configuration resulting from the expansion

described in Section 3.2.2. Assume that the firm decides to eliminate distribu-

tion centre B, and to deliver its sales from facility A. A will now be in charge of
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83.3% of the market, with weights vector pA′

= (9/20, 3/10, 17/80, 1/40, 1/80).

It is easy to verify that the total pars-complexity of the consolidated system

(obtained by means of the expression in the centre of equation (2)) will remain

equal to the original, i.e. Cp = 2.386.

Imagine now that, before closing centre B, certain market was served by both

A and B. Assume that this market’s contribution to total sales was delivered by

A2 and B1. The firm can further reduce complexity by consolidating those sales

(we refer to this as pars consolidation). Under consolidation, the aggregated

weights vector becomes pA′′

= (9/20, 41/80, 1/40, 1/80) and the complexity

of the consolidated system is C◦
p = 1.968. This result is summarised by the

following property:

Property 6. Consider two partes in a system, originating from the same SKU,
i, and delivered to the same market through two different channels that distribute
proportions λ and (1− λ) of the total sales, respectively. Let pA,i be the weight
of SKU i in channel A and pB,i its weight in channel B. If the sales of SKU i
are consolidated in one single channel, then it holds that

Cp

(
p[pA,i,pB,i,λ]

)
≥ Cp

(
p◦
[ i]

)
(3)

where p◦
[ i] = (λpA,i + (1− λ)pB,i) represents the weight of i in the consolidated

system; and p[pA,i,pB,i,λ] is used to stress the dependency of Cp on channels A
and B and contributions parameter λ.

This result is a direct consequence of Property 5 and can be easily generalised

to any number of partes. It states, in short, that consolidation of partes will

always reduce complexity.

3.2.5. Adding/Removing partes

Suppose now that the firm decides to remove one pars from the expanded

system described in Section 3.2.2, say B3. In order to adjust the contributions

to total sales of the remaining partes we define p(i) =
p(i)

1−p(j)
, where j is the

position in p of the withdrawn pars, and i = 1, . . . , N . Finally, after removing

element j we obtain the updated contributions vector p, where |p| = N − 1.

Given that B3 occupies the 5th position in p, with contribution p(5) = 1/96, the

resulting system’s complexity after removing pars B3 becomes Cp (p) = 2.327;

i.e. removing one pars has reduced the total complexity of system S◦.

Alternatively we can consider the inclusion of a new pars. In such case,

the elements of the contributions vector will be adjusted by p̃(i) =
p(i)

1+p(N+1)
,
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where p(N+1) represents the expected contribution of the new pars to the total

output. Finally, p(N+1) is appended to the new contributions vector, p̃. If, for

example, the new pasr brings an increase of 15% in total sales, is straightforward

to compute vector p̃ and to verify that Cp (p̃) = 2.634; namely, adding a new

pars has increased the system’s complexity.

Notwithstanding these examples agree with the general notion that with-

drawing a pars will reduce complexity and, conversely, including a new one will

increase it, it will not be hard for the reader to build examples that work in the

opposite direction (for example, if pN+1 = 17/20, then Cp (p̃) = 2.285. This

issue is explored in depth in Section 4.5.

3.2.6. Multi-level System

Let us now introduce an additional level to our expanded network. Assume

now that our system has three level. It may well be seen as a supply chain

consisting in a production facility S◦ that delivers its products to three regional

distribution centres according to the weights vector p◦ = (5/8, 5/24, 1/6). These

regional distribution centres serve, in turn, a number of local distribution centres

according to the weights vectors: pA = (3/5, 2/5); pB = (17/20, 1/10, 1/20);

and pC = (3/20, 1/4, 12/25, 3/25), respectively. Finally, each of the local distri-

bution centres delivers its products to different retailers. The markets served by

the facilities depending on regional centre A are given by pA
1 = (1/8, 3/8, 1/2);

and pA
2 = (1/3, 2/3). Facilities served by centre B have the following mar-

ket distribution: pB
1 = (1/4, 1/12, 1/6, 5/12, 1/12); pB

2 = (1/5, 3/5, 1/5); and

pB
3 = (3/8, 1/4, 3/8). Finally, regarding centre C we have pC

1 = (4/9, 5/9);

pC
2 = (4/11, 5/11, 2/11); pC

3 = (7/12, 5/12); and pC
4 = (1/4, 1/3, 1/4, 1/6).

Successive applications of equation (2) reveal that the total pars-complexity

of this system is Cp = 3.756. However, it is important to highlight that such

number can be obtained using (2) at different levels of aggregation. First, we

can take a more telescopic approach and consider only the relation between

the producer and the final markets, by computing the share of the total sales

represented by each final retailer we can obtain Cp (p̃
◦) = 3.756, where p̃◦ =

(3/64, 9/64, 3/16, . . . , 1/300). Secondly, we can aggregate the markets and start

by computing the complexity faced by the regional distribution centres (ignoring

the existence of the local ones). Taking for example centre A, we see that
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its weights will be given by p̃A = (3/40, 9/40, 3/10, 2/15, 4/15) and, therefore,

Cp

(
p̃A
)
= 2.182. Following the same procedure for Cp

(
p̃B
)
and Cp

(
p̃C
)
,

taking weights and adding Cp (p
◦) we obtain Cp = (2.182 · 5/8 + 2.709 · 5/24 +

3.014 ·1/6)+1.326 = 3.756. Finally, the same value can be obtained taking into

account the complexity observed at each local distribution centre. In this case,

it is easy to confirm that the complexity at centre A1 is given by Cp

(
pA
1

)
=

(0.375 + 0.531 + 0.500) = 1.406; that the complexity at centre A2 is Cp

(
pA
2

)
=

0.918; and, therefore Cp

(
pA
)
= (0.6 · 1.406 + 0.4 · 0.918) + 0.971 = 2.182. The

total system’s complexity is computed as the weighted mean of the regional

centres’ complexities and is equal to 3.756 as before. This nesting property can

be formalised as follows:

Proposition 2. Let S• be a distribution system consisting of N subsystems S◦
n,

n = 1, . . . , N consisting, in turn, of a number nm of subsystems each; then

Cp =

N∑

n=1

p•
(n)

(
nm∑

k=1

p◦
n,(k) Cp (p

n
k ) + Cp (p

◦
n)

)
+ Cp (p

•) . (4)

Proof This feature is a consequence of the additive property of the complexity
measure (1), summarised in Property 4 and the discussion around it.

This result allows us to compute the overall supply chain’s complexity by weight-

ing previously calculated downstream complexity levels and adding the complex-

ity increase due to the inclusion of up-stream levels in the supply chain.

3.2.7. Production facilities

Consider now the case where system S◦ is a production facility. The inputs

necessary for the SKUs produced by S◦ are given in Table 3. Columns include

pars identifiers, the distribution centres from which each pars is dispatched, the

market where it is sold and the SKU to which it belongs. The Input columns

represent the composition of each pars from out of four possible raw materials.

We ask the reader to recall that a pars is represented by a triple consisting of

information about the SKU, distribution channel and market where the product

is sold. Therefore, Table 3 fully characterises our supply chain.

Assume that, as presented in the basic configuration and depicted in Figure

4, centre A distributes 75% of the production, and centre B is in charge of the

remaining 25%. The weights vector for centre A is given by pA = (3/5, 2/5);
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Table 3: Input table for system S◦. Rows are pars identifiers. Contribution to sales, content
of each input and SKU are shown in the columns.

Pars Input
Number Dist. Centre Market SKU 1 2 3 4

1 A 1 I 0.10 0.50 0.40 −
2 A 2 II 0.50 0.50 − −
3 B 1 I 0.10 0.50 0.40 −
4 B 2 II 0.50 0.50 − −
5 B 3 III 0.20 − 0.70 0.10

whereas the corresponding vector for centre B is pB = (17/20, 1/10, 1/20).

In order to obtain the complexity of this system, we start by computing the

complexity intrinsic to the transformation process associated with each pars.

Let Cs
p represent the complexity brought by the production of the SKU with

the identifier s; therefore, using (1) we can easily obtain CI
p = 1.361; CII

p = 1;

and CIII
p = 1.157. Moreover, from the sales distribution, we can see that

SKU I contributes to 3/4 · 3/5 + 1/4 · 17/20 = 53/80 of the sales, SKU II

with 13/40 and SKU III with 1/80. Therefore, the total complexity of the

transformation process is given by the weighted sum of the SKUs’ complexities,

i.e. 1.361 · 53/80 + 1 · 13/40 + 1.157 · 1/80 = 1.2411.

Now, read loosely, Property 4 can be expressed by the following statement:

the total complexity of a cohort is given by the sum of the weighted complexities of

the offspring plus the complexity of the parent. Consequently, the complexity of

the first level of system S◦ will be given by C◦
p = 0.811+1.2411 = 2.0521. Going

one level downstream, we observe that the weighted complexity of systems A

and B is equal to 0.915, consequently, the overall system’s complexity becomes

Cp = 2.967. See Figure 5 for a visual representation of these results.

Figure 5: System S◦: supply chain with a production facility. Overall system’s complexity.
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Alternatively, this system’s complexity can be computed at the lowest level

of aggregation by defining a vector whose elements are the contributions of each

pars to the total sales, i.e. p = (0.75 · 0.6 · 0.1, 0.75 · 0.6 · 0.5, . . . , 0.25 · 0.05 · 0.1),

with pars-complexity Cp (p) = 2.967. The last two examples suggest that the

more we increase the vertical scope of our analysis, the higher will be the sys-

tem’s pars-complexity value.

3.2.8. Real -life example

For the sake of completeness we finish this section with a real-life illus-

trating example. Figure 6 depicts a simplified map of the supply chain of a

manufacturing firm (actual values have been masked to protect confidentiality).

The firm has one plant and central distribution centre (CDC) which serves six

main distribution centres (MDC) serving the markets in Europe (EUR), China,

Middle-East (MDE), the Far-East, NAFTA area, and Latin-America (LATAM).

These centres, in turn, serve directly a number or regional stores; with the ex-

ception of China and the Far-East, which also serve two regional distribution

centres (RDC) for South-East Asia and Japan. In total the firm has 1637 shops

around the globe.

Figure 6: Supply chain complexity of a global firm.

The rightmost panel in Figure 6 shows the downstream pars-complexity of
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the stores served by each MDC. For example, the weighted pars-complexity of

the shops served by the EUR centre is 6.98. If we add to this number the pars-

complexity faced by the European MDC (6.27) we obtain the total complexity

of the European market, i.e. 13.25. This rational can also be applied to the

Middle-East, North-American and Latin-American markets.

Let’s now focus on the China MDC. This distribution centre serves the stores

located in China itself, plus a regional distribution centre, serving South-East

Asia. The partial pars-complexity faced by the China MDC by serving the

Chinese market is 11.11; whereas the pars-complexity faced by the South-East

Asia RDC is 11.51. The weighted average of these two values gives the total

pars-complexity of the market served by the China MDC, i.e. 11.27. The same

logic is applied to the Far-East market.

Finally, the total pars-complexity faced by this firm (15.06) is the weighted

average of the MDCs’ pars-complexities (pEUR13.25+ · · ·+ pLATAM12.34) plus

that faced by the CDC (2.23).

3.3. Profiling pars-Complexity

So far, we have computed pars-complexity in a number of situations that

may arise when managing real-life supply chains. However, nothing has been

said about its magnitude, i.e. when the observed pars-complexity is too high,

neither how does the pars-complexity observed in certain system compares to

the one observed in a different one (this becomes an issue when the systems

being compared have different sizes). To be able to answer those questions we

introduce the following measure for the length of the tails in a system’s market

profile:

Definition 2. Let Cp (S) be the pars-complexity of certain system S consist-
ing of |P| partes. Then, the tails of the demand distribution of system S are
characterised by

C̃p (S) = 1−
Cp (S)

log2 (|P |)
(5)

From property 1.3 we have that the maximum complexity of system S is given
by log2 |P|, therefore, the normalised version of Cp given by C̃p is defined in the
interval [0, 1).

Notice that systems with shorter tails, i.e. a more uniform distribution of

demand, will show values of C̃p closer to zero, whereas systems with larger tails,
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Figure 7: Four systems with different complexity profile

i.e. a larger number of partes with small contribution to demand, will return

larger values of C̃p.

Figure 7 illustrates four different cases. Systems in the same row show the

same value of pars-complexity but different tail lengths. This suggests that

when high complexity is perceived as a problem, more uniform distributions

may indicate a more acute problem than those with longer tails. Likewise,

systems in the same column show the same value of C̃p but different complexity,

suggesting that systems showing different complexity levels may actually have

equally heavy tails. Clearly, extracting conclusions about potential courses of

action for reducing complexity can only be done with the aid of a thorough

analysis of the relationship between complexity and costs or profits, an issue

that goes out of the scope of this paper and is addressed in Menezes and Ruiz-

Hernández (2019).
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3.4. The Look-ahead property

Before finishing this section, it is convenient to make a remark about an

important feature of pars-complexity: the look ahead property. As it has been

mentioned earlier, one of the main attributes of the pars-complexity measure

is the austerity in the use of information, requiring only information about the

market share that each pars in the system represents. This means that a sim-

ple estimation of the changes in demand triggered by a managerial decision

(pars-consolidation, expansion to a new market, release of a new product or

withdrawal of a discontinued one, etc.) is enough for obtaining a quick estima-

tion of the decision’s impact on the firm’s structural complexity.

This attribute, which is a fundamental attribute of our measure, cannot be

found in many other measures of complexity and, when available, it relies on

painstaking prediction of production, orders, suppliers, employees, customers,

revenue, and other variables.

4. External Consistency

In order to test our complexity measure for external consistency we recall a

series of empirical regularities or, what economists refer to as, stylised facts. The

reasoning behind is that a consistent model of reality should be able to repro-

duce these facts. In our case, the consistency test consists of showing that the

proposed measure for complexity does reproduce the expected impact on sup-

ply chain’s structural complexity of certain strategic decisions. These decisions

are: a) mergers and acquisitions; b) component commonality; c) modularity; d)

postponement; and e) changes in the firm’s product mix.

4.1. Mergers and acquisitions

Stylised Fact: Notwithstanding the consolidation effort, mergers do not reduce

the system’s average complexity (for recent discussion on this fact please see

Herd and McClelland (2017) or Aries and Hu (2009), among others).

Consider two merging firms A and B. Let πA and πB be r-dimensional

vectors representing the absolute value of each firm’ sales in r different markets.

Notice that the number of markets where each firm is present is not necessarily

equal to r. Indeed, if after the merger no market consolidation is conducted,
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r = rA + rB and πA = (sA ⊕ 0rB ); where sA is an rA-vector representing the

absolute value of firm A’s sales and 0rB an rB-vector of zeros; correspondingly,

πB = (0rA ⊕ sB). Using |x|1 as a notational shortcut representing the sum of

all elements in x, we can see that pF = πF

|πF |1
, for F ∈ {A,B}. Assume also

that firm A’s participation in the extended market is represented by the shares

vector λ; correspondingly, firm B’s shares are given by (1− λ).

Proposition 3. The pars-complexity of the merged system CM
p is larger or equal

than the weighted sum of the pars-complexities of the two individual systems
before the merger C◦

p ; i.e. CM
p ≥ C◦

p .

Proof For given values of pA = πA

|πA|1
, pB = πB

|πB |1
, and the corresponding λ,

we have that

λ
πA

|πA|1
+ (1− λ)

πB

|πB |1
=

(πA + πB)

|(πA + πB)|1

therefore, after computing the complexity measure on both sides of the expression
above, we get

Cp

(
(πA + πB)

|(πA + πB)|1

)
= Cp

(
λ

πA

|πA|1
+ (1− λ)

πB

|πB |1

)
≥ λCp

(
πA

|πA|1

)
+ (1− λ)Cp

(
πB

|πB |1

)

(6)

which follows from Property 5 and is a direct consequence of Property 1.1 .

This property establishes, in concordance with the stylised fact, that the

pars-complexity of a merged firm is always larger than the weighted pars-

complexity of its predecessors. If, otherwise, the merging firms take advantage

of existing synergies and their supply chains are consolidated, Proposition 4

shows that there is still certain margin for reducing the merged system’s pars-

complexity.

Before presenting our result, it is worth noticing that if both firms were

present in exactly the same markets, then r = rA = rB , πA = (sA), and

πB = (sB); in any other case, r will represent the total number of markets where

either A, B, or both were selling their products. Moreover, πA (equivalently

πB) will be an r-vector with zeros in the positions representing markets where

A (respectively B) had no presence before the merger. With these elements we

can now introduce the following result:

Proposition 4. Let NA and NB represent the sets of partes in systems A
and B, respectively, before the merger. Let vector pAB be a weights s-vector,
where s = |NA ∪NB |, whose elements are given by the expression pAB,i =
λpA,i + (1− λ)pB,i, for i = 1, . . . , s. Moreover, assume –without any loss of
generality- that for any market i = 1, . . . , r and firm F ∈ {A,B} such that
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pF,i = 0, log2

(
1

pF,i

)
= 0. Then

Cp ((λpA + (1− λ)pB)) ≥ Cp (pAB) ≥ λCp (pA) + (1− λ)Cp (pB) (7)

Proof The first inequality in expression (7) is a direct consequence of Proposi-
tion 6. For the second one, it is enough to develop the last two terms in (7),
i.e.

Cp (pAB) =

s∑

i=1

pAB,i log2

(
1

pAB,i

)
=

s∑

i=1

(λpA,i + (1− λ) pB,i) log2

(
1

λpA,i + (1− λ) pB,i

)

≥ λ

s∑

i=1

pA,i log2

(
1

pA,i

)
+ (1− λ)

s∑

i=1

pB,i log2

(
1

pB,i

)
= λCp (pA) + (1− λ)Cp (pB)

for noticing that, due to the concavity of Cp (Property 1.1), the inequality will
hold for any admissible combination of the parameters, i.e. for pA,i, pB,i ∈ [0, 1],
i = 1, . . . , s and λ ∈ (0, 1).

Propositions 3 and 4 confirm that the pars-complexity measure Cp does

indeed reflect the stylised fact: it does not matter how big the consolidation

effort for taking advantage of synergies is, the pars-complexity of the merged

enterprise will never be smaller than the weighted-average pars-complexity of

the original firms.

4.2. Component Commonality

Stylised fact: Notwithstanding component commonality decreases inven-

tory requirements; it does not affect downstream structural complexity. How-

ever, if up-stream stages are taken into account, then the overall system’s com-

plexity is indeed reduced (for discussion on this fact see Cook (2001); Blecker

and Abdelkafi (2007); Abdelkafi (2008); Wazed et al. (2009); Bernstein et al.

(2011); Weiser et al. (2016) and Kaivola (2017), among others).

Before starting our discussion, we introduce a generic system S• that will be

of use in the analysis of this and subsequent stylised facts. Consider a firm that

produces N different SKUs using M different inputs or components. We refer

to this firm’s supply chain as system S•. For the sake of simplicity we assume

that each SKU is sold in only one market, and therefore the number of partes

in the system equals the number of SKUs 4 Moreover, and without any loss

4Results in this section can easily be extended to cases where the same SKU can be sold
in different markets.
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of generality, we assume that the SKUs are distributed from the factory to H

different markets through a number F of distribution facilities. System S• can,

therefore, be characterised by the tuple {p•,p◦,p+,q}, where p• represents the

F -vector of weights of the production facility; p◦ is an F × H matrix whose

rows are weights vectors corresponding to the distribution facilities; p+ is a

F ×H ×N matrix with rows representing the weights vector for each market;

finally, q is an N×M matrix representing the composition of each SKU in terms

of its inputs and components. Each row qi in q, is an M−vector representing

the composition of pars i, for i = 1, . . . , N .

In order to establish our main result recall system S• and notice that when-

ever input k, for k = 1, . . . ,M , is not used for the production of pars i, qi
(k) = 0.

Therefore, as shown in illustrative example 3.2.7, the complexity of S• can be

readily computed as

Cp (S
•) =

N∑

i=1

p •
i

M∑

k=1

qi
(k) log

(
1

qi
(k)

)
+

F∑

j=1

p•
(j)Cp

(
s◦j
)
+ Cp (p

•) (8)

where p •
i =

∑F

j=1

∑H

h=1 p
•
jp

◦
j,(h)p

+
j,h,(i) for all i = 1, . . . , N and s◦j represents

the subsystem starting from the second level of the supply chain downwards.

Suppose now that a subset C of mutually exclusive inputs (i.e. only one of

them can be used as input for pars i) with |C| < M , is replaced by a com-

mon component. This defines a new system S⋆. For the sake of simplicity,

let us assume that the inputs to be substituted are located in the first |C| po-

sitions of vectors qi, i = 1 . . . , N . Notice that this defines a new family of

composition vectors, each of them with (M − |C|+ 1) elements, represented by

qi =
(∑|C|

j=1 q
i
(j),q

i
(|C|+1), . . . ,q

i
(M)

)
. The pars-complexity of the new system,

can be readily obtained by substituting the first term in the right hand side of

equation (8) for:

N∑

j=1

p •
i

M−|C|+1∑

k=1

qi
(k) log

(
1

qi
(k)

)
. (9)

The following proposition establishes that the proposed measure reproduces

the stylised fact that component commonality does not affect downstream pars-

complexity:
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Proposition 5. The pars-complexities of systems S• and S⋆, which only differ
in their technology vectors qi, i = 1, . . . , N and qi, i = 1, . . . , N , are identical.

Proof Notice that the pars-complexity equation of systems S• and S⋆ only
differs in the first term on the r.h.s. of equation (8). Moreover, given the fact

that qi
(1) =

∑|C|
j=1 q

i
(j) for all i = 1, . . . , N , the result follows immediately from

the fact that

M∑

k=1

qi
(k) log

(
1

qi
(k)

)
=

M−|C|+1∑

k=1

qi
(k) log

(
1

qi
(k)

)
, ∀ i = 1, . . . , N

Notwithstanding the previous result, it is important to notice that if the

scope of the analysis is expanded to including one more up-stream level in the

supply chain, i.e. the supply of raw materials, then the reduction in pars-

complexity induced by component commonality is reflected by the proposed

measure. In order to see this, we introduce the expanded systems S̃• and S̃⋆,

which extend the original ones by including the input’s procurement stage. With

these elements, the stylised fact can be expressed as

Cp

(
S̃•
)
≥ Cp

(
S̃⋆
)
. (10)

Introducing the input vectors q̃• and q̃⋆ (where q̃•
(k) =

∑N

i=1 q
i
(k), for k =

1, . . . ,M ; and q̃⋆
(k) =

∑N

i=1 q
i
(k), with k = 1, . . . ,M − |C| + 1), and given that

the pars-complexity of systems S̃• and S̃⋆ is equal -in each case- to the pars-

complexity of the lower level system plus the pars-complexity of the supply, we

can express inequality (10) as:

Cp (S
•) + Cp (q̃

•) ≥ Cp (S
⋆) + Cp (q̃

⋆) . (11)

Using the result in Proposition 5 together with equation (1), developing the

sums and after eliminating common terms we get that inequality (11), and

therefore expression (10), reduces to

|C|∑

k=1

q̃•
(k) log2

(
1

q̃•
(k)

)
≥ q̃⋆

(1) log2

(
1

q̃⋆
(1)

)
(12)

which is a direct consequence of Property 5.
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4.3. Modularity

Stylised fact: Modularity, seen an extension of the notion of component

commonality where not only one but several –not necessarily exclusive- com-

ponents are substituted for one single module, as well as providing flexibility

and reducing inventory, decreases the supply chain’s structural complexity (for

discussion in this subject please refer to Baldwin and Clark (1997); Da Sil-

veira et al. (2001); Blecker and Abdelkafi (2006b); Marti (2007); Golfmann and

Lammers (2015) and Kaivola (2017)).

In order to assess the capability of the complexity measure for reflecting this

stylised fact, we introduce a minor modification in system S• product design

(where S• = {p•,p◦,p+,q}). Assume that each pars uses one out of |C| exclu-

sive inputs and all of them use a number |D| of common inputs. Assume that

|C|+ |D| ≤ M . As discussed before, the complexity of this system can be com-

puted as the sum of the transformation and distribution complexities as given

by equation (8). Suppose now that a module is introduced which integrates the

attributes of the |C| exclusive components together with the ones of the |D| of

common inputs. This module is to be used in the production of all partes. If,

for the sake of simplicity, we assume that these inputs are located in the first

|C| + |D| positions of vectors qi, then the introduction of the module defines a

new family of composition vectors q̂i =
(∑|C|+|D|

j=1 qi
(j),q

i
(|C|+|D|+1), . . . ,q

i
(M)

)
,

for all i = 1, . . . , N . The pars-complexity of this new system, S⋆, can be com-

puted as

Cp (S
⋆) =

N∑

j=1

p •
i

M−|C|−|D|+1∑

k=1

q̂i
(k) log

(
1

q̂i
(k)

)
+

N∑

j=1

p•
(j)Cp

(
s◦j
)
+ Cp (p

•) .

(13)

The following proposition establishes the fact that our measure reflects the

stylised fact that modularity reduces structural complexity:

Proposition 6. Keeping everything else constant, introducing modularity in
the production process reduces pars-complexity. Namely, whenever the tech-
nology vectors, qi and q̂i, of systems S• and S⋆, respectively, satisfy q̂i

(1) =
∑|C|+|D|

j=1 qi
(j) and q̂i

(h) = qi
(|C|+|D|+h−1) for i = 1, . . . , N and h = 2, . . . ,M −

|C| − |D|+ 1, then Cp (S
•) ≥ Cp (S

⋆).
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Proof Given equations (8) and (13) we have that for establishing Cp (S
•) ≥

Cp (S
⋆) it suffices to proof that

M∑

k=1

qi
(k) log2

(
1

qi
(k)

)
≥

M−|C|−|D|+1∑

h=1

q̂i
(h) log2

(
1

q̂i
(h)

)
, ∀ i = 1, . . . , N

equivalently

|C|+|D|∑

k=1

qi
(k) log2

(
1

qi
(k)

)
≥ q̂i

(1) log2

(
1

q̂i
(1)

)
, ∀ i = 1, . . . , N

which is a direct consequence of Property 5.

4.4. Postponement

Stylised fact: Keeping the number of SKUs constant, postponement re-

duces complexity locally (at certain given stage of the supply chain) but the

overall system’s complexity remains the same (for discussion on this fact please

see Cook (2001); Blecker and Abdelkafi (2006a); Abdelkafi (2008), and Brunoe

and Nielsen (2016)).

In order to establish that our measure is indeed consistent with this stylised

fact, let us recall our baseline system S• = {p•,p◦,p+,q} and assume that

transformation is conducted at the top level of the supply chain. System S•

pars-complexity is given by equation (8). Consider now an alternative design of

the supply chain, S⋆, where transformation is performed at a lower level of the

supply chain. In order to obtain an expression for the pars-complexity of this

new system, we first develop a version of equation (8) valid for all intermediate

facilities j = 1, . . . , F :

Cp

(
s⋆j
)
=

N∑

i=1

p◦
i

M∑

k=1

qi
(k) log2

(
1

qi
(k)

)
+

H∑

h=1

p◦
j,(h)Cp

(
s+j,h

)
+ Cp

(
p◦
j

)
; (14)

where p ◦
i =

∑H

h=1 p
◦
j,(h)p

+
j,h,(i) for all i = 1, . . . , N . With these elements, the

pars-complexity of system S⋆ can now be expressed as

Cp (S
⋆) =

F∑

j=1

p•
(j)Cp

(
s⋆j
)
+ Cp (p

•) . (15)

The following two results establish the main claim of this section, namely,

that the pars-complexity measure reflects the stylised fact that postponement
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displaces the transformation complexity to the stage where production is con-

ducted.

Proposition 7. The stage in the supply chain where transformation is con-
ducted does not affect its overall pars-complexity value, i.e. Cp (S

•) = Cp (S
⋆).

Proof Equation (15) can be developed as

Cp (S
⋆) =

F∑

j=1

p•
(j)

[
N∑

i=1

p◦
i

M∑

k=1

qi
(k) log2

(
1

qi
(k)

)
+

H∑

h=1

p◦
j,(h)Cp

(
s+j,h

)
+ Cp

(
p◦
j

)
]
+ Cp (p

•)

which simplifies to

=

F∑

j=1

p•
(j)

[
N∑

i=1

p◦
i

M∑

k=1

qi
(k) log2

(
1

qi
(k)

)]
+

F∑

j=1

p•
(j)Cp

(
s◦j
)
+ Cp (p

•) ;

upon substitution of p◦
i in the previous expression we obtain

=

F∑

j=1

p•
(j)

N∑

i=1

H∑

h=1

p◦
j,(h)p

+
j,h,(i)

M∑

k=1

qi
(k) log2

(
1

qi
(k)

)
+

F∑

j=1

p•
(j)Cp

(
s◦j
)
+ Cp (p

•)

finally, after reordering and collecting terms, we have

=

N∑

i=1

p •
i

M∑

k=1

qi
(k) log2

(
1

qi
(k)

)
+

F∑

j=1

p•
(j)Cp

(
s◦j
)
+ Cp (p

•) = Cp (S
•)

A direct consequence of this result is that transformation complexity is ac-

counted for at the transformation stage:

Corollary 1. Postponement displaces pars-complexity to the supply chain’s
stage or level where transformation is conducted.

Proof It has already been established that the pars-complexity at any stage of
the supply chain can be expressed as the sum of the pars-complexity of the parent
system, Cp (p), plus the weighted average of the offspring’s pars-complexities.
If, additionally, the production is performed at that precise level, the total pars-
complexity of the stage will be that of the parent system plus the transforma-
tion complexity, Cp (q). Therefore, it follows from Proposition 7 that if trans-
formation is postponed from central production to some other stage, the par-
ent’s pars-complexity will reduce from Cp (p) + Cp (q) to Cp (p); whereas the
pars-complexity of the new transformation stage will increase from Cp (p

′) to
Cp (p

′) + Cp (q).

4.5. Product Mix

Stylised Fact: Eliminating products from the firm’s product mix may con-

tribute to reducing the overall system’s complexity (see, for example, Blecker
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et al. (2004); Blecker and Abdelkafi (2006a); Anderson et al. (2007); Marti

(2007); Aries and Hu (2009), and Hirose et al. (2017), among others).

Example 3.2.5 illustrates a case that reflects this stylised fact: removing

(adding) a pars reduces (increases) the value of Cp. However, notwithstand-

ing there is a general agreement among practitioners and academics that the

withdrawal of a pars from the supply chain will reduce its structural complex-

ity, there is one important caveat: If the product to be withdrawn represents a

significantly large proportion of the firm’s market, the structural complexity of

the supply chain may increase. This stems from the fact that, when removing

a big seller, the focal point shifts from the operations of one SKU to those of

many different ones, which previously were irrelevant but now play a major role

in the new setting. Therefore, the inadvertent withdrawal of a critical pars may

have the unexpected consequence of increasing the supply chain’s structural

complexity instead of reducing it as intended.

The following result provides a sufficient condition on the pars’ market share

for pars-complexity to be reduced when the pars is removed from the product

mix:

Proposition 8. Given a system S• with weights vector p, if pars j for some
j = 1, . . . , N is such that p(j) ≤ 1

N
, then withdrawing pars j from the market

will decrease the system’s pars-complexity with certainty.
Proof Consider system S• and assume, without any loss of generality, that

the pars to be withdrawn is pars N . Assume that the remaining system is given
by S⋆ with weights vector q where q(j) =

p(j)

1−p(N)
, j = 1, . . . , N − 1.

For establishing Cp (S
•) ≥ Cp (S

⋆) we need to show that

N−1∑

j=1

p(j) log2

(
1

p(j)

)
+ p(N) log2

(
1

p(N)

)
≥

N−1∑

j=1

p(j)

1− p(N)
log2

(
1− p(N)

p(j)

)

whenever p(N) ≤
1
N
. This inequality can be reduced to

(
1−

1

1− p(N)

)N−1∑

i=1

p(j) log2

(
1

p(j)

)
≥ log2

(
1− p(N)

)
− p(N) log2

(
1

p(N)

)

(16)

Defining x = 1 − p(N) and given that
(
1− 1

x

)
≤ 0 whenever x ∈ (0, 1], the

l.h.s. of equation (16) minimises whenever p(j) =
1−p(N)

N−1 = x
N−1 . Hence, after

substitution and upon simplification, we have that (16) will hold whenever

− (1− x) log2

(
N − 1

x

)
≥ log2 (x)− (1− x) log2

(
1

1− x

)
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which is satisfied whenever x is such that

− log2

(
N − 1

x

)
≥ log2 (1− x)

or, equivalently,

x ≥
N − 1

N
⇒ p(N) ≤

1

N

Notwithstanding this condition can be used as a general rule of thumb, in

many situations it may be preferable to have an exact threshold for the value

at which the withdrawal of a pars with weight p(j) will surely reduce supply

chain’s structural complexity. Moreover, given that Proposition 8 provides only

a sufficient condition, there will (almost certainly) be cases where the withdrawal

of a pars j such that p(j) ≫
1
N

will still decrease the system’s pars-complexity.

Proposition 9 provides such threshold.

Proposition 9. If a pars p(j) is withdrawn from system S• such that p(j) ≤ p∗,
where p∗ is the unique solution to

Cp (p) = log2

(
1

p∗

)
−

1− p∗

p∗
log2 (1− p∗) , (17)

the system’s complexity decreases.
Proof Assume, without loss of generality, that the pars withdrawn occupies

position N in p. Let S⋆ be the resulting (reduced) system and q its weights
vector; then the condition Cp (S

•) ≥ Cp (S
⋆) is given by equation (16), i.e.

(
1−

1

1− p(N)

)N−1∑

i=1

p(j) log2

(
1

p(j)

)
≥ log2

(
1− p(N)

)
− p(N) log2

(
1

p(N)

)

reordering terms we have

p(N) log2

(
1

p(N)

)
≥ log2

(
1− p(N)

)
+

(
p(N)

1− p(N)

)N−1∑

j=1

pj log2

(
1

p(j)

)

using Cp (p) =
∑N−1

j=1 p(j) log2

(
1

p(j)

)
+ p(N) log2

(
1

p(N)

)
we obtain

(
1

1− p(N)

)
p(N) log2

(
1

p(N)

)
≤ log2

(
1− p(N)

)
+

(
p(N)

1− p(N)

)
Cp (p)
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which, after reordering terms, gives the inequality

Cp (p) ≥ log2

(
1

p(N)

)
−

1− p(N)

p(N)
log2

(
1− p(N)

)
.

That p∗ is the unique p(N) solution to the last inequality follows directly from
the fact that the expression in the r.h.s. is strictly decreasing for p(N) ∈ (0, 1].

Mirroring the previous discussion we notice that, even though it is widely

accepted that pars proliferation increases structural complexity, there are many

cases where increasing the firm’s product mix may still be profitable. Con-

sequently, it may be convenient to know whether or not the release of a new

product will increase the system’s pars-complexity. The following proposition

provides such threshold in the form of the new pars’s contribution to total sales.

Proposition 10. If a pars p(N+1) is added to system S• such that p(N+1) ≥ p,
where p is the unique solution to

Cp (p) =
1

p
log2 (1 + p) + log2

(
1 + p

p

)
, (18)

the system’s structural complexity decreases.
Proof By defining q(j) =

p(j)

1+p
, q(N+1) =

p̃

1+p
, and developing the inequality

Cp (q) ≤ Cp (p), i.e.

N+1∑

j=1

q(j) log2

(
1

q(j)

)
≤

N∑

j=1

p(j) log2

(
1

p(j)

)

and working along the same lines as that of Proposition 9, we get

Cp (p) ≥
1

p
log2 (1 + p) +

p̃

p
log2

(
1 + p

p̃

)

which only holds when p̃ ≥ p. This completes the proof.

5. Conclusion

The focus of this article is the problem of complexity in supply chain man-

agement. The degree in which proliferation of products, markets and channels

is permeating in the business environment is dubbed by practitioners as a com-

plexity crisis. It is actually affirmed that complexity damages the tissue of

organisations’ supply chains, rendering them less efficient.

Complexity is... complex, and as such there is a strong need for a proper def-

inition of what is meant when talking about supply chain complexity. Notwith-

33



standing there is a vast amount of literature addressing the problem of com-

plexity, its costs and potential solutions, this is the first time, to our knowledge,

that a definition of complexity –which emanates from the business strategy- is

provided. This definition, in turn, allows us to bring the discussion on supply

chain complexity to a quantitative framework, providing a direct and austere

measure that can be used at high-level decision making.

The article starts with a discussion on supply chain complexity and intro-

duces the notion of structural complexity, a numerousness related concept as-

sociated with the proliferation of products, channels and markets. We then

develop the theoretical framework for its measurement based on the so-called

pars-complexity measure, in information-content based measure of proliferation

that stems from the Theory of Communication. We show that this measure

satisfies two fundamental requirements for the scientific validity of any repre-

sentation of the real world: internal and external consistency. We argue that

the internal consistency is inherited from Shannon’s Theory of Communication

(whose measure of information content is maintained intact), and present a col-

lection of theoretical properties that highlight attributes which are desirable in

a good measure for structural complexity. The discussion on external consis-

tency is based on certain stylised facts on supply chain management that should

be familiar for both practitioners and academics. The underlying reasoning is

that a good model of the reality should be consistent with the world it is aimed

at representing. We show that the results emanating from our representation

of structural complexity are capable of reproducing those empirically observed

regularities.

A good theory of the physical word should not only be rigorous, but also

relevant, i.e. useful for improved action and problem solving. Parallel work

in Menezes and Ruiz-Hernández (2019) establishes the empirical validity of the

pars-complexity measure by applying it to the study of twenty-seven business

units of a large firm. In particular, we analyse the relation existing between our

notion of structural complexity and some financial indicators of the firm, finding

a particularly strong link between the proposed measure and the operating

margin. Moreover, we rise arguments for the practical relevance of the measure

as a tool for allocating costs among business units, on one hand, and among
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SKUs, on the other.

We are convinced that, by proposing a definition of structural complexity,

providing a measure for quantifying it, and developing a solid framework for the

mathematics of pars-complexity, this article is an important step towards the

understanding, and therefore solution, of the complexity crisis.
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Appendix

One of the main issues that arise when a new measure or technique is pro-

posed is its comparison to other available measures targeting the same problem.

In many cases such comparison is possible (e.g. scales measuring psychological

or personality traits, facial recognition techniques, algorithms for the solution

of certain combinatorial problem, and so on) provided that either the sample

sets for previous experiments are available or, alternatively, that the benchmark

techniques can be applied over the same population where the new technique is

tested. In any case, a fundamental assumption is that both, old and new tech-

niques are aimed at measuring the same phenomenon and that the parameters

and/or explanatory variables are the same in both approaches.

Notwithstanding how desirable such comparison can be, we have found that

it is virtually impossible to compare our measure of complexity against other

measures available in the literature. Moreover, it seems to us that this is a

problem affecting all proposed measures, as we have not been able to find a ref-

erence where the authors compare their results against the ones of other authors

or even against their own previous results. We think this is inconvenience is in-

herent to the nature of the problem under study, stemming from the absence

of a unique and generally accepted definition of complexity and that different

studies target diverse aspects or conceptualisations of complexity.
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Table 4 summarises (some of) the information requirements of a number

of articles addressing the problem of measuring complexity. The first column

indicates the scope of the study or, equivalently, the type of complexity they

are concerned about, the second one indicates whether the measure is entropy

based, algebraic or based in statistical or regression analysis. The third column

(without being exhaustive) summarises the main variables discussed in each

study, and the fourth one indicates whether or not the raw data are provided in

the study. The fifth column indicates if the proposed measure (and information

required) allows for look-ahead (or what-if) analysis. The last column provides

the reference.

As it can be observed in the table, most of the available work is based on

time series data collected on a large number of variables, whereas our measure

is based on the distribution of one single variable: sales. Moreover, while most

studies focus on flows, pars-complexity is a static measure. Additionally, it

must be taken into consideration that, unlike other studies referred in Table 4,

our measure is aimed at measuring structural complexity -leaving aside issues

of complicatedness or uncertainty. We hope that this argument suffices for

justifying the absence of inter-measures comparisons in this manuscript.
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Target Type of Data Look-
Complexity Measure Variables Provided Ahead Reference

Product (diversifica-
tion)

Entropy Segment’s share over total sales of the firm Partially No Palepu (1985)

Manufacturing Entropy based Bills of materials, routings, work centres, demand pattern.
Periodical data.

No No Frizelle and Woodcock
(1995)

Supply chain Entropy based Imperfectly specified. Forecasted, requested, scheduled and
confirmed deliveries. Target and actual production. Mate-
rials and information flow. Periodical data.

No No Sivadasan et al. (1999)

Supplier-customer sys-
tems

Entropy based Imperfectly specified. Flow focused. Demand, production,
deliveries. Variations in time and quantities. Periodical
data.

No No Sivadasan et al. (2002)

Supply chain Regression anal-
ysis

Lead time, throughput time, late delivery, tardiness, AMT
investment, vertical integration, quality failures, firm size,
etc.

Partially No Vachon and Klassen
(2002)

Supply chain, pro-
cesses

Algebraic Total value-add time in the process, percentage of defective
products, unit processing time, total demand.

Examples No George and Wilson
(2004)

Supplier-customer sys-
tems

Entropy based Flow variations (order-forecast, delivery-order, actual-
scheduled production), time and/or quantity variations.

Partially Yes Sivadasan et al. (2006)

Supply chain Algebraic Number of SKUs, markets served, company legal entities,
facilities, employees, suppliers, customers. Sales revenues.

Examples Yes Mariotti (2008)

Supply chain Regression anal-
ysis

Number of customers, life cycle, number of active material
parts, number of products, number of suppliers, percentage
of purchases imported, etc.

Partially No Bozarth et al. (2009)

Supply chain Entropy based Expected and actual orders per month (flow based). Example Yes Isik (2010, 2011)
Supply chain Statistical anal-

ysis
Expert survey. Number of stock keeping units, stock loca-
tions, employees and years active in market. Several ques-
tionnaire topics.

No No de Leeuw et al. (2013)

Product / Portfolio /
Supply Chain

Algebraic Number of variants, common elements of components, num-
ber of connections.

Yes Yes Jacobs (2013)

Table 4: Data requirements of different complexity measures proposed in literature
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