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Abstract Tropospheric ozone (O3) pollution is known to damage vegetation, reducing photosynthesis

and stomatal conductance, resulting in modified plant transpiration to the atmosphere. We use an Earth

system model to show that global transpiration response to near-present-day surface tropospheric ozone

results in large-scale global perturbations to net outgoing long-wave and incoming shortwave radiation. Our

results suggest that the radiative effect is dominated by a reduction in shortwave cloud forcing in polluted

regions, in response to ozone-induced reduction in land-atmosphere moisture flux and atmospheric

humidity. We simulate a statistically significant response of annual surface air temperature of up to ~ +1.5 K

due to this ozone effect in vegetated regions subjected to ozone pollution. This mechanism is expected to

further increase the net warming resulting from historic and future increases in tropospheric ozone.

Plain Language Summary Ozone is a pollutant near the Earth’s surface, where it is harmful to health

and vegetation. Ozone is formed by chemical reactions in the atmosphere driven by the action of sunlight on

emissions from fossil fuel combustion and other sources. Ozone harms vegetation by entering leaves through

small pores on leaves called stomata. These stomata are also the route by which gases such as water vapor and

CO2 are naturally exchanged between plants and the atmosphere. Ozone damage to vegetation affects the

efficiency with which gases pass through plant stomata, typically reducing both photosynthesis and stomatal

conductance due to biochemical damage. This results in a change in the amount of water vapor that plants

put into the atmosphere. In this study we use a computer model to estimate for the first time how this

modification in plant water vapor source to the atmosphere changes climate. We show widespread surface

warming and changes in clouds due to the impact of ozone on plants. This has important implications for

policies aimed at limiting global and regional temperature increases in the presence of ozone pollution and

provides evidence for an additional climate benefit to reducing ozone pollution.

1. Introduction

Tropospheric ozone (O3) is a secondary air pollutant, formed by photochemical oxidation of CO, methane,

and other volatile organic compounds in the presence of nitrogen oxides (NO + NO2; Lelieveld &

Dentener, 2000). Increased emissions of ozone precursors since the Industrial Revolution have led to large-

scale enhancements in ozone throughout the troposphere (Young et al., 2013), resulting in net warming of

climate, with an estimated global mean radiative forcing of 0.4 W/m2 (0.2 to 0.6 W/m2, 95% CI; Myhre et al.,

2013). Ozone at the surface is harmful to human health (Anenberg et al., 2010; Tjoelker et al., 1995) and also

damages vegetation, reducing plant photosynthesis and crop yields (Bowen, 1926; Hollaway et al., 2012). This

reduction in photosynthesis inhibits the land carbon sink, leading to an indirect climate forcing resulting from

an enhancement in atmospheric CO2 (Sitch et al., 2007).

Stomatal cells regulate carbon entering and water exiting plant leaves, and respond to changes light, tem-

perature, and carbon dioxide concentrations (Jones, 1998). Exposure to enhanced near-surface atmospheric

ozone concentrations has been shown to reduce leaf-level stomatal conductance, inhibiting trace gas

exchange between the plant leaf surface and atmosphere (Hoshika et al., 2015; Lombardozzi et al., 2013;
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Wittig et al., 2007). Previous studies have demonstrated impacts of enhanced near-surface atmospheric

ozone on watershed runoff and soil water content, resulting from ozone-induced changes in vegetation tran-

spiration (Bernacchi et al., 2011; Felzer et al., 2009).

The extent to which large-scale exposure of vegetation to enhanced ozonemay have implications for the glo-

bal water cycle and climate system via impacts on global land-atmosphere moisture fluxes has so far not

been be quantified. Model studies suggest a widespread perturbation to global plant transpiration through

ozone-induced changes in stomatal conductance (Hoshika et al., 2015; Huntingford et al., 2011; Lombardozzi

et al., 2012; Lombardozzi et al., 2015). In addition to inducing stomatal closure, observations show that ozone

can inhibit stomatal control, leading to less efficient stomatal response to other environmental controls (so-

called sluggish stomata; Hoshika et al., 2015; Paoletti & Grulke, 2005). Stomatal sluggishness may lead to

reduced stomatal closure under stress, such as drought conditions, resulting in further ozone uptake and

water loss. Loss of stomatal control occurs due to direct ozone damage to leaf-level biochemical pathways,

leading to a decoupling of stomatal conductance response from photosynthesis response (Paoletti, 2005;

Tjoelker et al., 1995). It is important to account for this decoupling, since it leads to a modified large-scale

transpiration response to ozone compared with approaches where stomatal responses are coupled to

ozone-induced photosynthetic decreases (Lombardozzi et al., 2012). So far, no study has investigated the

implications of ozone-induced changes in surface moisture fluxes for global atmospheric moisture and cli-

mate under a realistic tropospheric ozone distribution and accounting for decoupling of stomatal and photo-

synthesis ozone responses. Here we use a coupled atmosphere-land surface model to estimate the global

climate response to ozone-induced changes in plant-atmosphere moisture fluxes for a year 2000 near-pre-

sent-day scenario, using a parameterization that includes empirically derived functions to account separately

for stomatal and photosynthetic responses to plant ozone uptake.

2. Model Simulations and Ozone Evaluation

2.1. Model Setup

We use the Community Earth System Model (CESM; http://www2.cesm.ucar.edu/) version 1.1.1 to make the

first estimate of the global climate response to ozone-induced changes in plant-atmosphere moisture fluxes.

The model includes full coupling between the atmospheric model component (Community Atmosphere

Model (CAM) 4; Neale et al., 2013) and the land surface and vegetation model (Community Land Model

[CLM] 4.0; Oleson et al., 2010). Surface fluxes of heat, moisture, and momentum to the atmosphere and sur-

face albedo are calculated by CLM4 and passed directly to CAM4. Similarly, radiation, humidity, precipitation,

surface air temperature (SAT), and trace gas concentrations (including model-simulated tropospheric O3) are

passed from CAM4 to the vegetation simulation in CLM4. This allows plant photosynthesis and stomatal con-

ductance to respond to simulated atmospheric ozone from CAM4, and the CAM4 atmospheric moisture bud-

get to respond to simulated changes in land surface fluxes from CLM4. CAM4 simulates tropospheric ozone

photochemistry, using an online tropospheric chemistry scheme (CAM-Chem; Lamarque et al., 2012), based

on the MOZART-4 chemical mechanism (Emmons et al., 2010). The model used here includes dry deposition

driven by model-simulated stomatal conductance from CLM4, updated and optimized with leaf area index

(LAI; Val Martin et al., 2014). Prescribed monthly sea surface temperatures (SSTs) and sea ice distributions

for year 2000 are specified, generated by Community Climate System Model version 4 for the Coupled

Model Intercomparison Project Phase 5 (Meehl et al., 2012). The fixed SST approach allows us to isolate the

so-called fast response of climate to ozone-induced changes in vegetation transpiration from relatively short

time-slice integrations. Note that this does not account for longer term equilibrium climate response via SST

changes. Our diagnosed top-of-atmosphere (TOA) radiative changes are therefore equivalent to effective

radiative forcing, as defined by the Intergovernmental Panel on Climate Change (Myhre et al., 2013). Trace

gas and aerosol emissions for year 2000 are taken from Lamarque et al. (2011). Simulated changes in ozone

and aerosol do not feed back onto model radiation and the climate simulation, or affect LAI, vegetation bio-

mass, or vegetation distribution. Simulated changes in aerosol do not affect cloud properties. The version of

CLM4 used here employs a fixed vegetation plant functional type distribution for the year 2000 based on the

HYDE (History Database of the Global Environment) version 3.0 database (Lawrence et al., 2012) and satellite

phenology to prescribe, rather than active biogeochemistry to predict, leaf area indices (Oleson et al., 2010).

Evapotranspiration in CLM4 is partitioned between ground evaporation, canopy evaporation, and transpira-

tion (see Figure S2 in the supporting information), with model updates to improve partitioning between
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transpiration and evaporation components (Lawrence et al., 2007). Our simulations have no active nitrogen

cycle or biomass allocation; however, photosynthesis and stomatal conductance are simulated online.

2.2. Ozone Damage Parameterization

A parameterization for ozone effects on photosynthesis and stomatal conductance is included following pre-

vious off-line studies using CLM, which have evaluated ozone effects on global vegetation productivity and

surface fluxes (Lombardozzi et al., 2012; Lombardozzi et al., 2015). Ozone-induced vegetation damage is

related to plant ozone flux—here a cumulative uptake of ozone (CUO). Flux has been shown to more reliably

relate to reduction in plant photosynthesis compared with atmospheric ozone concentration-based expo-

sure (Karlsson et al., 2007). CUO to plant leaves is accumulated when ozone flux exceeds a 0.8 nmol · m�2 · s�1

threshold value (Lombardozzi et al., 2015), over the growing season (defined as when total LAI is greater than

0.5; Lombardozzi et al., 2012). CUO is related to leaf stomatal resistance for water vapor (rs), by

CUO ¼ Σ kO3=rsð Þ: O3½ � (1)

where kO3 is the ratio of ozone and water leaf resistances and [O3] is the simulated surface level atmospheric

ozone concentration from CAM4.

Photosynthesis and stomatal conductance CUO response curves are derived from a previously compiled

empirical data set for three different vegetation types: deciduous, evergreen, and grass (Lombardozzi

et al., 2013). The Ball-Woodrow-Berry model approach (Ball et al., 1987) used in CLM4 calculates stomatal con-

ductance based on photosynthetic rates. Since stomatal conductance often does not decrease in response to

ozone at the same rate as photosynthesis, we use a previously developedmethodology to modify the stoma-

tal conductance response to CUO independently of photosynthesis (Lombardozzi et al., 2012; Lombardozzi

et al., 2015). This explicit separation has been neglected by some previous studies, but is of importance here,

since it leads to a modified stomatal and transpiration response to ozone compared with approaches where

transpiration responses are coupled to photosynthetic decreases (Lombardozzi et al., 2012).

While the model configuration used here allows diagnosis of global impacts of ozone on plant stomatal

conductance and transpiration, it should be recognized that there are uncertainties in the formulation of

the CLM ozone response function. Plant responses are based on empirical data for three broad plant func-

tional type responses (for deciduous, evergreen, and grass/crops; Lombardozzi et al., 2015), and primarily

on chamber experiment-derived dose-response relationships under high ozone, where responses may be

different from those found in the natural environment. Nevertheless, we present the first results document-

ing the important feedback of ozone-plant interactions on the large-scale hydrological cycle using a state-of-

the-art scheme.

2.3. Model Experiments and Ozone Evaluation

Our focus is on physical climate response to ozone vegetation effects. A similar model setup was recently

used to evaluate atmospheric chemistry responses to ozone effects on vegetation (Sadiq et al., 2017). We

compare a model simulation that includes ozone effects on photosynthesis and stomatal conductance with

a simulation in which this parameterization is not applied, to quantify the effects of the ozone-induced mod-

ification to surface moisture fluxes on simulated climate. We conduct two simulations, each 22 years in

length, using repeating year 2000 emissions, SSTs, and ice cover. Our base simulation does not account for

vegetation damage by ozone, and a second simulation includes the ozone-induced effects on photosynth-

esis and stomatal conductance, based on the simulated CUO. For each simulation, we present annual

averages of 21 years of monthly output. Following a 1-year spin-up, we find no statistically significant trends

in model output over the 21-year period analyzed. We calculate statistical significance of monthly differences

between the two simulations using a Student’s t test on 21 years of output from each simulation, setting a

significance threshold of p< 0.05. In addition, we discount significance for gridpoints that display any signif-

icant degree of temporal autocorrelation (p < 0.05) over the 21-year simulation.

The simulated distribution of surface ozone (Figure 1a) shows enhancements over and downstream of pol-

luted regions of the Northern Hemisphere (NH). We compare simulated surface ozone concentrations with

a collection of surface ozone observations from Europe, North America, Japan, and Southern Hemisphere

midlatitude sites (Figure S1). Within each region, 1995–2005 ozone observations from stations at altitudes

10.1029/2018GL079938Geophysical Research Letters

ARNOLD ET AL. 13,072



less than 500 m above sea level are compared with 21-year average model-simulated surface ozone,

interpolated to observation locations. Further details on observations are given in Figure S1 and in Tilmes

et al. (2012). Model surface ozone concentrations compare well with observations from Europe, Asia, and

the Southern Hemisphere, with a more substantial overestimate over North America. However, overall mean

bias is small (3.6 ppbv, 11%), with modeled and observed ozone concentration distributions overlapping

within their interannual variabilities in all locations and months.

3. Climate Response to Plant Ozone Damage

3.1. Impacts on Land Surface Fluxes

Simulated enhancements in surface ozone over continental regions imply the potential for widespread

impacts of ozone on plant photosynthesis and transpiration. Since ozone flux is determined by both atmo-

spheric ozone concentration and leaf stomatal conductance, relatively low ozone concentrations may pro-

duce substantial fluxes and plant damage in regions where stomatal uptake is particularly efficient

(Paoletti & Grulke, 2005). The results of this effect are evident in differences between simulated spatial pat-

terns of surface ozone concentrations and cumulative leaf ozone uptake (Figures 1a and 1b). Most notably,

despite tropical surface ozone concentrations being substantially smaller than those at mid latitudes, the tro-

pics display large leaf ozone uptake, due to larger stomatal conductances, leaf lifespan, and a longer

growing season.

Globally, the inclusion of the ozone-vegetation effect produces a reduction in latent heat (LH) flux

(�0.31 ± 0.2 W/m2, global mean and interannual variability (IAV), and all gridpoints), which is offset by an

equal increase in sensible heat flux (+0.31 ± 0.12 W/m2, global mean and IAV, and all gridpoints). This is

equivalent to a large scale repartitioning between LH and sensible heat (a change in the so-called Bowen

ratio; Bowen, 1926). This repartitioning is particularly evident in regions of enhanced surface ozone

(Figures 2a and 2b). A large-scale repartitioning in evaporative land-atmosphere moisture flux occurs when

including the ozone effect. Large decreases in fractional contribution from canopy transpiration are partly

offset by an increase in fractional contribution from ground evaporation (Figure S2), due to an increase in

land surface moisture resulting from the decrease in transpiration land-atmosphere moisture flux.

Statistically robust decreases in plant transpiration in response to ozone occur in widespread locations across

the NH and tropics, with the strongest decreases in eastern United States, extratropical South America, and

tropical Africa (Figure 2c). A previous model study using CLM 4.5 similarly showed strong transpiration

response in eastern United States (Lombardozzi et al., 2015). Our simulations provide the first global estimate

of transpiration response to ozone where feedback between changes in model climate and surface vegeta-

tion processes are included. In particular, transpiration in our simulations is affected by simulated changes in

atmospheric humidity and vapor pressure deficit, which have a direct control on stomatal conductance

(Jarvis, 1976; Li & Li, 2014).

Figure 1. Simulated annual mean surface (a) ozone concentrations and (b) cumulative stomatal ozone flux.
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The simulated reduction in transpiration in response to a given concentration of surface ozone is strongly

regionally dependent. Figure 2d shows simulated changes in annual mean canopy transpiration normalized

by surface ozone concentration. Tropical ecosystems show a larger absolute reduction in transpiration per

ppbv surface ozone, as a result of larger stomatal conductance and leaf uptake over the year. In addition, a

high proportion of evergreen vegetation in the tropics means that longer leaf lifetimes allow cumulative

ozone uptake over longer periods (typically 2–3 years), compared with shorter accumulation (<1 year) in

deciduous vegetation, which is more prevalent at midlatitudes. While cumulative ozone uptake tends to

be larger in tropical regions, there is much more variability in the transpiration response compared with mid-

latitudes, particularly at high CUO (see Figure S3). Available empirical tropical tree response data show simi-

larly large uncertainty and CUO range (Lombardozzi et al., 2013).

3.2. Impacts on Atmosphere Radiative Fluxes and Temperature Response

Inclusion of plant ozone uptake and its effects in the model results in a small global annual mean TOA net

radiative effect of +0.04 ± 0.32 (IAV) W/m2 with substantial IAV. The global mean net radiative effect results

from an increase in net downward shortwave (SW) radiation of 0.19 ± 0.32 (IAV) W/m2, partly offset by an

increase in outgoing long-wave (LW) radiation of 0.15 ± 0.11 (IAV) W/m2. The spatial pattern of changes in

model TOA LW and SW radiative fluxes resulting from ozone effects on vegetation and regional temperature

response is shown in Figure 3. Regionally, there are more robust changes, with extensive areas of statistical

significance near to regions of enhanced ozone. Statistically significant increases in annual mean 2-m SAT

resulting from the ozone vegetation are simulated in the same broad regions (North America, Western

Europe, East Asia, Amazon, Central Africa, and Eastern Siberia; Figure 3c). The land surface temperature

response shows a similar spatial pattern, to that of SAT, with slightly larger magnitudes simulated over the

continents (Figure S4), The large increases in SAT simulated over N America are consistent with regional

model experiments for summertime continental United States in which regional-scale changes in heat and

Figure 2. Annual mean ozone-induced differences (ozone on-ozone off) in (a) surface latent heat flux, (b) surface sensible heat flux, (c) transpiration, and (d) tran-

spiration difference normalized by simulated surface atmospheric ozone mixing ratio. Stippling in panels (a-c) denotes regions where 21-year mean differences

are significant (p ≤ 0.05).
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moisture flux as a result of chronic vegetation ozone exposure were investigated (Li et al., 2016). Below, we

explore the mechanism driving the widespread global SAT responses in our simulations.

The global radiative changes produced by the ozone vegetation damage effect are dominated by regional

atmospheric responses to the surface flux repartitioning. Such responses include LW response to ozone-

induced changes in atmospheric water vapor and the atmospheric temperature profile, and LW and SW

responses to changes in clouds. In addition, effects of SW response to changes in albedo resulting from snow

cover differences (sea ice and glaciers are fixed in our simulations) caused by changes in atmospheric moist-

ure and temperature play a role in some regions (see Figure S5).

As expected in temperate and tropical regions, the spatial pattern and magnitude of the SW radiative change

(Figure 3b) closely match changes in SW cloud forcing (Figure 3d; r2 = 0.98 between 60°S and 60°N). However,

changes in clear-sky SW radiative flux (Figure S5) show that a large portion of the SW response over snow-

covered high-latitude North America and Siberia is instead due to surface albedo changes. The dominance

of cloud effects in the SW response implies that warming in regions of enhanced ozone pollution at midlati-

tudes and in the tropics is essentially driven by reductions in cloud cover resulting from ozone-induced

changes in moisture flux to the atmosphere. This mechanism is consistent with previous idealized experi-

ments in CAM 3.1, in which large-scale cooling was simulated in response to an increase in low-level cloud

under artificially imposed increases in surface LH fluxes (Ban-Weiss et al., 2011). Largest statistically robust

SW radiative effects and temperature responses are simulated in North America, Europe, Eastern Siberia,

East Asia, Amazonia, and Central Africa. These are regions with extensive areas of vegetation, where ozone

precursor emissions are also present, either from anthropogenic or biomass burning sources (Granier et al.,

2011). Comparing changes in clear-sky LW flux (Figure S5) and all-sky LW flux (Figure 3a) shows that regional

patterns of increasing and decreasing LW flux in the tropics are also dominated by cloud changes. These

changes lead to both positive and negative LW response in tropical regions, compared with a more

Figure 3. Annual mean ozone-induced differences (ozone on-ozone off) in (a) top-of-atmosphere net outgoing long-wave (LW) flux, (b), top-of-atmosphere net

downward shortwave (SW) flux, (c) 2-m surface air temperature, and (d) SW cloud forcing. Stippling denotes regions where 21-year mean differences are signifi-

cant (p ≤ 0.05).
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Figure 4. Average ozone-induced changes in profiles of (a and b) relative humidity, (c and d) total cloud fraction, (e and f)

convective cloud fraction, (g and h) temperature, for (a, c, e, and g) northern midlatitude (30°–60°N) and (b, d, f, and h)

tropical (30°S–30°N) land gridpoints. Fractional (%) changes in quantities are shown except for temperature where absolute

(K) changes are shown.
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dominant negative LW response in the extratropics, likely as a result of upper level convective cloud response

in the tropics (see below). The result is less offset of the positive SW response in tropical regions compared

with the extratropics.

Vertical profiles of changes in humidity, cloudiness, and temperature further support linkages between cloud

cover and temperature response, driven by changes in atmospheric moisture. Figure 4 shows changes in NH

midlatitude (30°–60°N) and tropical (30°S–30°N) tropospheric profiles over land grid points, of relative humid-

ity, total cloud fraction, convective cloud fraction, and temperature, produced by the ozone impact on plant

transpiration. At midlatitudes, drying of the lower troposphere from the ozone impact on transpiration is

strongest in summer, when transpiration is most efficient and surface ozone is also enhanced. This drying

is coincident with large reductions in low cloud fraction and increased temperatures, suggestive of warming

produced via increased SW heating at the surface under reduced cloud. Winter (December-January-February)

sees minimum profile changes at midlatitudes, when plant photosynthesis and transpiration (as well as

ozone) are lowest, and large regions of frozen ground limit land-atmosphere moisture flux. The large simu-

lated SAT change in North America (Figure 3c) results from a combination of the decrease in cloud fraction

during summer and a widespread decrease in albedo due to reduced snow cover in winter (see Figure S5).

The SAT response is Eastern Siberia is mostly driven by changes in snow cover and albedo (Figure S5), with

only a small contribution from SW cloud forcing (Figure 3d). In the tropics, the atmospheric moisture and

cloud changes are more complex, due to the increased role of convective cloud in the radiation budget,

and convective response to changes in the temperature profile. The result is that a shift in the tropical tem-

perature profile leads to enhanced convective cloud in the middle/upper troposphere (700–200 hPa), which

partly offsets the reduction in low-level cloud fraction. Seasonality in the tropical response is substantially

smaller than at midlatitudes.

4. Discussion and Conclusions

The simulated increased sensitivity of transpiration to ozone in the tropics has potential implications for

climate response to future changes in tropospheric ozone. Future projections of ozone precursor emissions

imply ozone reductions in midlatitudes, and increases in industrializing tropical regions (Lamarque et al.,

2011), highlighting the need for focused data collection on ozone-vegetation interactions in tropical regions.

Increased ozone production efficiency from precursor emissions at lower latitudes (Paoletti, 2005) may also

compound vegetation effects due to an equatorward redistribution of emissions. Even at midlatitudes, efforts

to reduce surface ozone through implementation of clean air legislation may be offset by the effects of a

warming climate (Val Martin et al., 2015) or by global methane increases (Fiore et al., 2002), which may result

in increased ozone concentrations and consequent impacts on extra-tropical transpiration. Further Earth sys-

temmodel simulations are required to investigate how future ozone impacts on transpiration may act along-

side the effects of increases in CO2 via its role in reducing stomatal conductance (Jones, 1998) and more

complex responses to temperature change and changes in availability of water and nutrients.

These model results advance our understanding of the complex interdependencies between atmospheric

chemistry, the biosphere, and physical climate. We have made the first assessment of worldwide regional

climate impacts from tropospheric ozone effects on plant transpiration, which we propose as an addi-

tional mechanistic link between degradation in surface air quality and atmospheric moisture and surface

temperature change. Our findings provide further support for cobenefits to climate and public health that

could result from legislation aimed at reducing ozone precursor emissions (Huntingford et al., 2011) and

may imply that more stringent controls on ozone precursor emissions are required to meet future tem-

perature targets, particularly regionally. Further work is required to fully evaluate this mechanism and

the resulting climatic response empirically, including attempts to quantify impacts of ozone-vegetation

interactions on regional moisture and radiation budgets using observations. Our model simulations pro-

vide regional information on where the proposed mechanism may be important, and a challenge will

be to empirically isolate this effect from other drivers of variability in the moisture and radiative budgets.

Furthermore, there is an urgent need to better constrain the stomatal response of vegetation to ozone

empirically, particularly for tropical plant species, for which our simulations predict the largest transpira-

tion response per ppbv ozone, but for which there is limited empirical constraint on the parameterized

sensitivity to ozone. Future Earth system model studies will be required to investigate climate
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feedbacks resulting from ozone-induced changes in atmospheric moisture and clouds on longer time-

scales, and how these effects act alongside the expected impacts of ozone on the carbon cycle (Collins

et al., 2010; Sitch et al., 2007). Our results demonstrate that ozone-vegetation-hydrology interactions need

to be considered in future projections of climate change, particularly in regions of enhanced ozone pollu-

tion, and in assessments of climate mitigation potential of ozone precursor emission controls.

Data availability

Twenty-one-year average model output and evaluation data used in this study are available on request via

ftp from University of Leeds.
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Erratum

In the originally published version of this article, author Maria Val Martin’s affiliation was published incor-

rectly. Additionally, there was grant information omitted. These errors have since been corrected, and this

version may be considered the authoritative version of record.
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