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Abstract 25 

Unlike sedimentary clays, many tropical residual soils do not exhibit clear mechanical-empirical 26 

relationships to assist in their engineering characterisation. In contrast, this paper discusses one residual 27 

clay in which such relationships may be determined, and further examines whether the effects of structure 28 

in this clay may be assessed using a framework previously developed for sedimentary clays. The Northland 29 

Allochthon tropical residual clay of New Zealand is a problematic soil of the fersiallitic type, prone to slope 30 

instability. Atterberg limit tests on soils from five field sites in the same geological unit show considerable 31 

variation, but that they are mechanically related. Laboratory element tests were performed on reconstituted 32 

and intact soil specimens from one field site. Normalization of the strength envelope using the equivalent 33 

stress on the intrinsic compression line suggests that soil structure, which is destroyed in reconstituted 34 

specimens, plays a role in the shear strength of this soil in its intact state. Overconsolidated behaviour, in 35 

the absence of geological preloading, points to the existence of a pseudo-preconsolidation pressure 36 

associated with weathering processes. The results further show that the saturated mechanical behaviour 37 

of this residual soil is in line with that of sedimentary clays and that mechanical-empirical relationships 38 

developed for such clays may be applied in this case. 39 

 40 

Notation 41 

Cc compression index 42 

Cs swelling index 43 

E Young’s modulus 44 

eL void ratio at liquid limit 45 

εa axial strain 46 

εvol volumetric strain 47 

φcrit critical state angle of internal shearing resistance 48 

φ*e Hvorslev true angle of shearing resistance 49 

φe Hvorslev angle of shearing resistance for intact soil  50 

φres residual angle of internal shearing resistance 51 

φpeak peak angle of internal shearing resistance 52 
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Gs specific gravity 53 

γs Shear strain 54 

κ slope of a swelling line based on a natural log scale 55 

λ gradient of normal compression and critical state line based on a natural log scale 56 

M gradient of critical state line 57 

p’0 effective consolidation pressure 58 

PI plasticity index 59 

p’ mean effective stress 60 

q deviatoric stress  61 

σ*ve equivalent stress on intrinsic compression line corresponding to void ratio of soil 62 

σ’a effective axial stress 63 

σ’r effective radial stress  64 

s’ (σ’a + σ’r)/2 65 

t (σ’a - σ’r)/2 66 

∆u change in pore pressure 67 

v specific volume 68 

wPL plastic limit 69 

wLL liquid limit 70 

w0 natural water content 71 

χ Hvorslev cohesion intercept 72 

χ* intrinsic Hvorslev cohesion intercept 73 

  74 
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Introduction 75 

Northland Allochthon residual clay is found in the northwest of the North Island of New Zealand. This soil 76 

forms via in situ weathering of parent mudstone to relatively shallow depths of between 1.5 m and 8 m 77 

(Winkler, 2003).  Slope instability is very common within the saturated soil, at gradients as low as 8° (Glade, 78 

1998; Tonkin & Taylor, 2006; Harris et al. 2011). This results in many small, often shallow, landslides that 79 

particularly affect the road network (East & George, 2001), leading to significant regional economic losses 80 

in the order of several millions of dollars per year (Glade 1998; NIWA and GNS, 2009). With precipitation 81 

events that may exceed 40 mm/hour and several hundred mm per day (NIWA, 2015), instability is usually 82 

triggered by high rainfall (Glade, 1998), and may occur in the form of successive slides at low angles 83 

(O'Sullivan, 2009; Tatarniuk, 2014). In spite of this, while there have been concerted efforts to understand 84 

and describe the geological provenance of the soils and their parent rocks (see Spörli & Hayward (2002) 85 

and references therein), only limited geotechnical laboratory data has been published on Northland 86 

Allochthon soils. This has been in part due to the difficulty of acquiring high quality undisturbed soil, which 87 

is friable in its natural state (O'Sullivan, 2009; Tatarniuk, 2014) and in part because of an historically local-88 

empirical approach to geotechnical design, in the main guided by in situ rather than laboratory testing (East 89 

& George, 2001).  90 

It is difficult to establish clear mechanical-empirical relationships for many residual soils to assist in their 91 

engineering characterisation (Geological Society Working Party, 1990). In addition, in terms of qualitative 92 

mesoscale strength of in situ material, the presence of soil structure can produce greater or lesser strength 93 

in intact soils compared to soils reconstituted for routine laboratory testing. An increase in strength may be 94 

due to microstructural ageing and chemical weathering, while a decrease in strength in overconsolidated 95 

fissured soils may be due to the presence of such fissures at the mesoscale (Hosseini Kamal et al. 2014). 96 

As residual soils, Northland Allochthon soils are highly weathered (Class E “Residual” according to BS 97 

5930:2015). O’Sullivan (2009) has attested to the influence of fissuring on these soils, suggesting that in 98 

situ weathering may impart forms of structure in the transition zone from rock to soil, namely a decreased 99 

resistance to shearing and a change in the state boundary surface (Cafaro and Cotecchia; 2001).  100 

 101 
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Soil testing framework 102 

According to Burland (1990), appropriate triaxial and oedometer testing of reconstituted soil can give a 103 

robust framework for comparison to intact soil, and can provide well-defined critical state parameters which 104 

can be difficult to obtain otherwise. This approach has been successfully applied to examine the influence 105 

of structure on the behaviour of intact stiff sedimentary clays (Burland et al. 1996; Gasparre et al. 2007; 106 

Hosseini Kamal et al. 2014), glacial till (Clarke et al. 1998), and aged compacted clay (Chiu et al. 2010).  107 

As an alternative, Cotecchia & Chandler (2000) present a sensitivity framework for clays where either stress 108 

or strength sensitivity uniquely defines the yield stresses, providing a single parameter by which the clay 109 

structure may be represented. In order to use this framework, both reconstituted and intact oedometer tests 110 

must be available. However, the conventional oedometer test has been found to have limited usefulness in 111 

testing of stiff residual soils, such that for intact Auckland residual clay, Pender et al. (2003) found lower 112 

values of stiffness modulus from oedometer tests than from conventional triaxial tests while O’Sullivan 113 

(2009) found in difficulties interpreting the end of primary consolidation and atypical results in oedometer 114 

tests on intact Northland Allochthon residual clay. In addition to difficulties related to residual soil 115 

characteristics, other issues can arise. For instance, Gasparre (2005) found the calculation of stress 116 

sensitivity for London clay to be problematic because the presumed post yield behaviour diverged from the 117 

corresponding intrinsic compression curve at the end of her tests.  118 

As a result of these considerations, in this study, we use the framework developed by Burland (1990) and 119 

Burland et al. (1996) for comparing natural and reconstituted clay to determine the degree to which the 120 

strength of this residual soil is related to its structure. Further, the results of Atterberg limit index tests and 121 

determined mechanical properties are compared from different sites, in order to explore the relationship 122 

between soils across the Allochthon sites in Northland.  123 

This paper has two points of focus. The first is to compare reconstituted Northland Allochthon residual clay 124 

soil from one site with intact specimens under laboratory triaxial stress path tests in order to investigate its 125 

structure. The second is to determine if a relationship exists between residual clays obtained from different 126 

locations in the Mangakahia Complex (late Cretaceous, Paleocene and Eocene sedimentary soft rocks 127 

(Isaac et al. 1994; Spörli & Harrison, 2004)) of the Northland Allochthon and how this compares to other 128 

5 

 



clays. The aim is to examine the potential for a framework that has been developed previously for 129 

sedimentary clays to be used for Northland Allocthon residual soil. 130 

 131 

Geology and context of Northland Allochthon residual soil 132 

The Northland region of New Zealand extends northeastward 60 km from Auckland to the northernmost tip 133 

of the country and encompasses an area of 14,000 km2. The recent designation of an inland freight route 134 

as a new State Highway together with other road improvements (NZTA, 2015), means better transport links 135 

will be provided to the rest of the country in future. However, while the geology has been described as 136 

“difficult”, little to no testing for physical properties has been published on the region’s soils. 137 

An Allochthon is a body of rock which has been uplifted from its original site of formation through a low 138 

angle thrust fault. The Northland Allochthon extends over much of Northland and offshore to the north and 139 

east (Ballance and Spörli, 1979; Bradshaw, 2004) (Figure 1) and can be subdivided into three main 140 

complexes (Isaac et al. 1994): 141 

• Tangihua (submarine basaltic volcanics) 142 

• Mangakahia (variable calcareous clay shales and siliceous mudstones and sandstones) 143 

• Motatau (predominantly calcareous limestones, mudstones and sandstones) 144 

 145 

Here we focus on the fersiallitic residual soils derived from Hukerenui mudstone in the Mangakahia 146 

complex, which typically comprise very soft to stiff, plastic, light coloured, clayey silts and silty clays with 147 

some sands or gravel sized clasts (Lentfer, 2007). Between the residual soil and the parent rock lies a 148 

transition zone (Figure 2), which tends to retain the sheared fabric of the underlying rock, and may contain 149 

gravel sized clasts of the parent rock. The residual zone is generally lighter in colour and has a lower 150 

permeability (Winkler, 2003) than this transition zone. The thickness of the residual soil layer varies between 151 

2 m to 9 m, the transition zone between 4 m to 7 m, and the underlying rock between 10 m and 35 m. Note 152 

that only the residual zone soil is discussed in detail in this paper. 153 

The Northland region is classed as temperate, with no dry season and warm summers (Peel et al. 2007). 154 

Mean annual rainfall varies from 1000 – 2000 mm across the region, hence, this fine grained residual soil 155 

generally remains saturated, year round, to near the ground surface (Wesley, 2010). The Hukerenui 156 
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mudstone has been found to contain a significant amount of smectite (89%), with 8% illite, kaolinite < 3% 157 

and chlorite <1% (Lentfer, 2007), which can result in the clay being highly plastic.  158 

In this paper, we examine data from five field sites. These are: Mountain Road, Kaeo, Ogles, Puhoi, and 159 

Silverdale. Figure 1 shows the five site locations, spread over a linear distance of nearly 250 km, and the 160 

geology at each site. Triaxial testing and detailed characterisation were carried out on soil from Mountain 161 

Road, while more limited classification testing was carried out on soil obtained from the Kaeo site, 162 

supplemented by data obtained by O’Sullivan (2009) for Ogles, Lentfer (2007) and Melrose and Willis 163 

(2010) for Silverdale, and the Further North Alliance (2013) for Puhoi. While the grouping of unpublished 164 

data in this way from different sites may not be considered “best practice”, here we take a pragmatic 165 

approach to provide as much information as possible, given the sparsity of research on this soil. In doing 166 

so, we show that while the region may be geologically complex, this does not necessarily translate to 167 

geotechnical complexity, at least in terms of physical properties of the soil.  168 

 169 

Atterberg limit tests and other soil properties 170 

Atterberg plastic and liquid limit index tests conducted on samples obtained from Mountain Road and Kaeo 171 

sites were combined with the data available from Ogles (O’Sullivan, 2009) as well as the consulting reports 172 

and unpublished theses (Lentfer, 2007; Melrose and Willis, 2010; Further North Alliance, 2013) – Figure 3. 173 

Collectively they show that the soils at the five sites range from medium to high plasticity and despite the 174 

large distances between sites, all plot on or near the A-line, indicating their relatedness (Muir-Wood, 1990).  175 

Particle size distributions (Figure 4), were determined for specimens from Mountain Road and Kaeo sites 176 

via sieve analysis (New Zealand Standard, 1986a) and hydrometer testing (New Zealand Standard, 1986b). 177 

Kaeo samples are seen to be more well-graded and have a significantly higher clay content than Mountain 178 

Road samples which are silt dominated and least plastic (Figure 3). Note that there is no relationship 179 

between index properties and geographical location within Northland (compare Figures 1 and 3) – that is, 180 

Mountain Road, located most centrally geographically but towards the south, has the lowest PI, while Puhoi, 181 

slightly further south again appears to be most weathered and most plastic. 182 

Index properties for soil from the Mountain Road site are shown in Table 1, along with specific gravity and 183 

organic content. The data was obtained from laboratory testing (ASTM, 2010a; ASTM, 2010b; Germaine 184 
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and Germaine, 2009) namely, specific gravity (Gs), natural water content (w0), and organic content by loss 185 

of ignition.  186 

 187 

Site Sampling 188 

To obtain high quality laboratory test samples, while it is widely reported that undisturbed samples cut from 189 

carefully extracted blocks provide the best results, the high potential for shrink-swell behaviour, large 190 

number of lithic fragments and delicate friable structure of Northland Allochthon residual soil make it difficult 191 

to trim them without excessive pitting. Therefore, a different approach was taken which is similar to that 192 

taken by O’Sullivan (2009). Samples were collected in 72 mm diameter thin-walled Shelby tubes so that 193 

the soil specimens could be extruded and placed directly into a triaxial cell with little additional trimming. 194 

The adopted sampling procedure proceeded as follows. A shallow pit with a level base was excavated to 195 

between 1.5 m and 3.2 m below ground level at Mountain Road and between 1.5 m and 6.4 m below ground 196 

level at Kaeo. The 450 mm long, 72 mm diameter stainless steel tubes were hydraulically jacked into the 197 

ground using a specially constructed rig and jacking frame at a controlled rate of around 20 mm / min with 198 

the excavator buck used to provide a vertical reaction (Figure 5). The tubes were then manually excavated 199 

with care, the ends sealed with wax then double wrapped in plastic and fully sealed for transport. In total, 200 

six tube samples were taken from Mountain Road and a further six from Kaeo. These included soils from 201 

both the residual and transition zones. This method of sampling eliminates the drilling or boring stage, which 202 

is recognized to result in the greatest disturbance (Ladd and DeGroot, 2003). Sample disturbance may 203 

nevertheless have impacted the behaviour of the intact soil: Lunne et al (1997) showed that use of tube 204 

samplers may result in a decreased peak and residual stress measurement in clay, due primarily to soil 205 

destructuring (DeGroot et al 2005). In the current study, it is recognized that the effects of this may result 206 

in a less pronounced difference between the intact and undisturbed properties of the soil.  207 

 208 

In Situ Flat Plate Dilatometer Testing 209 

In order to obtain data on the in situ stress history of the soil, Flat Plate Dilatometer tests (DMT) were 210 

conducted at Mountain Road (Marchetti, 1980; 2015). Three DMTs, denoted sDMT 5, 6, and 7 were located 211 
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approximately 5 m from the extraction point for the samples (other tests were carried out further away and 212 

results are not used here, although results produced similar trends). 213 

The horizontal stress index, KD is one of the key intermediate parameters obtained from the DMT (Marchetti, 214 

1980). The overconsolidation ratio (OCR), defined as the ratio of maximum vertical effective stress to 215 

current effective stress, may be estimated from KD through Equation 1 (Marchetti, 2015): 216 𝑂𝑂𝑂𝑂𝑂𝑂 = (0.5 𝐾𝐾𝐷𝐷)1.56    1.  217 

 218 

As shown in Figure 6, despite there being nothing in the geologic history of this residual soil to suggest that 219 

the present overburden stress of the soil has been exceeded in the past (Isaac et al., 1994) it exhibits mean 220 

OCR’s well above unity throughout its depth, with a particularly marked high value near the surface. The 221 

potential reasons for this are discussed further in the “preconsolidation” section at the end of this paper.  222 

 223 

Laboratory mechanical testing 224 

The laboratory testing programme focuses on soil specimens from the Mountain Road site. This soil is light 225 

brown, mottled with iron staining, and moderately weathered. While generally described (and treated here) 226 

as a clay, the particle size distribution indicates that it is in fact a clayey silt with traces of gravel and sand.  227 

 228 

Triaxial testing 229 

Undisturbed residual soil samples were taken at the Mountain Road site from a depth of between 1.5 m 230 

and 3 m below ground using 72 mm inner diameter Shelby tubes. Samples were extruded from the tubes 231 

using a motorised hydraulic ram fitted with a 70 mm shoe. To do this, the wax seal end caps were trimmed 232 

off and the samples extruded and then re-trimmed using thin steel wire cutters. When a sufficient length 233 

had been extruded for the current test, the remaining sample within the tube (if any) was sealed with a 234 

mixture of paraffin wax and petroleum jelly, double wrapped at both ends using cling film and the tube 235 

placed in two tightly sealed plastic bags. The samples were then placed in a plastic sealed box with water 236 

at the bottom to further ensure that they were in a moist environment. Once extruded, samples were taken 237 

to the preparation area in mitre boxes specially made for the samples. Trimmings were weighed and dried 238 

to verify moisture content.  239 
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Reconstituted specimens were prepared from a slurry of the Mountain Road soil at a water content of 1.25 240 

to 1.5 times its liquid limit (Burland, 1990). The soil was mixed with water for a minimum of 6 hours and 241 

then slowly poured into and consolidated over time in a 150 mm long and 50.7 mm internal diameter 242 

consolidometer constructed for the purpose of obtaining 50mm diameter samples. Two-way drainage was 243 

allowed via perforated discs, porous stones and filter paper applied to each end. The consolidation device 244 

utilized the application of pressure to the top of the sample through the addition of weights and pressure 245 

was increased in stages according to the method for consolidation in oedometer testing (Head & Epps,  246 

2011). The change in height was monitored and plotted versus the log of time to ensure end of primary 247 

consolidation was reached before next load was added. All specimens were consolidated to 150 kPa 248 

vertical effective stress before extrusion. The method used for trimming and extruding the samples was the 249 

same as that used for the intact samples. Trimmings were used to determine the water content of the 250 

specimen at the start of each test. 251 

Triaxial testing was performed using a GDS triaxial stress path cell with computer control. The room 252 

temperature was well-controlled and continuously monitored to ensure it did not vary by more than 0.5̊ C. 253 

Reconstituted specimens were 50 mm in diameter and 100 mm long, whilst undisturbed specimens were 254 

72 mm in diameter and 130 mm long. Stress path cell instrumentation included pore pressure and cell 255 

pressure transducers, and an internal load cell. Local displacements were measured by using axial 256 

submersible on-sample LVDTs (linearly variable differential transformers) for all specimens. Radial on-257 

sample LVDTs were also used on all reconstituted specimens. Pore pressure measurement was carried 258 

out at the top of the specimen and drainage was provided at the bottom. Undisturbed specimens were 259 

tested using enlarged lubricated ends in order to improve uniformity at all strain levels.   260 

The saturation of reconstituted specimens was carried out for a minimum of 24 hours. However for the 261 

undisturbed samples, with the use of lubricated end platens which had a much smaller porous stones, the 262 

saturation process took as long as 5-7 days. Saturation was completed in stages of 100 kPa up to a back 263 

pressure of between 400 kPa and 1000 kPa. The Skempton B value was checked after each 100 kPa 264 

increment as well as at the end of the saturation period.  A minimum B value (Δu/Δσ′) of 0.95 was obtained, 265 

equating to a saturation ratio of greater than 97%.  266 
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Following saturation, isotropic pressure ramps were used to bring the sample to the desired maximum 267 

mean effective stress for each test. Consolidation of the soil specimens to between 250 kPa and 800 kPa 268 

typically took between two and five days. Five of the reconstituted soil specimens (tests R1 to R5) were 269 

then subjected to a new reduced isotropic pressure in order to attain desired overconsolidation ratios of 270 

between 2 and 10 (in line with stress history of the Mountain Road site, Figure 6). The other five tests (R6 271 

to R10) were normally consolidated to pressures between 250 and 800 kPa. Table 2 summarizes the tests 272 

performed. CU indicates consolidated undrained tests, CD indicates consolidated drained tests, and OCR 273 

indicates the overconsolidation ratio. Upon completion of each test, the samples were removed from the 274 

stress path cell and their water contents were measured.  275 

 276 

Oedometer testing 277 

Oedometer samples were prepared using reconstituted Northland Allochthon clay soil from Mountain Road, 278 

mixed to a water content approximately equal to its liquid limit. The oedometer apparatus was controlled by 279 

air pressure, and load increments were applied through computer control. The inner diameter of the 280 

oedometer ring was 63 mm and inner height was 19 mm.  281 

The load increments were applied in sequence from 3 kPa, up to a maximum pressure of 800kPa, before 282 

unloading in stages to between 25 kPa and 6 kPa. Deformation was monitored using a digital linear gauge 283 

to ensure primary consolidation was nearing completion prior to increasing the applied stress, similar to the 284 

method used for consolidating the reconstituted soil specimens for triaxial testing. Once the final increment 285 

of loading was reached, the test was dismantled and the final water content was recorded. 286 

 287 

Results of laboratory tests 288 

Oedometer tests on reconstituted soil 289 

Oedometer testing on reconstituted soil from Mountain Road was performed to acquire an intrinsic 290 

compression line (ICL) (Burland, 1990). The results of the three tests, Oed1 to Oed3, conducted are 291 

provided in Figure 7 and Table 3. 292 

It is now useful to put the Northland soil into the context of other clays, albeit sedimentary ones. The mean 293 

slope of the ICL, λ of 0.121, lies between that of London clay (λ ≈ 0.1), and pure kaolin (λ ≈ 0.2) (Atkinson 294 

and Evans, 1985). The ratio between PI and λ is 176, and compares well to the mean value of 170 given 295 
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by Schofield and Wroth (1968) based on five clay soils. The λ/κ value is approximately 8.1, which is larger 296 

than the range of values (2-5) given by Schofield and Wroth (1968) but similar to the value of 7.2 reported 297 

by Allman and Atkinson (1992) for Bothkennar soil, which is often described as a clay but is predominantly 298 

comprised of silt sized particles.. 299 

Noting that λ = Cc/ 2.303, the compression index (Cc) of reconstituted sedimentary clays (i.e. the gradient 300 

of the intrinsic compression index) that lies on or slightly above the A-line can be estimated using the 301 

empirically derived Equation 2 (Burland, 1990): 302 𝑂𝑂𝑐𝑐 = 0.253𝑒𝑒𝐿𝐿 −  0.04   2. 303 

 304 

Where eL is the void ratio at the liquid limit. Using this equation gives a Cc of 0.29 (λ of 0.126) for two 305 

samples of residual clayey silt soil from Mountain Road, which is consistent with the average Cc of 0.278 306 

(λ of 0.121) attained from the oedometer tests on reconstituted specimens.  307 

 308 

Triaxial tests on reconstituted soil 309 

Figure 8 shows (a) the deviatoric stress, q versus axial strain, εa, and (b) the pore pressure change ∆u 310 

versus axial strain, εa for the consolidated undrained (CU) triaxial tests on both the normally consolidated 311 

and overconsolidated reconstituted specimens. The normally consolidated (NC) samples exhibited well-312 

defined critical states, failure took place after slight bulging, and most of the samples did not develop shear 313 

bands. The slightly overconsolidated sample (OCR of 2) exhibited rather similar deformation to the samples 314 

that were normally consolidated, in that a gradual peak in deviatoric stress was reached, with no post peak 315 

reduction and pore pressure increase was positive. This is in contrast to the results reported by Burland et 316 

al (1996) on four overconsolidated clay samples with OCR of 5 and above, which developed modest post 317 

peak strength reduction coupled with negative pore pressure change. Higher OCR values were not 318 

examined in this study for the intact specimens (72 mm in diameter) due to limitations in the load cell 319 

utilized.  320 

Figure 9 shows corresponding triaxial data for the consolidated drained (CD) tests. The CD tests were 321 

performed on overconsolidated specimens and all displayed failure along shear bands after slight bulging. 322 

The specimens at OCR values of 5, 7 and 10 showed post-peak reductions in shear strength (Figure 9(a) 323 
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and corresponding contraction followed by dilation (Figure 9(b)), although OCR of 7 sample produced less 324 

dilation than the OCR of 5 sample, which was not expected. At the lowest OCR of 3, the behaviour was 325 

purely contractive and there was no peak in shear strength with increasing strain. 326 

Burland et al (1996) referred to the mechanical properties of a reconstituted clay as intrinsic properties, 327 

since they are inherent to the material and are independent of its natural state. The normally consolidated 328 

intrinsic failure line in t-s’ space derived from the reconstituted specimens is shown in Figure 10. The 329 

intrinsic failure line is defined by the peak strengths of the normally consolidated specimens and is very 330 

slightly curved. The slope of the intrinsic failure line at s’ = 210 kPa is 34.9°, while at s’ = 550 kPa it is 33.6°. 331 

The peak strengths for the overconsolidated drained samples (open triangles in Figure 10) lie slightly above 332 

the intrinsic failure line. This behaviour can also be seen in the results for all four of the stiff sedimentary 333 

clays studied by Burland et al. (1996). The final sharp bend to the right in the undrained stress paths 334 

indicates the material is slightly dilatant. 335 

The intrinsic Hvorslev strength envelope represents the strength of the soil in the reconstituted state (Figure 336 

11). This envelope was obtained by normalizing the results from Figure 10 by using the void ratio of each 337 

sample at failure and the one-dimensional compression curves from test Oed2 (Figure 7). The Hvorslev 338 

true angle of shearing resistance (φ*e) is 32.6°. The intrinsic Hvorslev cohesive intercept, χ*, is 0.04 and 339 

the value of s’/σ*ve at critical state is 1.42. 340 

The stress ratio q/p’, versus axial strain, εa for the normally consolidated undrained tests on reconstituted 341 

specimens is shown in Figure 12. The mean stress ratio at critical state, M, in Equation 3 is 1.38: 342 𝑞𝑞 = 𝑀𝑀𝑀𝑀′     3. 343 

 344 

The value of φcrit in compression can be determined from Equation 4: 345 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑′𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3𝑀𝑀/(6 + 𝑀𝑀)   4. 346 

 347 

Giving a value of 34.2° for φcrit, in line with the values of 33.6° to 34.9° from the intrinsic critical state line in 348 

s’-t space. 349 

 350 
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Triaxial tests on undisturbed samples 351 

Three triaxial tests were performed on undisturbed specimens of Northland Allochthon residual clay from 352 

the Mountain Road site, at confining pressures of 110 kPa, 130 kPa and 190 kPa, respectively (Table 2). 353 

These confining pressures are representative of the in situ mean effective stress conditions of the soil 354 

specimens. As shown in Figure 13(a), the specimen tested at the lowest confining stress, 110 kPa, showed 355 

a gradual post peak reduction in strength, and developed a single failure surface, while the samples tested 356 

at 130 kPa and 190 kPa exhibited well-defined critical states, and failure of these samples took place after 357 

slight bulging. Although generally ductile, the test at 130 kPa exhibited a higher peak deviatoric stress than 358 

at 190kPa. Although this is not expected, this type of behaviour does occasionally occur in intact specimens 359 

due to their variability, and can be seen in the results on drained specimens of Todi clay in Burland et al. 360 

(1996). Despite this, all the samples exhibited positive pore pressure change (Figure 13(b)), with higher 361 

confining stresses resulting in higher development of pore pressure.  362 

The intact failure line in t-s’ space (determined via linear regression) is shown in Figure 14. All stress paths 363 

show dilatant behaviour, indicating the soil is behaving as an overconsolidated material at these confining 364 

pressures. The behaviour is more dilatant at p’0 = 110 kPa and 130 kPa than at p’0= 190 kPa, as expected.  365 

The peak intact strengths (hence intact failure line) lie close to the intrinsic failure line for the reconstituted 366 

material, however, this does not necessarily indicate that the microstructure of the soil does not contribute 367 

to the soil strength. The normalization parameters for the intact specimens are shown in Table 4, Figure 15 368 

evaluates where the intact soil failure envelope lies in comparison to the intrinsic failure envelope in 369 

normalized t/σ*ve –s’/σ*ve space. The Hvorslev failure line for the intact material lies above the intrinsic line. 370 

The Hvorslev cohesive intercept for the intact material, χ, is 0.18, giving a ratio of χ/χ* of 4.5. The ratio of 371 

the normalized strengths at intrinsic critical strength (T) is 1.2, indicating there is an influence of structure 372 

on the strength of the intact soil.  373 

 374 

Strength characteristics from the literature 375 

Little published data is available on the strength characteristics of Northland Allochthon residual soil. 376 

Available data from three field sites is summarized in Table 5. The data from Mountain Road is that obtained 377 

from this study. The values of the residual angle of shearing resistance (φres) for the Ogles and Silverdale 378 
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field sites were obtained from ring shear tests and peak and/or critical state parameters from triaxial testing 379 

(O‘Sullivan, 2009; Harris, 2013).  380 

In summary, for Northland Allochthon residual soil from the Mangakahia complex, the critical angle of 381 

internal shearing resistance (φcrit) for two field sites ranges from 26° to 34° (Table 5). The value of the peak 382 

critical angle of shearing resistance (φpeak) also has significant variation, ranging from 27° to 36°. The 383 

cohesion intercept in the Northland Allochthon residual soil was found to be quite low (0 kPa – 6 kPa) for 384 

all three of the sites. With respect to ring shear results, φres varied from 11° to 19° between two sites, with 385 

the larger angle corresponding to a larger peak value. 386 

 387 

Discussion 388 

Comparison to four stiff clays from Burland et al. (1996)  389 

As Burland’s (1990) framework for examining the influence of soil structure on soil strength has been 390 

utilized, some comparisons can be made to the four stiff clays examined by Burland et al. (1996). The value 391 

of s’/σ*ve at critical state attained for the normally consolidated and reconstituted Northland Allochthon 392 

residual clay soil at Mountain Road was 1.5. This is slightly higher than for the clays tested by Burland et 393 

al. (1996) (the three Italian clays had s’/σ*ve of 0.75 and the Corinth marl s’/σ*ve of 1.2). The slight dilatancy 394 

of the Northland Allochthon residual clay as it approaches critical state would contribute to this higher s’/σ*ve. 395 

The ratio of the normalized strengths at intrinsic critical strength (T) at 1.2 is very close to the range of 396 

values obtained by Burland et al. (1996) from sedimentary clays, which ranged from 1.23 to 1.5. Burland et 397 

al. (1996) found that φ’e was similar for intact and reconstituted specimens for all of the tested clays and 398 

the results for the Northland Allochthon residual clay soil also showed similar φ’e for intact and reconstituted 399 

specimens. Hence, with respect to this framework, the Northland Allochthon residual soil at Mountain Road 400 

behaves similarly to overconsolidated sedimentary clays, despite originating from a quite different 401 

geological process. 402 

 403 

Variation in critical state parameters λ and φcrit 404 

The CU tests on normally consolidated reconstituted specimens from Mountain Road reached a well-405 

defined critical state. The mean critical state angle φ’crit of 34.2° is high for a clay, but is similar to that 406 
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attained for reconstituted Bothkennar soil (1.38) (Allman & Atkinson, 1992), which was attributed to its high 407 

silt content. The Northland Allochthon soil at Mountain Road has a silt content at over 60% (Figure 3).  408 

Table 6 compares the critical state parameters acquired from the residual soil in this study to several other 409 

clay soils. The top four results are for sedimentary soils (Atkinson, 1993; Allman & Atkinson, 1992), 410 

representing a typical till, a stiff overconsolidated clay, a pure clay and a soft clayey silt (Hight et al. 1992), 411 

and the last four are from a study on tropical residual soil in Bangladesh (Hossain, 2001) and this study.  412 

Atkinson (1993) suggested that the intrinsic critical state parameters (λ and φcrit) may vary due to differences 413 

in grading and mineralogy between samples, and depends primarily on the nature of the soil. The critical 414 

state parameters acquired by Hossain (2001) for tropical residual soil of Dhaka, Bangladesh show clear 415 

variability between the boreholes, which are considered to be in the same formation. For instance, samples 416 

of borehole 1 and 3 were highly oxidized and much more weathered compared to those of borehole 2. 417 

Research by Rahardjo et al. (2004) and Rocchi & Coop (2015) on grantitic residual soils provides further 418 

evidence for their properties varying geographically and with depth due to different degrees of weathering. 419 

In these cases, the peak and critical state angles of internal shearing resistance were found to reduce as 420 

the mean particle size decreased and PI increased. The variation in the values of φcrit found between Ogles 421 

(O’Sullivan, 2009) and Mountain Road are in line with these observations.  422 

Muir-Wood (1990) proposed that all related soils (perhaps of similar activity) should pass through a single 423 

point in compression space (specific volume, v versus mean effective stress, p’). In terms of critical states, 424 

this implies that movement of a soil down the A-line on the plasticity chart leads to a reduction in 425 

compressibility, and thus changes the slope of the critical state line, M. The wL at Ogles was 69-72% and 426 

at Mountain Road it was 48-50%, implying a lower compressibility at Mountain Road.  427 

Muir-Wood (1990), summarized an empirical relation between PI and φcrit (after Mitchell, 1976) for several 428 

normally compressed sedimentary soils (Equation 5), where: 429 𝑠𝑠𝑠𝑠𝑠𝑠∅′ = 0.35 − 0.1ln (𝑃𝑃𝑃𝑃)   5. 430 

 431 

And φ’ is related to M according to Equation 4. 432 
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Using Equation 5, φcrit should be around 30° for the Mountain Road site and around 27° for the Ogles No.3 433 

site (compared to 34° and 26° from triaxial tests, respectively). The correlation, though loose, demonstrates 434 

that a lower PI returns a higher φcrit. 435 

The relationship between PI and M (after Muir-Wood 1990) with the addition of data from the Northland 436 

Allochthon residual clay, Bothkennar soil and Dhaka clay, is shown in Figure 16. Both Bothkennar and 437 

Northland Allochthon soil from Mountain Road plot above the mean relationship. Allman & Atkinson (1992) 438 

for Bothkennar soil with 3.5% organic content, obtained a φcrit of 34° from reconstituted triaxial results, 439 

whereas the Muir-Wood relationship results in a φcrit of 26.5° based on a PI of 38%. Therefore, Equation 4 440 

does not hold well. However, when an organic content of 3%-8% was removed from Bothkennar soil (Albert 441 

et al. 2003), the PI reduced to 18%-20%. Considering the 5.5% organic content in the Mountain Road soil, 442 

taking a similar approach would result in an estimated φcrit of 30°-31° from the Muir-Wood M-PI relationship, 443 

which is a notably better match to the φcrit of 34°.  444 

The Northland Allochthon residual soil from Mountain Road falls close to the average trend line established 445 

for sedimentary clays. It is offset above it and outside the realm of the pure soils of kaolinite and illite, 446 

suggesting that other clay minerals and its 5.5% organic content also play a role in its plasticity and strength 447 

at critical state. While the Geological Society Working Party (1990) urges caution on using correlations 448 

between Atterberg Limits and soil strength parameters for residual soils, further substantiation to the 449 

argument that the high φcrit of the Mountain Road soil is related to its lower PI and wLL can be found by 450 

examining correlations between wLL and the residual frictional angle from numerous clays by Mesri and 451 

Cepeda-Diaz (1986). Based on their correlations, the residual friction angle should be 12°-14° for the Ogles 452 

soil, which is in agreement with values of 11°-14° obtained from ring shear tests (O'Sullivan, 2009). For the 453 

Mountain Road site, the wLL correlates to a residual friction angle of 21°-22°. It follows that the critical state 454 

angle is likely to be relatively high at Mountain Road as well. 455 

Correlations between index properties and shear strength for many residual soils have been found to be 456 

difficult (Geological Society Working Party, 1990). However, the results from Lentfer (2007) on the 457 

Hukerenui mudstone mineralogy, and the clear reduction in internal angle of shearing resistance from 458 

critical state to residual for this soil is indicative of a dominance of platey clay minerals, indicating an 459 

absence of allophones and halloysites. The presence of clay minerals may be responsible for the 460 
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particularly complex behaviour for which tropical residual soils are known apply (Geological Society 461 

Working Party, 1990). Hence as the mineralogy of Northland Allochthon residual clay soil is similar to many 462 

sedimentary soils, this may be a contributing factor as to why correlations for sedimentary clays are found 463 

to be applicable here.  464 

 465 

Preconsolidation 466 

There is nothing in the geologic history of the residual soil derived from the Northland Allochthon rock (Isaac 467 

et al. 1994) to suggest that the present overburden stress of the soil has been exceeded in the past. Wesley 468 

(1990) studied three different residual soils, and found that they all behaved as moderately or heavily 469 

overconsolidated soils, but similarly to the Northland Allochthon residual clay soil, at least two of them had 470 

never been subjected to overconsolidation by preloading. Since “preconsolidation” pressures of such soils 471 

do not bear relation to overburden history, it is therefore likely to be the result of weathering processes. For 472 

this reason, the preconsolidation pressure found for residual soils is often termed pseudo-preconsolidation 473 

pressure (Wesley, 1990). The mechanisms that could lead to pseudo-preconsolidation (OCR higher than 474 

1) include desiccation (especially near the surface), drained creep (long term secondary compression), and 475 

structuration which can be due to physiochemical processes (natural cementation due to carbonates and 476 

silica, bonding due to ion exchange) (Mitchell and Soga, 2005). The slightly dilatant behaviour of the intact 477 

specimens of Northland Allochthon residual clay during undrained loading shows that they behave as 478 

overconsolidated at these confining pressures, providing substantiation of a pseudo-preconsolidation 479 

pressure in this soil. Other authors (Futai et al. 2004; Wang & Yan, 2006) have also noted overconsolidated 480 

soil behaviour in residual soils at confining pressures of 400 kPa or less. 481 

 482 

Conclusions 483 

Northland Allochthon residual clay soil is a problematic soil type upon which very little geotechnical 484 

investigation has been performed. Atterberg limits from five sites located in Northland Allochthon residual 485 

soil derived from Hukerenui mudstone all fall on or near the A-line, suggesting that the soil from the five 486 

sites, separated by nearly 250 km, is related.  487 

Oedometer and triaxial tests were carried out on reconstituted and intact soil from one site, Mountain Road, 488 

in order to determine how the soil behaved with respect to Burland et al’s (1990) framework developed for 489 
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natural sedimentary clays. The results of these tests showed that this framework is appropriate for this soil, 490 

despite it being classed as a residual soil. The Hvorslev cohesive intercept for the intact material, χ, was 491 

found to be 0.18, giving a ratio of χ/χ* of 4.5. The ratio of the normalized strengths at intrinsic critical strength 492 

(T) is 1.2, indicating that the intact soil is stronger than that of the reconstituted soil. The value of φe of 32.8° 493 

was only 0.2° more than φ*e, however, suggesting that the difference in strength is cohesive rather than 494 

frictional in nature and hence, bonding plays a role in the strength of the intact soil. The undrained stress 495 

paths of the intact specimens of Northland Allochthon residual clay demonstrated slightly dilatant behaviour, 496 

suggesting a pseudo-preconsolidation pressure which is sometimes seen in residual soils. 497 

The critical state angle of shearing resistance at Mountain Road φcrit was found to be 34.2°, which is high 498 

for clay. It is also considerably higher than the value of 26° acquired for soil in the same formation at another 499 

field site. Muir-Wood’s (1990) correlation relating M (and therefore also φcrit) to the PI indicates that the 500 

higher φcrit is likely related to the low plasticity at the test site and its organic content. The results also 501 

suggest that simple plasticity limits tests coupled with Muir Wood’s (1990) correlation developed for 502 

sedimentary clays could be used, with due caution, as a first order screening tool in selecting an initial φcrit  503 

in slope design or back-analysis of failure in Northland Allochthon residual clay soil.  504 

Much of the literature on residual soils is focused on soil that is unsaturated, or partially saturated 505 

(Geological Society Working Party, 1990) while clay minerals such as halloysite and allophane are 506 

frequently present in residual soils and are fundamentally different from smectite and illite, found largely in 507 

sedimentary soils. As such, many of the empirical relationships derived from sedimentary soils cannot be 508 

easily applied. However, the results of this study have demonstrated that these relationships may, in fact, 509 

be applied to the behaviour of some residual soils, such as that of the Northland Allochthon, which are 510 

generally saturated in situ, and are composed of common, platey, clay minerals. We recommend further 511 

testing of both intact and reconstituted soil samples from sites across the Northland Allochthon. Scanning 512 

electron microscopy would be useful to support mineralogy associations for observed soil behaviour. Large- 513 

ring oedometer tests on intact specimens should be considered to provide an assessment of K0 514 

compression that should be more effective for this soil type. These results further provide groundwork for 515 

conducting and interpreting future laboratory tests on Northland Allochthon residual clay soil towards better 516 

geotechnical design. 517 
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Table 1: Atterberg indices and other soil properties (Mountain Road site). 667 

 668 

Table 2: Summary of triaxial tests. 669 

 670 

 671 

Table 3: Parameters acquired from oedometer results. 672 

 673 

w0 (%) wLL (%) wPL (%) Gs Organic Fraction (%)

36 49.6 28.3 2.61 5.5

Specimen 

Type
Name CD/CU

Effective  Stress 

(kPa)

Consolidaton Pressure 

(kPa)
OCR

R1 CD 80 800 10

R2 CD 83 250 3

R3 CD 160 800 5

R4 CD 114 800 7

R5 CU 125 250 2

R6 CU 250 250 1

R7 CU 400 400 1

R8 CU 800 800 1

R9 CU 550 550 1

N1 CU 110 110 n/a

N2 CU 190 190 n/a

N2 CU 130 130 n/a

R
e

co
n

st
it

u
te

d
 

U
n

d
is

tu
rb

e
d

Test # Cc Cs λ κ
Oed1 0.240 0.036 0.104 0.016

Oed2 0.285 0.034 0.124 0.015

Oed3 0.308 0.033 0.134 0.014

Mean 0.278 0.034 0.121 0.015
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Table 4: Normalization parameters of in situ triaxial tests. 674 

 675 

Table 5: Summary of strength characteristics of Northland Allochthon residual soil from three 676 

field sites. 677 

 678 

 679 

Table 6: Comparison of critical state parameters from the Mountain Road site to other soils. 680 

 681 

  682 

Specimen 

Name
e σ*ve (kPa)

N1 0.934 68.9

N2 0.891 98.3

N3 0.900 90.7

Field Site Mountain Road Ogles
1

Silverdale
2

Silverdale
3

Complex/ 

Formation

Undifferentiated Mélange, 

predominantly Mangakahia 

Complex Mudstones

Mangakahia Complex - 

Hukerenui Mudstone

Mangakahia Complex - 

Whangai Formation

Mangakahia Complex - 

Whangai Formation

c' kN/m
2

2.5 6 0 1

φ'peak ° 35.6 30 36 27

φ'crit ° 34.2 26 - -

M 1.38 1.03 - -

φres ° - 11 - 14 19 -

1
O'Sullivan (2009) 

2
Harris (2013)

3
Tilsley (1998) as cited in Harris (2013)

Parameter Units

Soil Type λ M φcrit (°)

Glacial till
1

0.09 1.18 29.5

London clay
1

0.16 0.89 22.8

Kaolin clay
1

0.19 1 25.4

Bothkennar clay
2

0.18 1.38 34.1

Tropical residual clay (Dhaka- Borehole 1)
3

0.07 1.05 25.8-26.5

Tropical residual clay (Dhaka- Borehole 2)
3

0.06 0.96 24.2-24.4

Tropical residual clay (Dhaka- Borehole 3)
3

0.05 0.84 21.6

Northland Allochthon residual clay (Mountain Road) 0.12 1.38 34.2

1
Atkinson (1993)

2
Allman & Atkinson (1992)

3
Hossain (2001)
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 713 

Figure 1: Map of approximate field site locations and Northland Allochthon outcrop, modified after 714 

Hayward et al. (1989). 715 
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 717 

Figure 2: Upper (residual) and lower (transition) soil zones at Mountain Road. 718 
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 720 

Figure 3: Results of Atterberg limits on Northland Allochthon residual clay soil. 721 
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 723 

 724 

Figure 4: Grain size distribution for specimens from Kaeo and Mountain Road field sites. 725 
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 728 

Figure 5: Rig and jacking frame used for Shelby tube same collection. 729 
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 737 

Figure 6: Depth (m) versus overconsolidation ratio as estimated from the DMT results at the 738 

Mountain Road field site. 739 
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 757 

 758 

 759 

 760 

 761 

Figure 7: Intrinsic one-dimensional compression and swelling curves from three oedometer tests 762 

on reconstituted specimens. 763 
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 766 

(a) 767 

 768 

(b) 769 

Figure 8: (a) Deviatoric stress, q versus axial strain, εa; (b) pore pressure change, ∆u versus axial 770 

strain, εa for the consolidated undrained triaxial tests on reconstituted specimens. 771 
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 774 

(a) 775 

 776 

(b) 777 

Figure 9: (a) Deviatoric stress, q versus axial strain, εa; (b) volumetric strain, εvol versus axial 778 

strain, εa for consolidated drained tests on reconstituted specimens. 779 
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 781 

Figure 10: Peak strengths and undrained stress paths for the reconstituted specimens. 782 

  783 

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900

t 
(k

P
a

)

s' (kPa)

CU 

(Overconsolidated)

CU (Normally 

Consolidated)

CD 

(Overconsolidated)

Intrinsic Failure Line

36 

 



 784 

Figure 11: Intrinsic Hvorslev strength envelope for Northland Allochthon residual clay soil from 785 

Mountain Road. 786 
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 788 

Figure 12: Stress ratio q/p’ versus axial strain, εa for undrained tests on normally consolidated 789 

reconstituted specimens. 790 
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 792 

(a) 793 

 794 

(b) 795 

Figure 13: (a) Deviatoric stress, q versus axial strain, εa; (b) pore pressure change, Δu versus axial 796 

strain, εa for consolidated undrained triaxial tests on intact specimens. 797 
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 799 

 800 

Figure 14: Peak strengths and undrained stress paths for the intact specimens. 801 
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 804 

Figure 15: Comparison of intact and intrinsic Hvorslev failure envelopes. 805 
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 807 

Figure 16: Relationship between M and plasticity index (PI) for different clays, modified after Muir-808 

Wood (1990). 809 
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