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Abstract

The interaction between two small bubbles experiencing transient cavitation in a non-
linear Kelvin-Voigt fluid is investigated. The time-delay effect in the interaction is incorpo-
rated in the coupled Keller-Miksis model. The refined model predicts that bubbles with radii
smaller than 2µm will be repelled by large bubbles, in contrast to predictions from previous
models. The matching pressure needed to obtain same level of transient cavitation in differ-
ent Kelvin-Voigt fluids is shown to depend mainly on the shear modulus and is insensitive
to other parameters, which makes it a useful parameter to correlate the results. When the
radii of the bubbles fall between 4µm and 6µm, the secondary Bjerknes force obtained with
matching pressures shows only weak dependence on the shear modulus. For the pressure
amplitudes investigated, equilibrium distances can be found between two bubbles when the
equilibrium radius of one of the bubbles is in a narrow range around 2µm. The equilibrium
distance decreases when the shear modulus is increased. A simple relation between the two
quantities is established.

Keywords: Acoustic cavitation, secondary Bjerknes force, non-Newtonian fluids, numerical
simulations

1. Introduction

The dynamics of cavitation and oscillating bubbles in non-Newtonian fluids has been in-
vestigated for several decades (see e.g., Brujan [7], Gaudron et al. [15], Warnez and Johnsen
[41] and references therein). A main impetus comes from biomedical applications[28, 25, 47],
but applications are also found in other industries such as casting, welding, and galvanizing
[12], where the non-Newtonian properties of molten metals are involved. Past research has
looked into viscoelastic fluids that can be described by Kelvin-Voigt models [43, 15, 41] and
Maxwell models [13, 39, 6, 2, 22, 14, 17, 41]. Numerical simulations based on compress-
ible models find that generally elasticity tends to reduce the amplitude of the oscillation
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and increase the transient cavitation threshold. Nevertheless, under certain circumstances,
elasticity may increase the amplitude of oscillation drastically and lead to chaotic behaviors
(see, e.g., [22]). Elasticity could also lead to phase differences in the oscillations [2], and
compressibility effects should be accounted for properly when the oscillations are strong.

The research cited above is only concerned with a single bubble. Bubble clusters or
clouds also often appear in medical applications. The shielding effects of bubble clusters in
shock wave lithotripsy are investigated experimentally in [40]. Experiments on controlling
cavitation bubble cloud in lithotripsy are conducted in [19]. The interaction between two or
more bubbles in these settings, however, has not received much attention. When two bubbles
are oscillating in a acoustically driven fluid, the two bubbles experience an inter-bubble force,
the so-called secondary Bjerknes force [5]. One of the intriguing features of the force is that
it may change from being attractive to being repulsive as the two bubbles migrate towards
each other. As a result, the force is important for the formation of stable bubble clusters,
such as the “bubble grapes” or “acoustic streamers” [27, 5, 32, 30, 25]. Ignoring the coupling
between the two bubbles, Bjerknes [4] argues that the force is attractive (repulsive) when
the two bubbles oscillate in (out of) phase (see also [8]). The dependence on the inter-bubble
distance is explained qualitatively by linear or weakly nonlinear theories [45, 9]. Subsequent
research has looked into the effects of multiple scattering, nonlinearity, compressibility, shape
oscillations, the coupling with the translation of the bubbles, and dual-frequency driving
[36, 37, 11, 31, 3, 16, 35, 44, 21, 46]. Suggestions have been made to use the force to
manipulate bubbles as carriers of micro-devices [18, 24, 1].

In a recent paper by Liu et al. [29], the secondary Bjerknes force between two bubbles
encapsulated in viscoelastic films while oscillating in a Newtonian fluid is investigated. How-
ever, to the best of our knowledge, no similar research has been reported when the fluid itself
is non-Newtonian. The focus of this paper is on the interactions, and specifically the second
Bjerknes force, between two bubbles oscillating in a nonlinear Kelvin-Voigt (KV) fluid. For
this fluid, a clean closed algebraic expression for the elastic stress term has been derived
in Gaudron et al. [15], which significantly simplifies the analysis and has partly motivated
our choice. For Newtonian fluids, the governing equations for a system of two bubbles are
already available. For non-Newtonian fluids, it is necessary to re-examine some of the as-
sumptions and derive the governing equations. Meanwhile, a more accurate model is needed
to take into account the time-delay effect in the coupling between the two bubbles. These
developments are presented in Section 2. The definition of the secondary Bjerknes force is
reviewed in Section 3. In Section 4, the parameters characterizing the interaction of the two
bubbles, such as the secondary Bjerknes force and the equilibrium distances, are calculated
numerically. The results are compared with those in Newtonian fluids to elucidate the effects
of the elasticity. The conclusions are summarized in section 5.

2. The governing equations

The bubbles are driven by a harmonic uniform pressure with angular frequency ω:

p∞(t) = p0 − pa sin(ωt) (1)

where p0 is the ambient pressure and pa is the amplitude of the ultrasonic pressure. Cases
with large pa will be considered, where the bubbles experience rapid expansion (the so-called
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transient cavitation) followed by violent collapse. Therefore, the compressibility effects will
be taken into account. The bubbles are assumed to be spherical during the oscillations.
For the parameters considered in this investigation, the deviation from this assumption is
negligible (see Appendix A for a brief discussion).

Given these assumptions, the oscillation of a single bubble is described by the Keller-
Miksis model [23, 43, 15]. The model is accurate up to O(M), where M ∼ c−1

∞
is the Mach

number with c∞ being the speed of sound in the unperturbed fluid. The model can be
written as:

2ρ(1− c−1
∞
Ṙ)RR̈ + ρ(3− c−1

∞
Ṙ)Ṙ2 = 2(1 + c−1

∞
Ṙ)(pw − p∞) + 2c−1

∞
R(ṗw − ṗ∞), (2)

where R(t) is the radius of the bubble, ρ is the density of the fluid, and pw is the pressure
on the outer interface of the bubble. pw has the following expression:

pw =

(

p0 +
2σ

RE

)(

RE

R

)3k

−
2σ

R
− V (t), (3)

in which σ denotes the surface tension, RE is the equilibrium radius of the bubble, k is the
polytropic exponent, and V (t) is given by [15]

V (t) =
4ρνṘ

R
+

η

2

(

5− 4
R◦

R
−

R4
◦

R4

)

, (4)

where ν is the kinematic viscosity of the liquid, η is the shear modulus due to the elasticity,
and R◦ is the initial radius of the bubble. R◦ is assumed to be the same as RE in this paper.
The expression for V (t) in a Newtonian fluid is obtained when η = 0.

Note that, although the Keller-Miksis model was originally proposed for bubbles in New-
tonian fluids, Brujan [6] and Yang and Church [43] have proven that the equation is still
valid for various non-Newtionian fluids as long as the correct expression of V (t) is used.
Their argument can be used to show that the model is also valid for the KV fluid being
investigated in this paper.

For a coupled two-bubble system with R1(t) and R2(t) as the radii of the two bubbles,
Mettin et al. [31] introduces the coupling term

pij(t) =
ρ

D

dR2
j Ṙj

dt
, (i, j = 1, 2, i 6= j) (5)

to model the interaction between the two bubbles, where D is the distance between the
bubbles. Substituting Eq. 5 into Eq. 2, they obtain the following equation for Ri(t):

2ρ(1− c−1
∞
Ṙi)RiR̈i + ρ(3− c−1

∞
Ṙi)Ṙ

2
i = 2(1 + c−1

∞
Ṙi)(pwi − p∞) + 2c−1

∞
Ri(ṗwi − ṗ∞)

− 2ρD−1(2R3−iṘ
2
3−i +R2

3−iR̈3−i), (6)

where pwi
has the same expression as pw except that R and RE are replaced by Ri and REi,

respectively.
To generalize the above model to the KV fluids, two questions need to be addressed.

Firstly, the validity of the coupling term pij given in Eq. 5 needs to be established for
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the KV fluids. This is done in Appendix B. Secondly, as noted in Mettin et al. [31],
Eq. 6 has omitted the time delay effect due to the finite propagation speed of pressure
waves in compressible fluids. In a system of weakly oscillating bubbles, Doinikov et al. [10]
incorporated the effect into the linearized equations, and improved the prediction in pressure
fluctuations. However, for strong oscillations, the effect has not been considered.

In a compressible fluid, the pressure wave travels with a finite speed c∞, so that the time
for the pressure to propagate from one bubble to the other is D/c∞. Thus, the pressure
on bubble i should be pij(t − D/c∞) where pij(t) is given by Eq. (5) (see, e.g., [20, 10]).
For bubble i, pij represents a change in the far field pressure. Therefore, to account for the
coupling, the far field pressure p∞(t) in the equation for bubble i is replaced by

p∞(t) + pij(t−D/c∞) ≈ p∞(t) + pij(t)−Dc−1
∞
ṗij. (7)

The right hand side of the above equation is an O(M) approximation for the pressure on the
left hand side. The approximation will be adopted since the Keller-Miksis model is accurate
only up to O(M) anyway. Using the RHS of Eq. (7) to replace p∞ in Eq. (2), one obtains

2ρ(1− c−1
∞
Ṙi)RiR̈i + ρ(3− c−1

∞
Ṙi)Ṙ

2
i = 2(1 + c−1

∞
Ṙi)(pwi − p∞)− 2(1 + c−1

∞
Ṙi)pij

+ 2c−1
∞
Ri(ṗwi − ṗ∞) + 2c−1

∞
(D −Ri)ṗij. (8)

Note that some O(M2) terms arise in the substitution. These terms have been omitted,
including the terms involving d2pij/dt

2.
Finally, ṗij is removed from the above equation by substituting Eq. (5) into Eq. (8).

The substitution leads to
...
Rj(t), the third order derivative of Rj(t). As noted in [38], it can

be evaluated from R̈j with R̈j given by the Rayleigh-Plesset equation (see, e.g., [5]). As a
result, the final model equation can be written as

2ρ(1− c−1
∞
Ṙi)RiR̈i + 2ρ[D−1(1 + c−1

∞
Ṙi)R3−i + c−1

∞
(D−1Ri − 1)Ṙ3−i]R3−iR̈3−i

+ ρ(3− c−1
∞
Ṙi)Ṙ

2
i + ρ[4D−1(1 + c−1

∞
Ṙi)R3−i + c−1

∞
(D−1Ri − 1)Ṙ3−i]Ṙ

2
3−i

= 2(1 + c−1
∞
Ṙi)(pwi − p∞)− 2c−1

∞
(D−1Ri − 1)Ṙ3−i(pw(3−i) − p∞)

+ 2c−1
∞
Ri(ṗwi − ṗ∞)− 2c−1

∞
(D−1Ri − 1)R3−i(ṗw(3−i) − ṗ∞). (9)

Eq. (9) contains additional O(M) terms not present in the previous model (i.e., Eq. (6)).
These terms represent the time-delay effects. The equation applies to both Newtonian fluids
and KV fluids with appropriate pwi. Eq. (9) is the model developed in this paper; it will be
compared with the previous models later in this paper.

3. The secondary Bjerknes force

Let Fij denote the secondary Bjerknes force on bubble i induced by bubble j, where
i, j = 1, 2 and i 6= j. By definition, Fij is the time-averaged pressure force on bubble i
generated by the oscillations of bubble j. For the moment, we neglect the time delay effects.
Fij can be written as (see, e.g., [8]):

Fij =

〈

Vi
∂pj
∂r

∣

∣

∣

∣

r=D

〉

= −
ρ

D2

〈

Vi

dR2
j Ṙj

dt

〉

=
ρ

4πD2
〈V̇iV̇j〉, (10)
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where Vi is the volume of bubble i and r in the above equation is the radial distance from
the center of bubble j. The pointed brackets represent averaging over a period of the driving
pressure. Note that, defined this way, the force is positive when it is attractive. Also, Fij is
symmetric, i.e., Fij = Fji. In terms of Fij, the so-called secondary Bjerknes force factor fij
(see, e.g., [31]) is defined as fij ≡ ρ〈V̇iV̇j〉/4π ≡ D2Fij.

If the time delay is considered, the pressure gradient used in Eq. (10) should be evaluated
at the retarded time t−D/c∞ (c.f. Section 2). Using Taylor expansion up to O(M), one can
show that the expression for the force should be modified to Fij + FC

ij where the correction
term FC

ij reads

FC
ij = −

ρ

4πDc∞
〈V̇iV̈j〉. (11)

FC
ij is anti-symmetrical with respect to the indices, i.e., FC

ij = −FC
ji , since we have 〈V̇iV̈j〉 =

−〈V̈iV̇j〉. As a consequence, the two forces (i.e., FC
ij and FC

ji ) point in the same direction.
Under their effects, the two bubbles would tend to translate along the line joining the centers
of the bubbles. In terms of the interaction between the two bubbles, this contribution
represents a higher order effect, hence is neglected in current investigation.

4. Numerical results and discussions

We focus on strong oscillations with pressure amplitudes pa above the transient cavitation
threshold [31]. The equations are solved numerically. Results for a Newtonian fluid are
computed to compare with those in the Kelvin-Voigt fluids. In order to validate our results,
same parameters as those in Mettin et al. [31] have been used in the majority of cases, and
water is chosen to represent the Newtonian fluid. The angular frequency ω of the driving
pressure is chosen as ω = 2πf with f = 2 × 104 s−1, so the period T is 5 × 10−5s. The
ambient pressure p0 ≡ patm = 1.013× 105Pa. The pressure amplitude is pa = 1.32patm. The
polytropic exponent is set at k = 1.4. Density ρ = 998 kgm−3, surface tension coefficient
σ = 0.0725 Nm−1, speed of sound c∞ = 1500m s−1, and kinematic viscosity ν = 1.002×10−6

m2s−1. In medical applications, these parameters have been used in, e.g., intracorporeal
lithotripsy [33]. In a few cases considered below, different pa and f is also used to examine
the universality of the results.

The bubbles are assumed to be in equilibrium initially. Therefore, the initial radii are
given by the equilibrium radii RE1 and RE2. Only bubbles with equilibrium radii at the order
of several microns are considered since these are the typical sizes in medical applications (e.g.
shock wave lithotripsy). Solutions for various combinations of (RE1, RE2) in this range are
calculated. The Kelvin-Voigt fluid is a common model for soft tissues. Therefore the value
for η is chosen from the data for soft tissues. According to Wells and Liang [42], the shear
modulus for soft tissues can range from 1KPa to 100KPa in medical applications. Values
up to 30KPa are examined in this paper. These values correspond to, for example, breast,
kidney and liver tissues under various medical conditions.

4.1. The effects of time delay in Newtonian fluids

The model without time delay (given in Eq. (6)) is called the coupled Keller-Miksis
model, CKM for short. The model with time delay (given in Eq. (9)) is called the coupled
Keller-Miksis model with time delay, and is referred to as CKMTD in what follows. The
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predictions in the Newtonian fluid made by the CKM and CKMTD models are compared in
this section.

4.1.1. The secondary Bjerknes force

The general features are displayed in Fig. 1, where the radii of two pairs of bubbles are
plotted. For better visibility, Results for bubble 2 are shown in Fig. 1a, and those for bubble
1 in Fig. 1b. The bubbles experience strong transient cavitation followed by a series of
rebounds. Differences in the two models are observed in the rebound phase, which is more
visible in Fig. 1b and the inset therein. The new model predicts stronger rebounds for the
smaller bubble in each pair. The maximum radii Rmax calculated by the two models also
show some small differences. The differences are bigger for bubble with RE2 = 10µm, which
suggests that they may increase with the size of the bubble.

The difference in the rebound phase has significant impact on the secondary Bjerknes
force. Shown in Fig. 2 is the contour plot of the secondary Bjerknes force factor f12 (see
the definition below Eq. (10)). As the plot is symmetric with respect to RE1 and RE2, only
half of the domain needs to be shown for each model. The main difference is observed for
RE1 . 2µm and RE2 & 2µm (or the other way around). In this range, the CKM model
predicts positive f12, which is a conclusion also reached in [31]. However, the CKMTD
model predicts negative f12. Quantitative difference is shown in Fig. 3 for two RE1 values.
As the value of f12 spans several orders of magnitude for RE2 between 0 and 2µm, this
range is shown separately in two insets. The top-right inset corroborates the aforementioned
observation that f12 predicted by the two models has different signs for RE2 . 1.8µm. It
also shows that the difference in f12 is larger for larger RE1. There is a sharp drop in f12
between RE2 = 1.8 and 2µm. This is shown in the bottom-left inset (Note that the y-limits
for the two insets are different).

A partially averaged secondary Bjerknes force fa
12(t) (0 ≤ t ≤ T ) is considered next,

where

fa
12(t) =

1

t

∫ t

0

ρV̇1V̇2

4π
dt. (12)

fa
12(t) as a function of t can reveal the contributions to f12 from different phases of the
oscillation, and, by definition, f12 = fa

12(T ). fa
12(t) is shown in Fig. 4 for selected radii.

R2(t) is also plotted to highlight the incipience of the rebound phase. The results for fa
12(t)

from the two models start to diverge only when the bubbles approach the rebound phase.
This verifies that the difference in f12 does come from the rebound phase.

Experimentally, stable clusters are observed even when the bubbles appear to oscillate
in phase, seemingly contradicting the theoretical prediction that they should be attracted
to each other (see, e.g., [30]). Our results provide a possible explanation. Although the
bubbles are in phase in the expansion phase, our results show that they may be out of phase
in the rebound stage (which is not always experimentally observable). This thus leads to a
repulsive secondary Bjerknes force, hence stable clusters. The new model predicts that there
is a wider range of bubble radii where bubbles repel each other.

4.1.2. The equilibrium distance

For given (RE1, RE2), f12 is a function of the inter-bubble distance D. The equilibrium
distance DE is defined as the distance D where f12 = 0 and f12 > 0 for D > DE. At
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Figure 1: The radii of the bubbles R1(t) and R2(t), with (RE1, RE2) = (1µm, 10µm) (Case 1) and (4µm, 5µm)
(Case 2). pa = 1.32patm. f = 20KHz. D = 100µm. (a): Results for R2(t). The top group: Case 1. Solid
line: CKMTD; dashed line: CKM. The bottom group: Case 2. Solid line: CKMTD; dashed line: CKM. (b)
Results for R1(t). The top group: Case 2. Solid line: CKMTD; dashed line: CKM. The bottom group and
the inset: Case 1. Solid line: CKMTD; dashed line: CKM.
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Figure 2: The secondary Bjerknes force factor f12 as a function of REi (i = 1, 2). The upper half: CKM;
the lower half: CKMTD. pa = 1.32patm. f = 20KHz. D = 100µm.
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Figure 3: The secondary Bjerknes force factor f12 as a function of RE2. Lines: CKM model. Solid line:
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RE1 = 3µm. Top-right inset: 0 ≤ RE2 ≤ 1.8µm; bottom-left inset: 1.75 ≤ RE2 ≤ 1.95µm. pa = 1.32patm.
f = 20KHz. D = 100µm.
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Figure 4: (a) fa

12
(t) for (RE1, RE2) = (3, 1.5)µm, pa = 1.32patm, and D = 100µm. Right y-axis and the

dotted line: R2(t) from the CKMTD model. (b): A zoom-in around the beginning of the rebound phase.
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Figure 5: Equilibrium distance DE as a function of RE2. Dashed lines: CKM model; solid lines with
circles: CKMTD model. Both with pa = 1.32patm. The four groups (from left to right) correspond to
RE1 = 1.8, 1.9, 2, 2.1µm. Squares: CKMTD model with pa = 1.4patm. The three groups (from left to right)
correspond to RE1 = 1.45, 1.5, 1.6µm.

this distance, the two bubbles experience no secondary Bjerknes force; if the bubbles drift
apart, the force will become attractive and drive them towards each other, hence restoring
their distance to DE. DE has been measured experimentally only recently for relatively
large bubbles with small oscillations [44]. The experimental result was used to reveal some
qualitative differences between experiments and theories. No data for DE have been reported
for the small bubbles investigated here. Therefore even the results from the old model would
provide useful insights.

To calculate DE for different bubbles, the radii RE1’s for which equilibrium with some
RE2’s may exist are first identified with the help of Fig. 2. For each of these RE1’s, every
RE2 between 2 and 10µm is chosen, with a 0.1µm increment, to form a bubble pair. For
each pair, f12 is calculated for different values of D, and a bisection search is used to find
the roots of f12 = 0 and hence DE. The search is stopped when the interval bracketing the
root is narrowed down to 1µm. It is a time consuming calculation.

Fig. 5 plots DE as a function of RE2 for four different RE1 for which DE has been found
to exist. The overall difference between the two models is small, with maximum relative
difference being approximately 4%. No equilibrium distance is found for RE1 outside of the
range of values shown in Fig. 5. For each RE1, DE increases with RE2 and the increasing
rate strongly depends on RE1. The squares in Fig. 5 show the results computed with the
new model at pa = 1.4patm, to illustrate how the results depend on the pressure amplitude.
DE shows similar sensitive dependence on RE1 and RE2. In both cases, equilibrium exists
only for RE1 in a narrow range. For higher pressure amplitudes, the range for RE1 is shifted
to smaller values, but only very slightly.
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The result in Fig. 5 can qualitatively explain some behaviours of small bubble clusters
[30]. Small clusters with diameters between 200µm and 500µm are often observed in 20KHz
ultrasonic pressure fields with amplitude around 1.68patm (see, e.g., page 22 in [30]). The
radii of the bubbles are at the order of few microns. As stated by Mettin [30], it is unclear
why the clusters are stable while the positions of the bubbles can change drastically within an
oscillation cycle. Fig. 5 shows that DE depends very sensitively on RE1 and RE2, Therefore,
the equilibrium distance can vary wildly with small changes in the equilibrium radii of the
bubbles. In the small clusters, such a drastic change in the equilibrium distance between two
bubbles may be triggered by rectified diffusion [5] or the perturbation from other bubbles,
hence leading to the strong variations described in [30]. Fig. 5 shows that the high sensitivity
is observed for different pressure amplitudes. Therefore the above explanation is expected
to be qualitatively valid in general.

Though the two models produce similar DE, the new model predicts larger repulsive
secondary Bjernkes force, as shown in the insets of Fig. 3. Therefore, according to the new
model, the equilibrium distance would be more stable than it is implied by the old model.

4.2. Results in the Kelvin-Voigt fluid

In this subsection, only the new model is applied to investigate the secondary Bjerknes
force in Kelvin-Voigt fluids with different shear modulus η.

4.2.1. General features

The general features of the results are first reported. Fig. 6a shows radius R1(t) for
a pair of bubbles with (RE1, RE2) = (3, 4)µm for several values of η. The top curve cor-
responds to the Newtonian fluid. As η is increased, the maximum radius is reduced and
the transient cavitation phase is shortened. For η = 10KPa, transient cavitation is already
almost suppressed. The result reproduces the known effects of elasticity [15], i.e., the elastic
stress reduces the amplitude of the oscillations. The secondary Bjerknes force factor f12 is,
as expected, also reduced by elasticity, as shown in Fig. 6b. Even for this moderate value
of η, f12 can be several orders of magnitude smaller than its values in the Newtonian fluid.

4.2.2. The matching pressure

To make the comparison in different KV fluids more informative, the parameters in each
case should be chosen in such a way that different cases are comparable. Instead of simply
changing η while keeping other parameters the same for different cases, the method adopted
here is to compare the cases with same level of transient cavitation. From a practical point
of view, this is a more useful comparison.

For this purpose, the maximum radius Rmax for a single oscillating bubble is used to
measure the strength of the transient cavitation, and a matching pressure, denoted by pm, is
defined. Let pNa be the value of pa used to drive the bubble in a Newtonian fluid, and Rmax

be the maximum radius achieved by the bubble. Considering the oscillation of a bubble in
a KV fluid, pm is defined as the value of pa needed to drive the bubble so that its maximum
radius is also Rmax. pm is a function of pNa and η, so one may write pm(p

N
a , η). For a given pNa ,

two cases with different η’s are comparable when the pressure amplitudes pa’s are given by
pm(p

N
a , η). By itself, pm also provides useful information about the ultrasonic power needed

in different KV fluids to maintain the same level of transient cavitation.
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Figure 6: (a) The radius R1(t) for bubbles with (RE1, RE2) = (3, 4)µm, calculated with D = 0.1mm and
pa = 1.32patm. From the top to bottom, η = 0, 1, 5, 10KPa. (b) The force factor f12 for the KV fluid (lower
half) with η = 5KPa and the Newtonian fluid (upper half). pa = 1.42patm. f = 20KHz. D = 100µm.
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Figure 7: The matching pressure pm as a function of η. Symbols are calculated with pN
a

= 1.32patm,
f = 20KHz and 30KHz (shown with same symbols). Solid line: averaged pm. Error bars show the variations
between the cases. Dashed and dash-dotted lines: the matching pressure for pN

a
= 1.4 and 1.5patm with

f = 20KHz and RE = 2µm.

Fig. 7 shows pm obtained numerically for RE = 2, 4, 6, 8µm and pNa = 1.32patm. In each
case, results for two frequencies f = 20KHz and 30KHz are computed. Results with pNa = 1.4
and 1.5patm are also calculated for RE = 2 and f = 20KHz to illustrate the dependence of
pm on pNa . It is observed that pm increases with η essentially linearly. For given pNa and η,
the variations with RE and f are smaller than 10%. The slopes of the lines only change very
slightly with pNa . Therefore, for a given pNa , the averaged pm between different cases provide
a good approximation to the matching pressure for different RE or f . The averaged pm is
shown with the solid line. The curve can be approximated by the following linear function:

pm
patm

=
pNa
patm

+ 0.0214η, (13)

where η is given in KPa. Eq. 13 can be used to estimate the pressure amplitude needed to
produce same transient cavitation in different KV fluids.

4.2.3. The secondary Bjerknes force and the equilibrium distance

The secondary Bjerknes force factor f12 for different η is then calculated with the cor-
responding matching pressure pm(p

N
a , η) for pNa = 1.32patm. Six cases are computed where

(RE1, RE2) = (2, 4), (2, 6), (2, 8), (4, 6), (4, 8) and (6, 8)µm, respectively. These cases provide
a full picture of the force for bubbles with radii of a few microns.

Fig. 8 plots f12 for different η and radii between 4 and 8µm. The results segregate in
two groups according to the value of RE1. The average over all cases in each group is shown
with the solid lines. Computation shows that the deviation from the average is within 15%
in both groups. Therefore, the variation with η is significantly reduced using the matching
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Figure 8: f12 versus D. Top group: (RE1, RE2) = (6, 8)µm. Bottom group: (4, 6) and (4, 8)µm. Solid lines:
the average in each group. Calculated with matching pressure for pN

a
= 1.32patm, f = 20KHz.

pressure, which shows that it is an effective way to correlate the data. Data shown in Fig.
8 are useful for the simulation of bubble clusters using particle methods (see, e.g., [32]).

For RE1 around 2µm, using the matching pressure also reduces the variations of the
force with η. However, for radii in this range, the equilibrium distance DE may exist. The
variation of DE with η may still be important even when the matching pressure is used. The
situation is illustrated in Fig. 9 for RE1 = 2µm. The figures show that f12 increases with η,
and as a consequence DE decreases with η for all these bubble pairs.

The quantitative results for DE with η = 5KPa is given in Fig. 10a. This relatively
small η is chosen to show how DE deviates from the value in the Newtonian fluid. The figure
shows that the curves for slightly different RE1’s can have very different slopes. For small
RE1, DE increases with RE2 rapidly. Fig. 10b plots DE for a wider range of η for selected
radii. DE is larger for larger bubbles, but in all cases it decreases with η. Note that, smaller
DE can still be found for some even larger η values. However, DE smaller than 100µm is
considered not realistic because the spherical bubble assumption used in the model becomes
questionable when the distance between the bubbles is too small.

Let DN
E be the value of DE for the Newtonian fluid, given by the curves in Fig. 10b

for η = 0. Fig. 10b suggests that DN
E /DE may have simple functional dependence on η.

DN
E /DE is plotted in Fig. 11, which shows that the linear regression

DN
E

DE

= aη + b (14)

provides good approximation. The values for a and b found by least squares are given in the
figure for each RE2. The range of η in which DE ≥ 100µm is also given, which is the range
in which the linear regression is valid.

Eq. 14 can be used to estimate the equilibrium distance between two bubbles hence the
size of a bubble cluster in Kelvin-Voigt fluids. The observation that DE decreases with η
implies that stable bubble clusters in Kelvin-Voigt fluids may have smaller sizes, or may not

14



100 120 140 160 180 200 220 240 260 280 300
-2

0

2

4

6

8

10

12

14

16

18
10

-16

0

2

4

6

8

10

12

(a)

100 120 140 160 180 200 220 240 260 280 300
-2

0

2

4

6

8

10

12
10

-16

0

2

4

6

8

10

12

(b)

100 120 140 160 180 200 220 240 260 280 300
-2

0

2

4

6

8

10
10

-16

(c)

Figure 9: f12 versus D. Calculated with matching pressure for pN
a

= 1.32patm, f = 20KHz. (a) (RE1, RE2) =
(2, 4)µm. (b) (RE1, RE2) = (2, 6)µm. (c) (RE1, RE2) = (2, 8)µm.
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Figure 10: (a) The equilibrium distance DE as a function of RE2 for RE1 = 1.8, 1.9, 2.1µm (from left to
right). Circles: Newtonian fluid. Squares: KV fluid with η = 5KPa and matching pressure. pN

a
= 1.32patm.

f = 20KHz. (b) The equilibrium distance DE as a function for η, for RE1 = 2µm and RE2 = 4, 6, 8µm
(bottom to top). pN

a
= 1.32patm. f = 20KHz.
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Figure 11: The linear regression for DN

E
/DE where DN

E
is the equilibrium distance for the Newtonian fluid.

η is given in KPa. Symbols are the same as in Fig. 10b.

be able to sustain, especially for higher η values. The implications on medical applications
is worth further investigation.

5. Conclusions

A model taking into account the time-delay effect is derived and applied to study the
interactions between two bubbles driven by harmonic ultrasonic pressure in a nonlinear
Kelvin-Voigt (KV) fluid. The secondary Bjerknes force and the equilibrium distance between
the bubbles are investigated. The matching pressure that produces same level of transient
cavitation in different KV fluids is calculated, and is show to be effective in correlating the
results in the KV fluid. The investigation is limited to the periodic transient cavitation
regime for small bubbles with radii of a few microns. Several conclusions can be made from
the analyses:

1. The time-delay effect leads to a new prediction that small bubbles are repelled by large
bubbles. As a consequence, the chances to observe bubbles repelling each other are
significantly higher than previously believed.

2. The rebound phase could have significant effects on the secondary Bjerknes force.

3. When the bubbles are driven by the matching pressure so that same level of transient
cavitation is produced, the secondary Bjerknes force increases with the shear modulus
of the fluid, whereas the equilibrium distance is inversely proportional to a linear
function of the shear modulus.

4. The matching pressure shows only weak dependence on bubble radius and the fre-
quency.

5. The equilibrium distance is very sensitive to the equilibrium radii of the bubbles.
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The above observations have already offered new insights into some experimental observa-
tions reported in the literature. However, there are questions remained to be answered. The
implications of the findings in medical applications need to be clarified. The current article
does not cover all non-Newtonian fluid models. Important omissions include the Maxwell-
type fluids or, more generally, the Oldroyd-B fluids. Further investigations are also needed
to address problems where the bubbles do not remain spherical.
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Appendix A. The spherical bubble assumption

The deformation of the bubbles is negligible when the distance between the bubbles is
not too small. However, a systematic investigation on the minimum distance has not been
reported in the literature and is beyond the scope of this paper. Nevertheless, a reasonable
estimate can be obtained by the Moore’s formula for the deformation of a bubble rising with
a given speed u in a quiescent Newtonian fluid. In this case, the spherical bubble becomes
an ellipsoid, and the aspect ratio χ of the ellipsoid is given by the Moore’s formula [34, 26]:

χ = 1 +
9

64
W , (A.1)

where W ≡ 2ρu2R/σ is the Weber number, with R being the average radius of the bubble.
When this formula is applied to estimate the deformation of bubble 1 in the two bubbles,
u should be the velocity at the location of bubble 1 induced by the oscillation of bubble 2.
Using the simulation results for RE1 = 6µm, RE2 = 8µm, and D = 100µm, u is estimated
to be 0.4ms−1. This corresponds to the maximum velocity induced by bubble 2 when it
collapses. R is estimated by the maximum radius of bubble 1, which is 44µm. W is thus
approximately 0.2, giving χ ≈ 1.03. That is, there is only approximately 3% difference
between the lengths of the axes of the ellipsoid. The difference is expected to be smaller for
larger D. Therefore, for the bubbles simulated in this paper, D = 100µm is the minimum
distance for which the deformation of the bubbles is negligible.

Appendix B. The coupling term for the nonlinear Kelvin-Voigt fluid

For a coupled two bubble system in a Kelvin-Voigt fluid, the coupling term similar to the
one in Eq. (5) can be derived from the radial momentum equation, following the method in
[31]. Considering the fluid motion around a single bubble, the radial velocity at a distance
r from the centre of the bubble is given by R2Ṙ/r2. Neglecting the viscous stress, the radial
momentum equation becomes:

∂p

∂r
= −

ρ

r2
dR2Ṙ

dt
+

2ρR4Ṙ2

r5
+ η

(

8

3

r◦
r2

−
10

3

r

r2
◦

+
4

3

r4

r5
◦

−
2

3

r4
◦

r5

)

, (B.1)
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where r◦ is the initial radial location of a material point whose current location is r. As
noted in [15], assuming traceless stress tensor, one may obtain

r◦(r, t) = [r3 −R(t)3 +R3
◦
]1/3. (B.2)

The last term on the RHS of Eq. B.1 is the contribution from the elasticity. Using Eq. (B.2)
and expanding r◦/r as a power series of 1/r, Eq. B.1 becomes

∂p

∂r
= −

ρ

r2
dR2Ṙ

dt
+

2ρR4Ṙ2

r5
+

2η

3

(R3
◦
−R3)2

r7
+O(r−10). (B.3)

Therefore, the contribution from the elastic stress is O(r−7). As in the models for Newto-
nian fluids, terms of O(r−5) and smaller are neglected. Therefore, the pressure gradient is
approximately given by the first term on the RHS. As a result, the coupling term in the
Kelvin-Voigt fluid is the same as the one given in Eq. (5).

[1] Ahmed, D., Lu, M., Nourhani, A., Lammert, P. E., Stratton, Z., Muddana, H. S., Crespi,
V. H., Huang, T. J., 2015. Selectively manipulable acoustic-powered microswimmers.
Scientific Reports 5, 9744.

[2] Allen, J., Roy, R., 2000. Dynamics of gas bubbles in viscoelastic fluids. ii. nonlinear
viscoelasticity. J. Acoust. Soc. Am. 108, 1640–1650.

[3] Barbat, T., Ashgriz, N., Liu, C.-S., 1999. Dynamics of two interacting bubbles in an
acoustic field. J. Fluid Mech. 389, 137–168.

[4] Bjerknes, V. F. K., 1906. Fields of Force. Columbia University press, New York.

[5] Brennen, C. E., 1995. Cavitation and bubble dynamics. Oxford University Press.

[6] Brujan, E. A., 1999. A first-order model for bubble dynamics in a compressible vis-
coelastic liquid. J. Non-Newtonian Fluid Mech. 84, 83–103.

[7] Brujan, E. A., 2011. Cavitation in Non-Newtonian Fluids. Springer-Verlag Berlin Hei-
delberg.

[8] Crum, L. A., 1975. Bjerknes forces on bubbles in a stationary sound field. The Journal
of the Acoustical Society of America 57, 1363.

[9] Doinikov, A. A., 1999. Effects of the second harmonic on the secondary bjerknes force.
Phys. Rev. E 59, 3016–3021.

[10] Doinikov, A. A., Manasseh, R., Ooi, A., 2005. Time delays in coupled multibubble
systems. The Journal of the Acoustical Society of America 117, 47.

[11] Doinikov, A. A., Zavtrak, S. T., 1995. On the mutual interaction of two gas bubbles in
a sound field. Phys. Fluids 7, 1923.

[12] Eskin, G. I., Eskin, D. G., 2003. Production of natural and synthesized aluminum-
based composite materials with the aid of ultrasonic (cavitation) treatment of the melt.
Ultrasonic Sonochemistry 10, 297–301.

19



[13] Fogler, H. S., Goddard, J. D., 1970. Collapse of spherical cavities in viscoelastic fluids.
Phys. Fluids 13, 1135.

[14] Foteinopoulou, K., Laso, M., 2010. Numerical simulation of bubble dynamcis in a phan-
thien-tanner liquid: Non-linear shape and size oscillatory response under periodic pres-
sure. Ultrasonics 50, 758–776.

[15] Gaudron, R., Warnez, M. T., Johnsen, E., 2015. Bubble dynamics in a viscoelastic
medium with nonlinear elasticity. Journal of Fluid Mechanics 766, 54–75.

[16] Harkin, A., Kaper, T. J., Nadim, A., 2001. Coupled pulsation and translation of two
gas bubbles in a liquid. J. Fluid Mech. 445, 377–411.

[17] Hua, C., Johnsen, E., 2013. Nonlinear oscillations following the rayleigh collapse of a
gas bubble in a linear viscoelastic (tissue-like) medium. Phys. Fluids 25, 083101.

[18] Ida, M., 2009. Multibubble cavitation inception. Phys. Fluids 21, 113302.

[19] Ikeda, T., Yoshizawa, S., Tosaki, M., Allen, J. S., Takagi, S., Ohta, N., Kitamura,
T., Matsumoto, Y., 2006. Cloud cavitation control for lithotripsy using high intensity
focused ultrasound. Ultrasound in Med. & Biol, 32, 1383–1397.

[20] Ilinskii, Y. A., Zabolotskaya, E. A., 1992. Cooperative radiation and scattering of acous-
tic waves by gas bubbles in liquids. The journal of the Acoustical Society of America
92, 2837.

[21] Jiao, J., He, Y., Kentish, S. E., Ashokkumar, M., Manasseh, R., Lee, J., 2015. Experi-
mental and theoretical analysis of secondary bjerknes forces between two bubbles in a
standing wave. Ultrasonics 58, 35–42.

[22] Jimenez-Fernandez, J., Crespo, A., 2005. Bubble oscilation and inertial cavitation in
viscoelastic fluids. Ultrasonics 43, 643–651.

[23] Keller, J. B., Miksis, M., 1980. Bubble oscillations of large amplitude. J. Acoust. Soc.
Am. 68, 628–633.

[24] Lanoy, M., Derec, C., Tourin, A., Leroy, V., 2015. Manipulating bubbles with secondary
bjerknes forces. Appl. Phys. Lett. 107, 214101.

[25] Lauterborn, W., Kurz, T., 2010. Physics of bubble oscillations. Rep. Prog. Phys. 73,
106501.

[26] Legendre, D., Zenit, R., Velez-Cordero, R., 2012. On the deformation of gas bubbles in
liquids. Phys. Fluids 24, 043303.

[27] Leighton, T. G., 1994. The Acoustic Bubble. Academic Press, London.

[28] Lingeman, J. E., 1997. Extracorporeal shock wave lithotripsy: Development, instru-
ment, and current status. Urol. Clin. North Am. 24, 195–211.

20



[29] Liu, Y., Sugiyama, K., Takagi, S., 2016. On the interaction of two encapsulated bubbles
in an ultrasound field. J. Fluid Mech. 804, 58–89.

[30] Mettin, R., 2005. Bubble structures in acoustic cavitation. In: Doinikov, A. (Ed.),
Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications.
Kerala, India: Research Signpost, pp. 1–36.

[31] Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D., Lauterborn, W., 1997. Bjerknes forces
between small cavitation bubbles in a strong acoustic field. Phys. Rev. E 56, 2925.

[32] Mettin, R., Luther, S., Ohl, C.-D., Lauterborn, W., 1999. Acoustic cavitation structures
and simulations by a particle model. Ultrasonics Sonochemistry 6, 25–29.

[33] Miller, D., N.Smith, Bailey, M., Czarnota, G., Hynynen, K., Makin, I., of Ultrasound in
Medicine Bioeffects Committee, A. I., 2012. Overview of therapeutic ultrasound appli-
cations and safety considerations. J. Ultrasound Med. 31, 623–634.

[34] Moore, D. W., 1959. The rise of a gas bubble in a viscous liquid. J. Fluid Mech. 6, 113.

[35] Pelekasis, N. A., Gaki, A., Doinikov, A., Tsamopoulos, J. A., 2004. Secondary bjerknes
forces between two bubbles and the phenomenon of acoustic streamers. J. Fluid Mech.
500, 313–347.

[36] Pelekasis, N. A., Tsamopoulos, J. A., 1993. Bjerknes forces between two bubbles. part
1. response to a step change in pressure. J. Fluid Mech. 254, 467–499.

[37] Pelekasis, N. A., Tsamopoulos, J. A., 1993. Bjerknes forces between two bubbles. part
2. response to an oscillatory pressure field. J. Fluid Mech. 254, 501–527.

[38] Prosperetti, A., Lezzi, A., 1986. Bubble dynamics in a compressible liquid. part 1.
first-order theory. J. Fluid Mech. 168, 457–478.

[39] Tanasawa, I., Yang, W.-J., 1970. Dynamic behavior of a gas bubble in viscoelastic
liquids. Journal of Applied Physics 41, 4526.

[40] Wang, J.-C., Zhou, Y., 2015. Suppressing bubble shielding effect in shock wave
lithotripsy by low intensity pulsed ultrasound. Ultrasonics 55, 65–74.

[41] Warnez, M. T., Johnsen, E., 2015. Numerical modelling of bubble dynamics in vis-
coelastic media with relaxation. Physics of Fluids 27, 063103.

[42] Wells, P. N. T., Liang, H.-D., 2011. Medical ultrasound: imaging of soft tissue strain
and elasticity. J. R. Soc. Interface 8, 15211549.

[43] Yang, X., Church, C. C., 2005. A model for the dynamics of gas bubbles in soft tissues.
J. Acoust. Soc. Am. 118, 3595–3606.

[44] Yoshida, K., Fujikawa, T., Watanabe, Y., 2011. Experimental investigation on rever-
sal of secondary bjerknes force between two bubbles in ultrasonic standing wave. The
Journal of the Acoustical Society of America 130, 135.

21



[45] Zabolotskaya, 1984. Interaction of gas bubbles in a sound field. Sov. Phys. Acousti. 30,
365.

[46] Zhang, Y., Zhang, Y., Li, S., 2016. The secondary bjerknes force between two gas
bubbles under dual-frequency acoustic excitation. Ultrasonics Sonochemistry 29, 129–
145.

[47] Zong, Y., Xu, S., Matula, T., Wan, M., 2015. Cavitation-enhanced mechanical effects
and applications. In: Wan, M., Feng, Y., ter Haar, G. (Eds.), Cavitation in Biomedicine:
Principles and Techniques. Springer, p. 207.

22


