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Abstract 10 
 11 
Passive acoustic observation of whales is an increasingly important tool for whale research. 12 
Accurately detecting whale sounds and correctly classifying them into corresponding whale 13 
species are essential tasks, especially in the case when two species of whales vocalize in the 14 
same observed area. Whistles are vital vocalizations of toothed whales, such as killer whales and 15 
long-finned pilot whales. In this paper, based on deep convolutional neural networks (CNNs), a 16 
novel method is proposed to detect and classify whistles of both killer whales and long-finned 17 
pilot whales. Compared with traditional methods, the proposed one can automatically learn the 18 
sound characteristics from the training data, without specifying the sound features for 19 
classification and detection, and thus shows better adaptability to complex sound signals. First, 20 
the denoised sound to be analyzed is sent to the trained detection model to estimate the number 21 
and positions of the target whistles. The detected whistles are then sent to the trained 22 
classification model, which determines the corresponding whale species. A GUI interface is 23 
developed to assist with the detection and classification process. Experimental results show that 24 
the proposed method can achieve 97% correct detection rate and 95% correct classification rate 25 
on the testing set. In the future, the presented method can be further applied to passive acoustic 26 
observation applications for some other whale or dolphin species. 27 

28 



1. Introduction 29 
Passive acoustic observation has been used increasingly widely in the field of whale species 30 

research. Several countries, such as the USA [1], Australia [2] and a few European countries [3], 31 
have established underwater passive acoustic monitoring (PAM) systems to detect and monitor 32 
cetacean species such as whales or dolphins. Compared with visual observation methods, PAM 33 
has a better monitoring performance. In addition, it can continue at night, in poor weather, and 34 
under other conditions in which visual observation is not feasible. These PAM systems can be 35 
used to measure the range and seasonal occurrence of whales [4], estimate the quantity of a 36 
species in a given area [5], and determine the population structure, etc. [6,7]. For the above 37 
applications, an important condition is to detect and identify the target whale signals from the 38 
sounds recorded by PAM systems. Accurately detecting whale sounds and correctly classifying 39 
various whale sounds into their corresponding whale species can assist observers to monitor the 40 
occurrence (appearance) of whales and confirm their species, and so it is a fundamental and 41 
primary task in the PAM of whales [8]. Most of the current tasks of whale sound detection and 42 
classification still need to be implemented manually. On the one hand, due to the different levels 43 
of experience and different sensitivities to sounds, the performance of manual methods varies 44 
with operators; on the other hand, the commonly stated range for human hearing is 20Hz to 45 
20kHz [9], and information of sound outside this range cannot be effectively acquired by human 46 
ear. Furthermore, it is difficult for manual methods to process the large amount of sound data 47 
generated by the large-scale PAM networks such as Listen to the Deep Ocean Environment 48 
(LIDO) program [3,10]. Automatic methods for whale sound detection and classification is 49 
highly desired in this context. 50 

However, due to the unknown statistical signal properties, as well as the use of different 51 
recording equipment and low signal to noise ratio (SNR) conditions, automatic detection and 52 
classification of marine mammal sounds is still a challenging task in the field of animal 53 
bioacoustics. 54 

Several whale sound detection and classification methods have been proposed in the past. 55 
Typically, these methods follow the following steps: sound preprocessing, whale sound detection, 56 
feature extraction of detected sounds, and feature classification. Among them, Short 57 
Time Fourier Transform (STFT) [11-15], Wavelet Transform (WT) [16] and Hilbert Huang 58 
Transform (HHT) [17] were used to extract features of whale sounds. Artificial Neural Network 59 
(ANN) [13,16], Support Vector Machine (SVM) [11,17] and Sparse Representation-based 60 
Classifier (SRC) [18] were used for classifying the extracted features. However, the features 61 
extracted by the above methods are generally fixed specific features which are commonly used in 62 
sound processing, such as Mel-scale Frequency Cepstral Coefficients (MFCC), STFT 63 
Coefficients, Wavelet Coefficients, and Energy Spectrums. 64 

On the one hand, these common features may make it difficult to effectively characterize 65 
differences between different types of sound signals to be classified, resulting in low 66 
classification performance. On the other hand, these simple features may not be able to 67 
adequately characterize the complex and varying time-frequency characteristics of sound signals 68 
(such as whale whistles with varied contours or harmonics), leading to a poor classification 69 



performance for complex whale signals. Further, with the ongoing upgrade of sound recording 70 
equipment and the change of the recording environment, these methods may be difficult to adapt 71 
to the large amount of newly recorded data. Besides, there are some low-energy whale sounds, 72 
such as whale whistles, that are easily submerged in noise. Traditional methods based on energy 73 
or zero-crossing rate cannot provide high detection performance. Therefore, it is necessary to 74 
develop an automatic detection and classification method with good adaptability and high 75 
performance. 76 

Generally, whale sounds can be categorized as whistles, clicks, and pulsed calls, etc.[19-21]. 77 
Whale whistles are vital vocalizations that are widespread in a variety of whales such as killer 78 
whales (Orcinus orca) and long-finned pilot whales (Globicephala melas) [19-21]. Killer whales 79 
and long-finned pilot whales are two typical toothed whale species that can produce a wide 80 
variety of whistles, clicks and pulsed calls for echolocation and social signaling. Whistles, which 81 
are an important vocalization for both whale species, are considered to be used as contact calls 82 
between individuals or to maintain group contact during foraging and traveling [3,19-21]. In 83 
some monitoring areas, long-finned pilot whales are believed to produce whistles similar in 84 
frequency and structure to killer whales, especially in the ultrasonic range [22]. 85 

Furthermore, killer whales and long-finned pilot whales are abundant in quantity and 86 
widespread in distribution. There is a wide range of overlapped distribution areas between killer 87 
whales and long-finned pilot whales. Previous evidence has shown that both whale species may 88 
be present in the same area [21, 22]. In passive acoustic monitoring of the two whale species, it 89 
is necessary and important to first distinguish and identify their individual whistles from their all 90 
kinds of mixtures. In this paper, based on deep convolutional neural networks (CNNs), we 91 
propose a novel whistle detection and classification method for both killer whales and 92 
long-finned pilot whales. First of all, the method can adaptively learn to extract features that can 93 
effectively characterize the sounds to be detected and classified through training data, and 94 
implement detection and classification of whale whistles based on these features. Secondly, the 95 
whale sounds detected and classified by the trained CNNs model can be sent to the CNNs model 96 
for further training and optimization after initial simple screening, which provides the possibility 97 
to improve the accuracy of detection and classification further. 98 

This paper is organized as follows. Section 2 describes the details of the sounds used in this 99 
paper and the preprocessing steps. Section 3 introduces the algorithms used for denoising, 100 
detection, feature extraction and classification and Section 4 presents the experimental process 101 
and the results. Finally, the conclusions are drawn in Section 5. 102 
2. Sound Data and Preprocessing 103 

We selected 15 sound samples containing either killer whale sound or long-finned pilot whale 104 
sound as raw data for generating the data set for the detection and classification model. The 105 
recording date of these sounds varies from 1967 to 2002. The total duration of these sounds is 106 
about 120 minutes with a sampling rate of 44100 Hz. The sound recording locations include the 107 
waters near Antarctica, Canada, Norway, Mexico, and the United States. These sounds mainly 108 
contain killer whale sounds (whistles), long-finned pilot whale sounds (whistles and clicks), 109 
background noise and other non-target sounds (ship noise and pulse interference). All these 110 



sounds are preprocessed as follows. 111 
2.1 Denoising 112 

Firstly, the raw sound data is denoised using the spectral subtraction method [23] to reduce 113 
background noise. This method is based on spectral averaging and residual noise reduction, 114 
widely used for enhancement of noisy speech signals and can remove the stationary noise 115 
included in the sound. The incoming sound signal is buffered and divided into blocks of 256 116 
samples with 128 samples overlapping adjacent blocks. Each block is Hamming windowed and 117 
then transformed by Discrete Fourier Transform (DFT) to the frequency domain. The 118 

over-subtraction factor is set to 10, and the magnitude estimate factor is set to 0.02. After 119 

spectral subtraction, the magnitude spectrum is combined with the phase of the noisy signal, and 120 
transformed back to the time domain. Each signal block is then overlapped and added to the 121 
preceding and succeeding blocks to form the final denoised sound signal. Figs. 1(a) and 1(b), as 122 
well as Figs. 2(a) and 2(b), show a comparison of the original whale sound and the denoised one. 123 
2.2 Frame Spectrogram 124 

All the denoised sounds in the data set are sequentially cut into sound frames with a duration 125 
of td (no overlapping between adjacent frames). The sound frame with a length of less than td at 126 
the end of the sound file is discarded. The Short Time Fourier Transform (STFT), with Hamming 127 
window, a segment length of td/40, segment shift of td /80 and FFT length of 1024 samples, is 128 
computed for each sound frame. In order to show more details in the spectrogram, the STFT 129 
coefficients are logarithmized by Eq. (1). 130 

  10logZ Z  (1) 131 

where Z is the STFT coefficients matrix for each sound frame. 132 
If the value of td is too small, some short-term pulse interference may also be misdetected; if 133 

the value of td is too large, the signal detection accuracy is lowered. Based on the durations of the 134 
whistles from both whale species, td is set to 250ms. In addition, the time interval between most 135 
adjacent whistles is greater than td, so the paper does not discuss the case where two whistles are 136 
falsely detected as a whole whistle due to the short signal interval(<td). 137 

Further, for each sound frame, based on the preprocessed STFT coefficients Z, a frame 138 
spectrogram (grayscale) of 180*120 pixels is obtained by the pcolormesh method in matplotlib 139 
[24] to visualize the STFT result. Fig. 1(b) and Fig. 2(b) show the start and end positions of the 140 
frames for the denoised sound, and Fig. 1(c) and Fig. 2(c) show the corresponding frame 141 
spectrograms. As can be seen, the contours of whistles have been enhanced. 142 

By viewing the corresponding waveforms and spectrograms, we manually mark the sound 143 
frames containing whistles and their corresponding spectrograms as label A (whistles of killer 144 
whale) or label B (whistles of long-finned pilot whale). As shown in Fig. 1(c) and Fig. 2(c), these 145 
sound frames and spectrograms may only contain part of a complete whistle. Other non-target 146 
sounds are marked as label C. These labeled frame spectrograms are used to train and test the 147 
whistle detection model. 148 



 149 

Fig. 1. The preprocessing steps for a whistle signal of the killer whale. 150 
(a) The original whistle waveforms. (b) The denoised whistle waveforms; the red dotted lines are the dividing 151 
lines between adjacent frames with the frame duration td=25ms; the signal above 1.75ms is deleted because its 152 
length is less than td. (c) The frame spectrograms corresponding to the frames in (b); their labels (A or C) and 153 
the ideal outputs ((1,0) or (0,1)) in the whistle detection model are listed under the spectrograms; their real 154 
outputs in the trained detection model (obtained in Section 4.1) are listed under the ideal outputs. 155 



 156 
Fig. 2. The preprocessing steps for a whistle signal of long-finned pilot whale. 157 

(a) The original whistle waveforms. (b) The denoised whistle waveforms; the red dotted lines are the dividing 158 
lines between adjacent frames with the frame duration td=25ms; the signal above 1.75ms and 2ms is deleted 159 
because its length is less than td. (c) The frame spectrograms corresponding to the frames in (b); their labels (B 160 
or C) and the ideal outputs((1,0) or (0,1)) in the whale sound detection model are listed under the spectrograms; 161 
their real outputs in the trained detection model (obtained in Section 4.2) are listed under the ideal outputs. 162 
2.3 Whistle Spectrogram 163 

In addition to cutting all sound data into fixed-length frames (t ms) in Section 2.2, we also 164 
manually extract the complete killer whale and long-finned pilot whale whistle signals from the 165 
denoised sound data. As shown in Fig. 3, the extracted sound contains the complete whistle 166 
signal, and their length is variable. According to the spectrogram calculation method described in 167 
Section 2.2, we calculate the STFT coefficients for each extracted whistle signal and visualize 168 
the results. The parameters used in this process are the same as those used in Section 2.2. Thus 169 
corresponding to each complete whistle signal, a spectrogram (grayscale) of 180*120 pixels can 170 
be obtained. Based on the whale species corresponding to the whistle, we manually mark these 171 
whistle signals and their corresponding spectrograms as label A (whistles of killer whale) or label 172 
B (whistles of long-finned pilot whale). These labeled whistle spectrograms are used to train and 173 
test the classification model. 174 



 175 
Fig. 3. The detected whistle of killer whale (a) and its whistle spectrogram (b). 176 

 177 
Fig. 4. The detected whistle of long-finned pilot whale (a) and its whistle spectrogram (b). 178 

3. Description of Algorithms 179 
3.1 Convolutional Neural Networks 180 

Convolutional Neural Networks (CNNs) [25] are a class of deep feed-forward artificial neural 181 



networks, which are most commonly employed to analyze images. CNNs have been 182 
tremendously successful in practical applications, and already demonstrated good performance in 183 
many speech-related [26] and music-related tasks [27]. There are three important characteristics 184 
of CNNs: sparse interactions, parameter sharing, and equivariant representations [28]. Based on 185 
the above three characteristics, CNNs can well perceive the 2D structural features of the input 186 
images. 187 

In this paper, based on CNNs, a whistle detection model is designed together with a whistle 188 
classification model. Firstly, the detection model and the classification model are trained 189 
respectively by labeled frame spectrograms and labeled whistle spectrograms data set obtained in 190 
Sections 2.1 and 2.2. Then, in the process of detecting and classifying the target whistles in 191 
unknown sound, the trained detection model takes the frame spectrograms of the unknown sound 192 
as inputs, and only judges whether the corresponding frame spectrograms contains whistles or 193 
not. Furthermore, based on outputs of the detection model, the number and positions of whistles 194 
in the input sound can be estimated, and then the detected complete whistle signal is extracted 195 
from the sound. Next, spectrograms of the detected whistles are calculated and sent to the trained 196 
classification model in turn. Finally, the classification model predicts the whale species to which 197 
the input spectrograms belong (killer whale or long-finned pilot whale). Through the above 198 
processes, the whistles in the input sound can be detected and classified into the corresponding 199 
whale species. 200 
3.2 Whale Whistles Detection Model 201 

The LeNet5 [29] model can achieve a high recognition accuracy of 99.2% on the MNIST 202 
handwritten digit set, and it is relatively simple compared to other CNN structures. As can be 203 
seen from Fig. 3(c) and Fig. 4(c), there are contours similar to handwritten numbers in the 204 
time-frequency spectrograms of whistles from both whale species. Therefore, this paper draws 205 
on the structure of LeNet5 to design the detection model and the classification model. The 206 
structure of the detection model is shown in Fig. 5. The hyperparameters of each layer of the 207 
detection model are as follows: 208 

(1) C1 is a convolutional layer containing 32 convolution kernels of size 5*5. The convolution 209 
step is 1 (stride) with padding, and the ReLU function is used as the activation function of 210 
output. 211 

(2) S2 is a pooling layer, and the pooling strategy is average pooling with pooling size 2*2, 212 
pooling step 2, and full 0 padding. 213 

(3) C3 is a convolutional layer containing 64 convolution kernels of size 5*5, the convolution 214 
step is 1 (stride) with padding, and the ReLU function is used as the activation function of 215 
output. 216 

(4) S4 is a pooling layer, and the pooling strategy is the average pooling with pooling size 2*2, 217 
pooling step 2, and full 0 padding. 218 

(5) F5 is a fully connected layer containing 64 neurons, and each neuron is fully connected 219 
with all output units of layer S4, and the ReLU function is used as the activation function. 220 

(6) D6 is a dropout layer with dropout rate 0.2. 221 
(7) F7 is a fully connected layer containing 2 neurons (corresponding to the final output layer), 222 



and each neuron is fully connected with all output units of layer D6 with no activation function. 223 
(8) S8 is a softmax layer that converts the output into a pair of probabilities (P1, P2), 0≤P1, 224 

P2≤1, and P1+P2 =1. If P1>P2, the model predicts that the input signal contains a whistle signal; 225 
otherwise the model judges that the input time-frequency diagram does not contain a whistle 226 
signal. Therefore, for a frame spectrogram labeled A or B, the ideal output y of the model is (1,0), 227 
and for a frame spectrogram with label C, the ideal output y of the model is (0,1). 228 

The cross entropy, which is widely used in softmax output classification, is adopted as the loss 229 
function of the detection model:  230 

 
2

1

ˆ*log( )
i

L y y


   (2) 231 

where y is the ideal output of the model and ŷ is the predicted output. The Adam optimization 232 

method [30] is applied to model optimization in order to adapt the learning rates of model 233 
parameters.  234 
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Output

 235 
Fig. 5. Structure of the detection model and the classification model. 236 

The trained detection model based on the labeled frame spectrograms can be used to detect the 237 
target whistles (the whistles of killer whale or long-finned pilot whale) in the input sound and 238 
determine the number and positions of target whistles in the input sound. The detection process 239 
is achieved by the following steps: firstly, as described in Sections 2.1 and 2.2, the input sound is 240 
denoised and cut into fixed length frames (td) in order. Frames are numbered sequentially with 1, 241 
2, 3, …, n-1, n, where n is the total number of frames and the frame spectrogram is obtained for 242 
each numbered frame. Then, the frame spectrogram for each frame is fed into the trained model 243 
in turn, and the model outputs the probabilities (Pi1,Pi2). The frame number-model output 244 
sequence [i，(Pi1，Pi2)], where i (1≤i≤n) is the frame number, can be obtained through the 245 
above process. In the sequence, the position s (1≤s≤n) where the sequence changes from 246 
Ps1<Ps2 to Ps+11>Ps+12 can be regarded as the position where a whistle starts, and the position e 247 
(1≤e≤n) where the result changes from Pe1<Pe2 to Pe+11>Pe+12 can be regarded as the position 248 
where the whistle ends. The estimated start positions ts and end positions te can be calculated by 249 
Eq. (3): 250 
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  (3) 251 

For example, in the frame number-model output sequence shown in Fig.1, according to the 252 
above calculation rule, s=2, and e=6. Therefore, it can be obtained by Eq. (3) that ts=50ms and 253 
te=150ms. The detected complete whistle of Fig. 1 is shown in Fig. 3. Similarly, in Fig. 2, we can 254 
obtain that s=2 and e=6, and then ts=50ms and te= 150ms. The detected complete whistle of Fig. 255 
2 is shown in Fig. 4. 256 

Through the above process, the number and positions of detected whistles in the input sound 257 
can be estimated respectively. 258 
3.3 Whale Whistle Classification Model 259 

The structure and hyperparameters of the classification model are the same as those of the 260 
detection model presented in Section 3.2; however, the input data, output results and training 261 
processes of the two models are different. The classification model takes the whistle 262 
spectrograms of the detected whistles as inputs to determine the corresponding whale species. 263 
More specifically, the input of classification model is whistle spectrograms (grayscale) of 264 
180*120 pixels and the output is a pair of probabilities (R1,R2), 0≤R1,R2≤1, and R1+R2=1. If 265 
R1>R2, the model predicts that the input whistle is produced by a killer whale; otherwise it is 266 
produced by a long-finned pilot whale. Therefore, for the whistle spectrograms labeled A, the 267 
ideal output is (1,0), and for the whistle spectrograms labeled B, the ideal output is (0,1). 268 

The classification model is first trained using the whistle spectrogram data set generated in 269 
Section 2.3, and then the trained model can be applied for classifying the two types of whale 270 
whistles. In the classification process, all the detected whistles are first cut from the sound 271 
according to the estimated start positions ts and end positions te. For each whistle, the whistle 272 
spectrogram is obtained through the visualization method described in Section 2.3. All the 273 
whistle spectrograms are fed into the classification model in turn and classified into their 274 
corresponding whale species. 275 

The whole detection and classification process are shown in Fig. 6. Through the two steps of 276 
detection and classification, the two types of whistles in the unknown sound are automatically 277 
positioned and classified into their whale species. For both the detection model and the 278 
classification model, there is no process of extracting time-frequency features directly from 279 
whistles. The inputs to both models are time-frequency spectrograms that characterize the overall 280 
information of whistles, rather than the specified features extracted by the specified algorithms. 281 
The feature extraction pattern and the calculated features of the two models are learned from the 282 
training data and its ideal output. Compared with the traditional detection and classification 283 
methods, the detection and classification algorithms proposed in this paper are more robust. 284 
Firstly, by optimizing the loss function, both models can learn and adjust CNN parameters, such 285 
as values of convolution kernels and weights of fully connected layers. Through this process, 286 
CNNs can adaptively learn from the input time-frequency spectrograms and extract deep features 287 
that are more suitable for detection or classification. Secondly, when new sound data is collected 288 
and filtered, these data can be used as raw data to train CNNs, so that CNNs can learn new 289 



features in new data. In the paper, these techniques are implemented with MATLAB R2014 and 290 
Python 3.6. 291 

 292 
Fig. 6. The overall process of whistle detection and classification 293 

4. Experiments 294 
4.1 Detection Performance 295 

The frame spectrogram data set calculated in Section 2.2 are used to train and test the 296 
detection model. The dataset contains 4028 frame spectrograms. Among them, the data set size 297 
corresponding to the ideal output (1,0) is 2054 (1298 for label A and 756 for label B), and the 298 
data set size of output (0,1) is 1974 (label C). The number of samples in the two data subsets is 299 
approximately balanced. We randomly extracted 200 images from each of the two data subsets as 300 
the testing set, and all the remaining spectrograms are used as the training set for detection model 301 
training.  302 

The model is developed on a PC with Intel(R) Core(TM) i5-8400 CPU and NVIDIA GeForce 303 
GTX 1080 GPU. The code is written using TensorFlow 1.4.0, which is an open-source python 304 
library for dataflow programming across a range of tasks such as machine learning.  305 

The weight parameters of each layer in the detection model are randomly initialized with zero 306 



mean and standard deviation of 0.1. The initial value of the learning rate is an empirical value of 307 
0.01. The sum of cross entropy Lt in a batch is calculated and recorded as the loss in each epoch 308 
by Eq. (4): 309 
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   (4) 310 

where S is the number of spectrograms in the training batch and testing batch (batch size), and in 311 
our paper, S=50, which means that 73 iterations can complete the traversal of the training data set. 312 
The model is trained for 25 epochs, and the accuracy on the testing set in each epoch is 313 
calculated and recorded too. Fig. 7(a) shows the average value (marked as Lm) of loss Lt in each 314 
epoch as it is being minimized during training. The loss goes as low as around 0 at the end of the 315 
training. After each epoch, the testing set is sent to the model to calculate and record the 316 
detection correct rate τ [13,31] on the model test set by Eq. (5). 317 

 /c sN N    (5) 318 

where Ns is the amount of testing data (Ns=400 in our paper), and Nc is the amount of correctly 319 
classified data. Fig. 7(b) shows the curve for the detection correct rate τ. As can be seen, τ is 320 
stable at around 97% in the last eight epochs, which means most of the whistles in the testing 321 
data can be accurately detected. The detection model demonstrates good adaptability to the input 322 
frame spectrograms. 323 

 324 
Fig. 7. The loss curve (a) and detection correct rate curve (b) of the detection model. 325 

For each epoch, we calculate Lt on each batch, and the average values of loss Lt are shown in (a). In each epoch, 326 
after the training is completed, we send the testing data set to the model, and the detection correct rates on the 327 
testing set of each trained model are shown in (b). 328 
4.2 Classification Performance 329 

The classification model is trained and tested using the whistle spectrogram data set obtained 330 
in Section 2.3. The dataset contains 980 whistle spectrograms (530 for label A, output (1,0) and 331 
450 for label B, output (0,1)). 100 and 80 spectrograms are randomly extracted from the label A 332 
data set and label B data set respectively as the testing set, and all the remaining spectrograms 333 



are used as the training set for classification model training. The classification model is 334 
developed under the same software and hardware conditions as the detection model. The loss Lm 335 
and the classification correct rate τ on the testing set in each epoch are also calculated and 336 
recorded. As shown in Fig. 8(a), the mean loss decreases from 45 to 0.5 at the end of the training. 337 
Fig. 8(b) shows the classification correct rate curve on the testing set. At the beginning of the 338 
training (epoch 1), the model shows a poor classification performance. Then, the classification 339 
correct rate starts to improve gradually. At epoch 11, the model shows a correct rate higher than 340 
0.9, which goes around 0.95 at the end of the training, meaning most of the whistles in the testing 341 
data can be correctly classified into their corresponding whale species. 342 

The trained detection model and classification model are saved in the checkpoint file of 343 
TensorFlow. 344 

 345 
Fig. 8. The loss curve(a) and the classification correct rate curve(b) of the classification model. 346 

For each epoch, we calculate Lt on each batch, and the average values of loss Lt are shown in (a). In each epoch, 347 
after the training is completed, we send the testing data set to the model, and the classification correct rates on 348 
the testing set of each trained model are shown in (b). 349 
4.3 Application 350 

As shown in Fig. 9, using pyqt5, we have developed a GUI (graphical user interface) software 351 
to visualize both the detection and classification processes for the sound to be analyzed. First, the 352 
operator imports the sound file (.wav format) to be analyzed, and then imports the TensorFlow 353 
checkpoint files, including the trained detection model and the trained classification model. 354 
Further, the whistle detection and classification process can be performed automatically by the 355 
software. The log of the analysis processes will be displayed in the text box at the right side of 356 
the interface. The analyzing results, including the estimated start positions ts and the end 357 
positions te, the whale species and their probabilities (the larger value of R1 and R2), will be 358 
saved in an Excel file. At the same time, the waveforms, spectrograms and classification results 359 
of the detected whistles can be viewed through the GUI. 360 

Through the GUI, a sound containing killer whale whistles is utilized to test the proposed 361 
detection model and classification model. The total length of the sound is 264.65s with sampling 362 
rate of 44100Hz, and the sound contains 56 whistles of killer whale and some pulse interference. 363 



The checkpoint files obtained in Sections 4.1 and 4.2, as well as the sound, are sent to the GUI 364 
respectively, and then the GUI performs the whistle signal detection and classification operation. 365 
The whole process takes 43.10s in total. 366 

53 whistles are detected in the detection process, 3 whistles are missed and no signal is falsely 367 
detected. Therefore a detection correct rate of 0.947 is achieved. Compared to the real positions, 368 
the errors of the output positions (ts and te) calculated by the detection model are within the range 369 
of ±350ms. The classification model has correctly classified all 53 detected whistles with a 370 
minimum classification probability of 0.97. Fig. 10 shows a number of whistles detected and 371 
correctly classified by the detection model. It can be seen that the model can completely detect 372 
and extract most of the whistles and the classification model then accurately identifies and 373 
classifies the detected whistles with a variety of contours. 374 

 375 

Fig. 9. Display interface of the GUI. 376 



 377 
Fig. 10. The detection and classification performance on the testing sound. 378 

Species=1 means the detected whistle is from a killer whale. The x-axis represents time in s, while the y-axis 379 
represents frequency in Hz. 380 
5. Conclusion 381 

In this paper, a CNN-based method has been proposed for accurately detecting and classifying 382 
whistles of both killer whales and long-finned pilot whales. The complete process of the 383 
proposed method, including denoising, whistle detection, and whistle classification, was 384 
presented in detail, together with the corresponding detection model and classification model. 385 
The experimental results show that both models can adaptively learn the structural features of the 386 
input data and achieve a correction rate of 95% (either detection or classification) on the 387 
corresponding testing data set. A GUI interface was developed to assist with the detection and 388 
classification processes. Compared with the existing methods presented in Section 1, the 389 
proposed method shows a better classification performance for both whale species. Moreover, 390 
although the proposed method is used here for whistle detection and classification of only killer 391 
whales and long-finned pilot whales, it is not limited to this application and can be easily adapted 392 
for other whale or dolphin species that can produce whistles or other sounds; it can also be 393 
employed to perform some preliminary work in passive acoustic observation applications for 394 
whale or dolphin species, such as range and seasonal occurrence measurement, abundance 395 
estimation, and population structure determination, together with some bio-inspired underwater 396 
detection or communication systems[32-39]. 397 
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