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ARTICLE

Genetics and Genomics

Genome-wide association study of germline variants and

breast cancer-specific mortality
Maria Escala-Garcia et al.

BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis
of women of European ancestry.
METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for
96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were
based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true
positive using the Bayesian false discovery probability (BFDP).
RESULTS: We did not find any variant associated with breast cancer-specific mortality at P < 5 × 10−8. For ER-positive disease, the
most significantly associated variant was chr7:rs4717568 (BFDP= 7%, P= 1.28 × 10−7, hazard ratio [HR]= 0.88, 95% confidence
interval [CI]= 0.84–0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676
(BFDP= 11%, P= 1.38 × 10−7, HR= 1.27, 95% CI= 1.16–1.39); located within a long intergenic non-coding RNA gene (AC004009.3),
close to the HOXA gene cluster.
CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological
evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance
underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.

British Journal of Cancer (2019) 120:647–657; https://doi.org/10.1038/s41416-019-0393-x

BACKGROUND
Breast cancer is the most common cancer in the Western world
and accounts for 15% of cancer-related deaths in women, with
about 522,000 deaths worldwide in 2012.1 Survival after a
diagnosis of breast cancer varies considerably between patients
even with closely matching tumour characteristics. Models that
predict the likelihood of survival after breast cancer treatment use
tumour and treatment data, but currently do not take host factors
into account. The identification of prognostic and predictive
biomarkers inherent in the germline of the patients rather than
the tumour could pinpoint mechanisms of tumour progression
and help with treatment stratification to increase therapeutic
benefit. Such markers include inherited genetic variation, as there
is evidence for heritability of breast cancer-specific mortality in
affected first-degree relatives.2–5 Germline variation may affect
prognosis by affecting tumour biology, since such variants are
known to be associated with risk of specific breast tumour
subtypes, particularly those defined by hormone receptor status,
and have different outcomes.6–8 Germline genotype could also
affect the efficacy of adjuvant drug therapies9,10 or might
condition the host tumour environment via vascularisation,11,12

metastatic pattern,13,14 stroma–tumour interaction15,16 and
immune surveillance.17,18

The association between common germline genetic variation
and breast cancer-specific mortality has been examined in many

candidate gene studies,5,9,14,19–36 as well as in moderate-sized
genome-wide association studies (GWAS).37–41 However, it has
been difficult link GWAS results to plausible candidate genes and
few have been convincingly replicated.29,42 Large studies with
long follow-up and reliable data on known prognostic factors are
required if novel alleles associated with prognosis in breast cancer
are to be identified at a level of genome-wide significance. In the
present work, we pooled genotype data from multiple breast
cancer GWAS discovery and replication efforts43,44 with new
genotype data obtained from a large breast cancer series
genotyped using the OncoArray chip.45,46 We examined associa-
tions with risk of breast cancer-specific mortality in a total of
96,661 breast cancer patients with survival time data. We then
investigated the potential functional role of the selected variants
by predicting possible target genes.

MATERIALS AND METHODS
Breast cancer patient samples
We included data from twelve datasets (n= 96,661) in which
multiple breast cancer patient cohorts were genotyped by a
variety of arrays providing genome-wide coverage of common
variants. An overview of the datasets with specification of the
arrays used is given in Supplementary Table 1. Data from eight of
these datasets have been used in previous analyses (n= 37,954).44
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However, the Collaborative Oncological Gene-Environment Study
(COGS) dataset from the Breast Cancer Association Consortium
(BCAC) was updated to include additional follow-up and death
events and additional genotype data, increasing the number of
events and samples to a total of n= 29,959 patients. Two new
datasets, the BCAC OncoArray and the SUCCESS A trial, comprising
58,027 samples, were added for the current analyses.
The OncoArray is a custom Illumina genotyping array designed

by the Genetic Associations and Mechanisms in Oncology (GAME-
ON) consortium. It includes 533,000 variants of which 260,660
form a GWAS backbone, with the remainder being custom
content, details of which have been described previously.45 The
SUCCESS-A Study47 is a randomised phase III study of n= 3,299
breast cancer cases. Cases from the trial were genotyped using the
Illumina Human OmniExpress array. We downloaded imputed
genotypes from dbGaP (data reference 6266).
COGS samples that were also genotyped on the OncoArray

were removed from the COGS dataset (n= 14,426). Female
patients with invasive breast cancer diagnosed at age > 18 years,
and with follow-up data available were included in the analyses.
BCAC data from freeze 8 was used, in which 873 COGS samples
with unknown breast cancer-specific mortality status were
excluded from the analyses. All stages of cancer, including
metastatic, were used in the analysis. Some individual studies
applied additional selection criteria such as young age or early
breast cancer stage (Supplementary Table 2).

Genotype and sample quality control, ancestry analysis and
imputation
The genotype and sample quality control for the datasets have
been described previously.44,45,47,48 Ancestry outliers for each
dataset were identified by multidimensional scaling or LAMP49 on
the basis of a set of unlinked variants and HapMap2 populations.
Samples of European ancestry were retained for analyses.
Ten of the datasets were imputed using the reference panel

from the 1000 Genomes Project in a two-stage procedure. The
1000 Genomes project Phase 3 (October 2014) release was used as
the reference panel for all the datasets apart from SUCCESS-A,
which used the Phase 1 release (March 2012). Imputation for
CGEMS and BPC3 was performed using the programme MACH.50

Phased genotypes were first derived using SHAPEIT51 and
IMPUTE252 and then used to perform imputation on the phased
data. The main analyses were based on variants that were
imputed with imputation r2 > 0.3 and had minor allele frequency
(MAF) > 0.01 in at least one of the datasets leading to ~10.4 million
variants. To match the individual datasets in the meta-analysis we
used the chromosome position. Variants were kept in the analysis
as long as they were present in one of the studies. In those cases
where there was ambiguity over the naming of the insertions and
deletions, the MAF was used for further matching.

Statistical and bioinformatic methods
Time-to-event was calculated from the date of diagnosis. For
prevalent cases with study entry after diagnosis left truncation
was applied, i.e., follow-up started at the date of study entry.53

Follow-up was right censored on the date of death, on the date
last known alive if death did not occur, or at 15 years after
diagnosis, whichever came first. We chose the 15 years cut-off
because follow-up varied between studies and after that period
follow-up data became scarce. Follow-up of the cohorts is
illustrated in Kaplan Meier curves (Supplementary Figure 1).
The hazard ratios (HR) for the association of genotypes with

breast cancer-specific mortality were estimated using Cox
proportional hazards regression54 implemented in an in-house
programme written in C++. Analysis of the CGEMS and BPC3 data
was conducted using ProbABEL.55 The estimates of the individual
studies were combined using an inverse-variance weighted meta-
analysis. Since meta-analysis results based on the Wald test have

been shown to be inflated for rare variants56 we recomputed the
standard errors based on the likelihood ratio test statistic (see
details in Supplementary methods), using the formula:

SE ¼ log HRð Þ=sqrt LRTð Þ

For each dataset we included as covariates a variable number of
principal components (Supplementary Table 1) from the ancestry
analysis as covariates in order to control for cryptic population
substructure. The Cox models were stratified by country for the
OncoArray dataset and by study for the COGS dataset. Statistical
tests were performed for each variant by combining the results for
all the datasets using a fixed-effects meta-analysis. Inflation of the
test statistics (λ) was estimated by dividing the 45th percentile of
the test statistic by 0.357 (the 45th percentile for a χ2 distribution
on 1 degree of freedom). Analyses were carried out for all invasive
breast cancer and for oestrogen receptor (ER)-positive and ER-
negative disease separately.
To assess the probability of a variant being a false positive we

used a Bayesian false discovery probability (BFDP)57 test based on
the P value, a prior set to 0.0001 and an upper likely HR of 1.3.
To predict potential target genes, we used Bedtools v2.26 to

intersect notable variants with genomic annotation data relevant to
gene regulation activity in samples derived from breast tissue. We
examined features including enhancers, promoters and transcription
factor binding sites identified by the Roadmap58 and ENCODE59

Projects. Expression quantitative loci (eQTL) data from GTEx60 were
queried for evidence of potential cis-regulatory activity.

RESULTS
Genotype data from 96,661 breast cancer cases (64,171 ER-positive
and 16,172 ER-negative) with 7697 breast cancer deaths within
15 years were included in the primary analyses. For 16,318 cases we
did not have ER-status information. The average follow-up time was
6.38 years. Details of the numbers of samples and events in each
dataset are given in Supplementary Table 3. Manhattan and
quantile-quantile (Q–Q) plots for the associations between variants
and breast cancer-specific mortality of all invasive, ER-negative
and ER-positive breast cancers are shown in Fig. 1 and Fig. 2,
respectively. There was some evidence of inflation of the test
statistic with an inflation factor of 1.06 for all invasive and
ER-positive, and 1.05 for ER-negative including all variants. These
Q–Q plots showed no evidence of an association at P < 5 × 10−8; at
less stringent thresholds for significance, there were an increasing
number of observed associations for all three analyses (Fig. 2).
We identified three variants at BFDP < 15% associated with

breast cancer-specific mortality of patients with ER-negative
disease (Table 1). These variants are part of an independent set
of 32 highly correlated variants61 on chromosome 7q21.1 that
were associated at P < 5 × 10−6 (Supplementary Table 4). The LD
matrix between these variants computed based on the 1000
European genomes,62,63 and their chromosomal positions, are
shown in Supplementary Figure 1. The strongest association was
for rs67918676: HR= 1.27; 95% CI= 1.16–1.39; P= 1.38 × 10−7;
risk allele A frequency= 0.12 and BFDP= 11%. The imputation
efficiency for this variant was high, with r2= 0.99 for all datasets.
The lead variant rs67918676 is located in an intron of a long

intergenic non-coding RNA gene, LOC105375207 (AC004009.3), in
close proximity to the HOXA gene cluster and the lncRNA HOTTIP.
We tested the genes within a 500 MBp window around the 32
highly correlated variants for the association of their mRNA
expression in breast tumours with recurrence-free survival using
KMplotter (kmplot.com/analysis). Four of the ten closest genes
with probes available showed moderate association with breast
cancer survival at P < 0.005 (HOXA9, HOTTIP, EVX1 and TAX1BP1),
with these associations mainly observed for ER-negative breast
cancer (Supplementary Table 5A). Yet, intersecting the germline
variants with several sources of genomic annotation information
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(e.g., chromosome conformation, enhancer–promoter correlations
or gene expression) we could not find strong in silico evidence of
gene regulation by the region containing the associated variants.
We also identified four variants at a BFDP < 15% associated with

breast cancer-specific mortality of patients with ER-positive
disease (Table 1). These variants were part of an independent
set of 45 highly correlated variants on chromosome 7q11.22 that
were associated at P < 5 × 10−6 (Supplementary Table 6). The LD
matrix between these variants computed based on the 1000
European genomes,62,63 and their chromosomal positions, are
shown in Supplementary Figure 3. The strongest association was
for rs4717568: HR= 0.88; 95% CI:0.84–0.92; P= 1.28 × 10−7; risk
allele A frequency= 0.62 and BFDP= 7%. The imputation
efficiency for this variant was high, with an average r2= 0.96
for all datasets. Two coding genes, AUTS2 and GALNT17, were
located within a 500 MBp window around the 45 highly correlated
variants, but the expression of neither of the two was associated
with breast cancer survival in KMplotter analyses of TCGA data
(Supplementary Table 5B).

The association of rs67918676 with ER-negative breast cancer
was observed in eight of nine studies with no significant
heterogeneity present at P < 0.01 (Fig. 3 and Supplementary
Figure 4a). For ER-positive disease, the association of rs4717568
was detected in all seven studies with no heterogeneity present at
P < 0.01 (Fig. 4 and Supplementary Figure 4b).
Apart from the 7q variants, only one isolated rare variant

reached BFDP values below 15% for all tumours (Table 1). The
variant, rs370332736: HR= 1.17; 95% CI: 1.10–1.24; P= 2.48 ×
10−7; risk allele A frequency= 0.09 and BFDP= 13%, is located
on chromosome 6 and has an average imputation efficiency of
r2= 0.96 for all datasets. In addition, there were several variants
found at P < 10−6 for all three analyses (Supplementary Table 4,
Supplementary Table 6 and Supplementary Table 7).

DISCUSSION
In this large survival analysis, we report a genome-wide study for
identifying genetic markers associated with breast cancer-specific
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Fig. 1 Association plot for the meta-analysis of the twelve datasets for breast cancer-specific mortality analyses (censored at 15 years) for a all
breast tumours (censored at 15 years), b ER-negative tumours and c ER-positive tumours. The y-axis shows the −log10 P values of each variant
analysed, and the x-axis shows their chromosome position. The red horizontal line represents P= 5 × 10−8
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Fig. 2 Q–Q plots for the meta-analysis of the twelve datasets for breast cancer-specific mortality analyses (censored at 15 years) for a all breast
cancer tumours (censored at 15 years), b ER-negative tumours and c ER-positive tumours. The y-axis represents the observed −log10 P value,
and the x-axis represents the expected −log10 P value. The red line represents the expected distribution under the null hypothesis of no
association. Analyses were not corrected for LD-structure

Table 1. Results of the variants with BFDP < 15% in the meta-analysis of the 12 studies of breast cancer-specific mortality

Subgroup Variant Chr Position Alt Ref Eaf_Ref HR LCL UCL P value BFDP

ER-negative rs67918676:27445956:A:AT 7 27445956 AT A 0.12 1.27 1.16 1.39 1.38 × 10−7 0.11

ER-negative rs192185001:27448012:A:AT 7 27448012 AT A 0.12 1.27 1.16 1.39 1.66 × 10−7 0.13

ER-negative rs145963877:27473909:CAG:C 7 27473909 C CAG 0.11 1.28 1.17 1.41 1.91 × 10−7 0.15

ER-positive rs4717568:70400700:T:C 7 70400700 C T 0.62 0.88 0.8 0.92 1.28 × 10−7 0.07

ER-positive rs1917618:70396442:T:A 7 70396442 A T 0.62 0.88 0.84 0.93 1.46 × 10−7 0.08

ER-positive rs1546774:70398441:T:G 7 70398441 G T 0.62 0.88 0.84 0.93 1.66 × 10−7 0.09

ER-positive rs1546773:70398437:T:C 7 70398437 C T 0.62 0.88 0.84 0.93 1.81 × 10−7 0.10

All rs370332736:50395136:AACTT:A 6 50395136 A AACTT 0.09 1.16 1.10 1.24 2.48 × 10−7 0.13
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mortality, involving 96,661 patients from a combined meta-
analysis. We found one noteworthy region with 32 highly
correlated variants on chromosome 7q21.1 for ER-negative. The
lead variant rs67918676 (P= 1.38 × 10−7 and BFDP of 11% under
reasonable assumptions for the prior probability of association) is
located in a long intergenic non-coding RNA gene (AC004009.3).
While this represents an uncharacterised transcript mainly
expressed in testis and prostate, it is located about 200 kb away
from a cluster of HOXA homeobox genes that has been implicated
in breast cancer aetiology and prognosis.64,65 This region also
contains HOTTIP, a lncRNA with prognostic value on clinical
outcome in breast cancer.66 The flanking region on the opposite
side contains TAX1BP1, a gene that may be involved in
chemosensitivity.67 Interestingly, database mining using KMplotter
revealed evidence for an association of the expression of these
nearby genes with survival from ER-negative breast cancer. On the
other hand, the enhancer activity at this noteworthy locus was
predicted to be low based on the intersection with biofeatures
characteristic of regulatory activity as no known eQTLs appear to
exist in this region, suggesting that gene regulatory effects of
the identified variants are limited in breast tissue or may be
activated under certain untested conditions. For ER-positive
tumours, we found another noteworthy region with 45 highly
correlated variants at P < 5 × 10E−6 on chromosome 7q11.22. The
lead variant rs4717568 (P= 1.28 × 10−7 and BFDP of 7%) is located

between the AUTS2 and the GALNT17 genes. GALNT17 encodes an
N-acetylgalactosaminyltransferase that may play a role in mem-
brane trafficking.68 AUTS2 has been implicated in neurodevelop-
ment,69 but AUTS2 overexpression in cancer has also been linked
with resistance to chemotherapy and epithelial-to-mesenchymal
transition.70 It has been postulated that overexpression of AUTS2 is
specific for metastases,70 which may be consistent with the
inconspicuous gene expression results in the TCGA database.
It is important to note the differences between the present and

the previous GWAS study we had undertaken,44 the latter done in a
much smaller dataset (3632 events versus 7697 events in
the current study) that did not include the OncoArray study.
The OncoArray study is the largest dataset used in the present
meta-analysis and also the study with the highest imputation
quality. The two previously reported variants (rs148760487 for all
breast cancer tumours and rs2059614 for ER-negative tumours)
were not associated with breast cancer-specific mortality in
the current analyses (P= 1.59 × 10−3 and P= 5.41 × 10−4, respec-
tively). The most likely explanation for this is that the original
results were false-positive findings, despite the original
association being nominally “genome-wide significant”. The BDFPs
for the original reported associations were 54% and 16%,
respectively. For the lead variants identified in the present analysis,
we tested for differences in the imputation quality between the
current and previous analysis. All variants had high imputation
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quality (~0.99) in the previous study, suggesting that the longer and
more complete follow-up together with a higher number of events
allowed more robust identification of breast cancer mortality
associations. However, there are some weaknesses of the current
meta-analysis such as heterogeneity between patient treatment
over time and between countries and between datasets with
different study designs that should be considered. These limita-
tions, intrinsic to large survival meta-analyses, increase the noise
and reduce the power to detect true associations.
In conclusion, we found two novel candidate regions

at chromosome 7 for breast cancer survival, credible at a BFDP
< 15% and associated with either ER-negative or ER-positive breast
cancer-specific mortality. Concerning additional variants, we
might still be underpowered to obtain a more comprehensive
picture of genomic markers for breast cancer outcome. Overall,
the role of germline variants in breast cancer mortality is still
unclear36,37,71 and additional analyses with larger sample sizes and
more complete follow-up including treatments are needed. In
addition, alternative methods that integrate multiple data sources
such as gene expression, protein–protein interactions or pathway
analyses may be used to aggregate the effect of multiple variants
with small effects.72 Such approaches could increase the power of
the analyses while better explaining the underlying biological
mechanisms associated with breast cancer mortality.
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