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Abstract 

Bio-lubricants have emerged as a potential and viable way to replace, totally or partially, mineral oils due to 

their effectiveness in the boundary lubrication regime for different applications, including, automotive engine 

operation. However, the effect of thermo-oxidation caused by the long-term use of the bio-lubricants on their 

tribological properties has been scarcely analyzed. In this work, the effect of thermo-oxidation of Jatropha oil 

(JO), an engine mineral oil (EMO) and a blend made up of 80%vol. EMO and 20%vol. JO (B20) on the 

tribological behavior of a simulated piston ring/engine cylinder liner interface was studied in reciprocating 

friction tests at 26 and 100°C. The oils were thermally oxidized and characterized in terms of carbonyl 

compounds, depletion of ZDDP additives, changes in kinematic viscosity and viscosity index. Friction 

coefficients, wear rates and scar morphologies were assessed. Thermo-oxidation resulted in significant 

viscosity increases in JO compared to EMO and B20. Also, it generated increased friction coefficients for JO 

and B20. However, they were lower than those for fresh and aged EMO. EMO increased the wear rate after 

thermo-oxidation in contrast to JO. Smearing was generated using most oil samples while severe scuffing was 

only produced by using fresh JO at 100°C.  
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Internal combustion engines; Boundary lubrication; Thermal effects; Lubricated wear including scuffing; Bio-
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1. Introduction 
The piston assembly and cylinder liners are two of the most important components in a reciprocating internal 

combustion engine. These components allow the dynamic sealing of the combustion chamber through the 

piston reciprocating motion, which is the link to transform the energy generated by combustion into kinetic 

energy. The engine efficiency depends strongly on the dynamic sealing and friction performance of the piston 

assembly within cylinder liners. Poor sealing capacity results in decreased combustion efficiency meanwhile 

increased friction can generate rise of fuel consumption. According to Holmeberg et al. [1], a percentage 

between 4.3 and 7.8% of fuel energy is dissipated by the friction between the piston assembly and the 

cylinder liner. The friction generated by the piston assembly against cylinder liners represent around 45% of 

the total engine friction losses, followed by bearings, seals and other components operating under 

hydrodynamic lubrication regime (20-44%), the valve train (3-34%) and oil pumping and hydraulic viscous 

losses (10%). Thus, the former can be considered as the largest source of friction losses in engine. Advanced 

coatings and surface texturing have been suggested to reduce friction and wear. Besides, new lubricants and 

additives technologies with low-viscosity and low-shear are being developed [1].  



The piston assembly operates under large and rapid variations of load, speed, temperature and lubricant 

feeding. So, the piston assembly may experience boundary, mixed and hydrodynamic film lubrication even in 

a single piston stroke [2]. In a recent approaching reported by Wong and Tung [3], it was claimed that the 

piston assembly mainly operates in the mixed lubrication regime when using low-viscosity oils. Nonetheless, 

boundary lubrication is expected at the top dead centre (TDC) and bottom dead centre (BDC) piston positions 

where the sliding speed reaches zero, limiting the formation of a mixed or hydrodynamic film. Mixed 

lubrication occurs at the transition from hydrodynamic to boundary lubrication situations and vice versa. The 

thermal expansion and wear of the cylinder liner cause sealing deficiency in the combustion chambers 

generating a reduction in the peak compression pressure and an increase in oil consumption [4].  

Many efforts have been conducted to reduce friction and wear in reciprocating combustion engines. 

Nevertheless, it has been demonstrated that the use of energy-conserving engine lubricants is the most 

economical way to acquire the necessary gains [5]. The increasing demand for more efficient and ecofriendly 

engine lubricants has promoted interest in investigating the potential of bio-oils as engine lubricants. The 

tribological properties of different pure vegetable oils or mineral oil blends have been well investigated. Most 

bio-oils have been demonstrated to exhibit better lubricity properties than mineral oils when used in the 

boundary lubrication regime. This is attributable to the high proportion of free fatty acids they contain, which 

act as effective friction modifiers [6-11]. However, the confident total use of bio-oils as engine lubricants has 

not been authenticated since they exhibit poor oxidation stability and generate considerable high wear 

compared with mineral oils, which may damage engine components with their long-term use [9, 10, 12-15].  

Usually, the ageing of engine oils is characterized by oxidation, additive depletion and neutralization of the 

oil. However, the thermal oxidative stability is the most important property to be considered because they 

have a great influence on changes in viscosity and viscosity index, density, and tribological properties [16, 

17]. Engines work efficiently in the range between 90 and 100 °C under normal operation, so a good lubricant 

is required to show minimal degradation at these temperatures. The physical and chemical changes of oil due 

to thermal ageing impact on the lubrication performance [17]. In this regard, it is important to consider that 

vegetable oils have poor thermal oxidation stability due to their chemical composition conductive to faster 

degradation during their lifetime, either in storage or in use, than mineral oils [18].  

The effects of thermo-oxidation of some bio-oils on their tribological performance have been investigated 

previously. Mannekote and Kailas [19] studied the effect of oxidation on the tribological performance of 

groundnut, palm, rice bran, soybean, and sesame oils. The oils were thermally aged by heating them at 60, 80 

and 100 °C in a dark oven for 14, 28, and 42 days. Tribological tests were then conducted in a four-ball tester 

to determine changes in friction coefficients and wear in the boundary lubrication regime. The authors 

concluded that all oil samples exhibited increase in free fatty acids, peroxides, and viscosity. Besides, the 

wear increased with ageing time and temperature. Meanwhile the friction coefficients decreased for the 

oxidized oil samples due to tribo-chemical reactions (formation of iron soap on the metallic surfaces). 

Kreivaitis et al. [20] investigated the influence of oxidation on tribological properties of rapeseed oil using 

four-ball tribological tests. The oil sample was oxidized according to the standard method ISO 6886:2006 

using Rancimat 743 apparatus. The oil was heated to 100 °C for various periods up to 40 h. The results 

suggested that oxidation time decreased lubricity of the oil. Thus, it can be concluded that bio-lubricants 

present better lubricity than mineral oils in a fresh state, but they may lose their tribological properties by 

oxidation. 

Currently, Jatropha oil (JO) is considered as one of the most promising options as a bio-lubricant since it 

presents various advantages. The plant has a high oil content; it can grow on marginal lands in tropical and 

sub-tropical climates enabling an extensive oil source supply, and it is not considered as human feedstock [11, 

21]. It has been demonstrated that JO exhibits better tribological properties than other bio-oils, for example, 

rapeseed oil [10] and is compatible with different sealing elastomers from fuel and lubrication systems [22, 

23, 24]. It has also been reported that the frictional coefficients are reduced by blending JO with mineral oils 

for different applications, namely, hydraulic fluids [25], engine oils [14], metal working fluids [26, 27], 

automatic transmission fluids [28], drilling muds [29], etc. Negligible changes in terms of wear have been 



reported by using low percentages (<20%) of JO in blends with mineral oils [14]. Overall, the literature 

suggest that JO could be blended in low percentages with engine oils and other lubricants to enhance their 

tribological performance.  

Despite the extensive research mentioned above on tribological properties of JO, there is a dearth of 

information about the effect of thermo-oxidation resulting from storage and use on its tribological behavior. 

The aim of this work was to evaluate the tribological behavior of engine cylinder liners lubricated with fresh 

and thermo-oxidized JO using reciprocating tests, replicating severe sliding conditions in actual engine 

operation. For the purpose of comparison, an engine mineral oil (EMO) and a blend made of 80% vol. EMO 

and 20% vol. JO were also evaluated under the same experimental conditions. The oils were thermally 

oxidized by a laboratory method consisting of heating the lubricants at 160 °C for two different periods (30 

and 60 h). The changes occurring in the oils in terms of carbonyl compounds, depletion of Zinc 

dialkyldithiophosphate (ZDDP) (for EMO and B20), density, viscosity and viscosity index were analyzed. 

Tribological tests were then carried out in a reciprocating friction tester using steel balls against samples 

extracted from actual engine cylinder liners made of gray cast iron and conditioned by plateau honey 

finishing.  

 

2. Experimental details 

2.1 Oil samples 
The lubricants tested were JO (filtered and used without refining (straight JO)), an engine mineral oil (EMO) 

(SAE 10W-30 API SL), and a blend (B20) made up of 80%vol. of EMO and 20%vol. of JO. The fatty acid 

profile of the JO is given in Table 1. It was characterized by ESI mass spectroscopy analyses using a MALDI-

TOF spectrometer (Bruker DHAP). To examine the thermal-oxidative stability of the oils, they were exposed 

to a laboratory artificial ageing process [30]. This has been demonstrated as a short-term method to 

investigate the long-term behavior of engine oils, enabling the pre-selection thereof according to their 

performance under special conditions. For this, 300 g of oil were heated for 30 and 60 h in a sealed beaker at 

160±0.5 °C by using a stirring hotplate with temperature control. According to the method [30], the 

temperature corresponds to the value in which the main deterioration of the lubricant takes place in the 

combustion chamber. Air was introduced directly into the oil at a rate of 10 l/h to facilitate the oxidation 

process and accelerate degradation of the oil sample as suggested in the method [30]. It is noteworthy that 

actual ageing environments of engine oils involve interaction with other species in the combustion chamber, 

namely, fuel elements, exhaust gases, soot, etc., producing also sulfhonation, nitration, etc. Considering the 

different alternative fuels existing today, a more realistic approach incorporating these effects would involve 

much extensive further research work. 

 

Table 1. Fatty acids profile of straight Jatropha oil (JO). 

Fatty acid Araquidic Linoleic Behenic Oleic Lauric 

% 32.71 26.63 25.23 11.22 4.2 

 

The oxidation characteristics of the oil samples were evaluated by using the standard method detailed in 

ASTM D-7214 which involves using Fourier transform infrared spectroscopy (FT-IR). It enables the 

measurement of the change in concentration of constituents containing a carbonyl function that have formed 

during the oxidation process. The method consists of recording the FT-IR spectra of the fresh and aged oils in 

a transmission cell of known pathlength. Both spectra are converted to absorbance, and then, subtracted. 

Using the differential spectrum, a baseline is set under the peak corresponding to the carbonyl region between 

1650 and 1820 cm
-1

. The area created by this baseline and the carbonyl peak is calculated and divided by the 

cell pathlength. The result is reported as peak area increase (PAI). The standard method ASTM D-7412 was 

used to monitor depletion of anti-wear additives (zinc dialkyldithiophosphate (ZDDP)) in EMO and B20 by 



performing FT-IR analysis. The ZDDP concentration was calculated from each spectrum of the oil samples 

by the direct measurement of the area comprised between 960 and 1025 cm
-1

 using a baseline between 700 

and 1900 cm
-1

. Both analyses were conducted by using a spectrometer micro Raman (LabRam HR800) 

coupled to an ATR (objective 36X) from a module FT-IR (IR2). The cell pathlength was set at 0.05mm. The 

spectral data were collected between 700 and 1900 cm
-1

, averaging 32 scans with a resolution of 4 cm
-1

. The 

data range was selected to meet the required spectra in both ASTM methods.  

The viscosity changes caused by thermo-oxidation were also evaluated. The dynamic viscosities were 

measured by using a rotational rheometer (TA Instruments/ARG2) with a cone/plate configuration at 26, 40 

and 100 °C, respectively. Densities were obtained at the same set of temperatures to calculate the kinematic 

viscosities. In addition, the viscosity indexes were calculated by following the ASTM D-2270 standard 

procedure. All the tests were carried out for the fresh and thermo-oxidized oil samples.  

 

2.2 Reciprocating friction test set-up 
Tribological tests were carried out by using a friction reciprocating tester. A schematic view is shown in Fig. 

1a. A steel ball specimen is clamped by the ball holder, which is fixed to the reciprocating arm. A cylinder 

liner sample is secured tightly into an oil bath permitting the free parallel movement of the reciprocating arm, 

as represented in Fig. 1b. A predefined normal load is applied to the ball holder. A force sensor is located and 

fixed next to the oil bath to measure the tangential force (friction force) generated by the reciprocating action 

of the ball against the cylinder liner specimen. An electrical resistance heater is located under the oil bath to 

rise and control the oil temperature. Temperature is monitored through the entire test by means of a 

thermocouple immersed in the oil. The ball samples were commercial steel balls (alloy 1018) with a 6 mm 

diameter and 0.02 µm roughness (Ra). The cylinder liner specimens were prepared with dimensions of 30 x 

20 mm. They were cut from actual cylinder liners (78 mm in diameter and 3 mm in thickness) made of gray 

cast iron with surface conditioning by plateau honing process. The specimens were characterized to obtain the 

values of hardness, elastic modulus and roughness, which are given in Table 2. The hardness and elastic 

modulus were measured by Berkovich nanoindentation tests on the cross-section of the samples meanwhile 

the surface roughness was measured in terms of Sa and Sq parameters using an optical profilometer. The 

elemental composition of the samples is given in Table 3. It was obtained by an energy dispersive 

spectroscopy (EDS) analysis. 

 

 
 

 

Figure 1. a) Schematic representation of the reciprocating friction test set-up; b) steel ball and cylinder liner 

specimens. 

Table 2. Mechanical properties of the steel ball and cylinder liner specimens. 

Sample Hardness (HV) Elastic modulus (GPa) Roughness (�m) 

Steel ball (alloy 1018) 760-840 207 Ra=0.02 



Grey cast iron liner 428.6±59.5 95.7±5.8 Sa=1.135; Sq=1.51 

 

Table 3. Elemental composition of cylinder liner specimens. 

Sample 
Chemical composition 

Fe (%) C (%) O (%) Si (%) 

Cylinder liner (grey cast iron)  66.1±4.56 17.2±4.23 13.6±2.35 3.1±1.25 

 

 

2.3 Tribological test conditions 

 
The test conditions are given in Table 4. Two different oil temperatures (26 and 100 °C) were tested since 

they are representative of internal combustion engines operation. 26 °C can be considered as the average 

temperature when the engine is started meanwhile 100 °C may be considered as the mean temperature when 

the engine is running steadily. The load, the reciprocating frequency and duration of test were characteristic 

conditions of the actual contact when there is a severe sliding condition occurring in the piston rings/cylinder 

liner interface under a boundary lubrication regime. According to the configuration of a ball on a concave 

surface, the contact pressure was estimated by the solution given by Johnson for elastic elliptical contacts 

[31]. The stroke length of the tester was adjusted to 12 mm to generate measurable wear scars. For each test, 

10 ml of oil was poured into the oil bath to ensure full immersion of the contact for the entire test. Four 

similar experiments were conducted for each set of test conditions. The friction force was monitored and 

logged via data acquisition software for the entire test. The morphology and topography of the wear scars 

were evaluated using an electron scanning microscope (SEM) and an optical profilometer to visualize the 

wear features and to measure the wear volumes, respectively. The test duration and load were selected to 

obtain stable friction and measurable scars on all the samples. Several previous trials were conducted to 

determine these parameters. Three regions in the friction progression for 25 minutes were identified. The first 

stage is the well-known running-in phase, exhibiting initial friction variations. The second stage, between 14 

and 15 minutes, was identified as the stable stage. The last stage, appearing after 20 minutes, was 

characterized by abrupt friction signal increases. This was ascribed to an accumulation of debris on the scar 

generating variations in friction. Hence, 20 minutes, achieving a sliding distance of 136 m, was selected for 

carrying out all the tests.  

Table 4. Conditions for the reciprocating friction test. 

Condition Values 

Oil temperature (°C) 26, 100 

Load [N] 20 

Contact pressure (GPa) 0.99 

Test duration (minutes) 20 

Mean sliding distance (m) 136 

Reciprocating frequency (Hz) 4.7 

Mean sliding velocity (m/s) 0.11 

Max. sliding velocity (m/s) 0.22 

Stroke length (mm) 12 

 

3 Results and discussion 

 

3.1  Characterization of aged oil samples 

 



The FT-IR spectra from JO, EMO and B20 are shown in Figs. 2a-c, respectively. The spectrum ranges 

considered for the corresponding ASTM measurements are indicated. The comparison of spectra for fresh and 

aged JO samples is shown in Fig. 2a. The thermo-oxidation of JO exhibited some characteristic changes. An 

increase in absorbance in the region between 1650 and 1820 cm
-1

 was identified. It can be related either to the 

increase in the peak near to 1746 cm
-1

 representing the appearance of saturated aldehyde functional groups or 

to the formation of other secondary oxidation products that cause absorbance at 1728 cm
-1

 overlapping within 

the stretching vibration at 1746 cm
-1

 of the ester carbonyl functional group of the triglycerides [32]. A slight 

increase in the peak near to 1399 cm
-1

 occurred perhaps due to the amount of the oleic acyl groups in the 

sample [32, 33] or by bending in plane vibrations of CH cis-olefinic groups [32, 34]. The peaks near to 1238 

and 1163 cm
-1

 had a growth; which can be attributed to the proportion of saturated acyl groups [32, 33]. The 

increase in the peak near to 1099 cm
-1

 is commonly presented in oil samples rich in oleic acyl groups [32]. An 

appearance of the peaks near to 970 and 990 cm
-1

 is evident. It is associated with formation of dimer 

carboxylic acid [35] that is initially produced by the formation of aldehydes and ketones that then react to 

form the carboxylic acid and other high-molecular-weight species due to the oxidation process contributing to 

the polymerization process and viscosity increase. In Fig. 2b, the spectra for fresh and aged EMO samples are 

compared. Commonly, oxidation of EMOs is represented by an increase in the area between 1650 and 1820 

cm
-1

 which is well known as the carbonyl region. The growth of such an area occurs by the absorbance 

increase in the peak close to 1728 cm
-1

. For the EMO tested in this work, the increase in the carbonyl region 

was minimal suggesting low oxidation. However, there was a reduction in the peak near to 968 cm
-1

 

suggesting depletion of ZDDP. Also, a diminishment of absorbance in the peaks near to 1377 and 1460 cm
-1

 

was found. It can be ascribed to a reduction in the C-H bonds modes of the oil molecules [36]. On the other 

hand, the spectra shown in Fig. 2c corresponding to B20 exhibited most of the characteristic peaks found in 

JO and EMO. Moreover, an increase in the peaks near to 1728, 1746, 1238, 1163, 1099, 990 and 970 cm
-1

 

was found, akin to that happening in JO. Thus, it can be claimed that the oxidation taking place in B20 overall 

arises from the oxidation of compounds of JO contained in the blend.         

       

 

 



 
 

Figure 2. Comparison of FT-IR spectra from fresh and aged oils samples; a) JO; b) EMO; and c) B20. 

 

In Figs. 3a-e, the PAI values, ZDDP concentrations, and changes in viscosity of the oil samples are shown. 

The PAI values, seen in Fig. 3a, suggest that JO was the most oxidized after the thermo-oxidative process. In 

contrast, EMO presented very low values, which suggest that it was almost not oxidized. Nevertheless, 

according to that seen in Fig. 3b, the oxidative process generated reduction of ZDDP concentration in EMO, 

meaning that they were depleted. On the other hand, B20 exhibited considerable oxidation being attributed to 

the oxidation of the JO contained in the blend. The results from ZDDP concentration analysis for B20 showed 

an increase with oxidation time, which would suggest an increase in ZDDP. However, this increase can be 

ascribed to the formation of dimer carboxylic acid of the JO content in the blend since the measurement 

region (ASTM D7412) of ZDDP concentration comprises the region of peaks near to 970 and 990 cm
-1

, as it 

can be seen in Fig. 2c. So, the measurement of ZDDP for B20 may can be considered as invalid.  

 

According to Figs. 3c-d, the oxidative process generated changes in the viscosity of the three oils at both 

temperatures. It is well known that the oxidized products and polar components, namely, alcohols, esters, 

carbonyl compounds and benzene derivatives induce hydrogen bonding, dipole and van der Waals 

interactions among the constituents present in mineral and synthetic oils contribute to viscosity changes [37]. 

In a similar way, oxidation in vegetable oils leads to the formation of hydrogen bonds increasing 

intermolecular forces that increase viscosity [38]. EMO exhibited a slight reduction in viscosity at both 

temperatures meanwhile B20 and JO showed an increase, with that in JO being the most significant. The 

decrease in dynamic viscosity of EMO may be attributed to the breaking of hydrocarbons in the oil by high 

temperatures, forming smaller molecules at an early stage of oxidation [37]. On the other hand, the largest 

increase of viscosity of JO resulted from the polymerization process produced by the oxidation. It produced 

the formation of high-molecular weight compounds like those reported for rapeseed oil oxidation [20]. 

Besides, the formation of hydroperoxides, aldehyde and ketone, as shown in Fig. 2a and 2c, has been 

demonstrated to be capable of increasing viscosity [35]. The high concentration of saturated acids, namely, 

araquidic and behenic acids contained in JO, could also produce the viscosity rise [38]. Therefore, the high 

changes in viscosity of JO due to the thermo-oxidative process suggests its poor oxidative stability. Viscosity 

changes of JO could be diminished either by adding antioxidant additives or by chemical processes to remove 

most of saturated acids and other compounds that affect the oxidation stability. In addition, the JO contained 

in B20 generated a slight increase in viscosity, which can be considered as positive since it may enhance the 

lubricating properties in specific cases. An increase in viscosity may be considered as helpful to reduce 

friction and wear in mixed and boundary lubrication conditions occurring in the tribo-system comprised by 

the piston assembly and cylinder liner. However, a high change in viscosity could be negative for 

hydrodynamic lubrication situations even for other components in the engine where the viscous shear largely 

influences the friction force generating larger friction losses and fuel consumption. Also, it may be harmful 

for the oil pumping in more severe cases. In Fig. 3e, the changes in viscosity index for the different oils can 

be seen. The fresh JO and EMO samples presented the highest and lowest viscosity index, respectively. 

Comparing B20 with EMO, fresh B20 presented a higher index than EMO, meaning that JO could enhance 



the viscosity index of EMO. However, thermo-oxidation caused a reduction of viscosity index for the three 

oils, those from JO and B20 were the most affected. A high viscosity index is a signature of high-performance 

lubricants in most industrial applications where considerable temperature changes are present. The higher the 

viscosity index values the smaller the viscosity changes or oil thinning with increasing temperature. Hence, 

fresh JO and B20 presented a better performance, in terms of viscosity index, than EMO but a higher loss of 

performance by a thermo-oxidative process. 

 

 

 

  

  

 
Figure 3. Oxidation and changes in viscosity for the fresh and aged oil samples: a) PAI values; b) ZDDP 

concentration; c) kinematic viscosities obtained at 26 °C; d) kinematic viscosities obtained at 100 °C; e) 

viscosity index. 



 

3.2 Tribological behavior  

The severity of interaction of asperities at the sliding lubricated interface by using the different oils can be 

represented by the kind of lubrication regime achieved. It is represented by the Lambda ratio, ʌ, which is 

estimated using an approach outlined previously [39]: 

 

 ʌ = ����
��	
���	��

             (1) 

where, ℎ��� is the corresponding minimum film thickness. ��� and ��� are the ball and cylinder liner 

roughness, respectively. It is considered that the surfaces are separated by a full fluid film (hydrodynamic 

lubrication regime) at ʌ>3. Mixed or partial lubrication occur at 1<ʌ<3 meanwhile boundary lubrication is 

presented at ʌ<1 [39]. The minimum film thickness was calculated according to the theory developed by 

Hamrock et al. [40] for elasto-hydrodynamic lubrication of elliptical conjunctions. ʌ value was lower than 0.3 

for all the cases, so it can be stated that the whole set of experiments was conducted in the boundary 

lubrication regime.  

According to the evolution of the friction behavior obtained for the fresh and aged lubricant samples at both 

temperatures, two stages (running-in and stable friction) were identified for all the tests. The first stage 

covered a period between 3 and 6 minutes where the friction gradually reduced, while in the second the 

friction remained stable until completion of the 20 minutes of testing. This means that the test conditions used 

are moving the contact beyond a running-in stage. The friction coefficient reported here corresponds to the 

average value of the four tests. For this, all the absolute values within the stable friction stage were averaged 

to obtain a single value for each test. The error bars shown represent the standard deviation of the mean 

values from the four repetition tests. The comparisons of the mean friction coefficients obtained by using the 

fresh and aged oils at 26 and 100 ° C are shown in Figs. 4a-b, respectively, meanwhile the wear rates obtained 

are shown in Figs. 4c-d. Fresh JO and B20 had lower friction coefficients than EMO at both temperatures, 

which agrees with the behavior reported by other authors [6-11]. It suggests that JO enhanced the EMO´s 

lubricity properties in a fresh state. The three oils gave an increase in the friction coefficient with oxidation 

time at 26 °C. JO gave the lowest values while B20 increased friction in a similar manner to EMO. The 

friction coefficients of JO and B20 increased with ageing time at 100 °C while EMO decreased after 60 h. 

B20 exhibited the lowest friction coefficient at this temperature. Thus, oxidation of B20 increased the friction 

coefficients in general, but these were yet lower than those for fresh and aged EMO. The JO contained in B20 

promoted low friction coefficients at both temperatures even with oxidation time. It suggests that lubricity of 

EMO could be improved by blending it with JO even under harsh use conditions.  

The standard deviations obtained from the wear rate results were relatively large since the optical profilometer 

software considered the volume of the scratches made by the surface conditioning (plateau honing) existing in 

the samples prior to the test. The comparison of wear rates obtained by using the different oils was difficult to 

establish. Nevertheless, there are some remarkable differences seen in Figs. 4c-d. EMO produced an increase 

of wear rate with oxidation time at 26 °C, which can be attributed to the ZDDP depletion and the viscosity 

decrease. On the other hand, JO generated a decrease of wear rate with oxidation time, which can be ascribed 

to its high increase in viscosity. There was no significant difference in wear rates produced by using fresh and 

aged B20. The wear rate produced by using fresh JO was higher than that by using EMO at both temperatures. 

It is ascribed to the difference in viscosity. The wear rates generated by JO at 100 °C had a considerable 

decrease with oxidation time, which can be ascribed to its large increase in viscosity.  

 



  

  
Figure 4. a) Friction coefficients obtained at 26 °C; b) friction coefficients obtained at 100 °C; c) wear rates 

obtained at 26 °C; b) wear rates obtained at 100 °C. 

 

 An example of the typical wear scars formed can be seen in Figs. 5a-c. In Fig. 5a, an entire scar measured by 

the optical profilometer is shown. The wear scars generated in the samples were also analyzed by SEM 

imaging of the surfaces. The typical wear patterns found by SEM are shown in Figs. 5b-c. In Fig. 5b, the 

representative scar produced by fresh EMO and B20 and aged JO, EMO and B20 at 26 and 100 °C is shown. 

Mild scuffing wear can be observed in these scars. The only exception was fresh JO tested at 100 °C which 

generated a scar with different wear (severe scuffing wear), as depicted in Fig. 5c. Both types of wear have 

been reported to occur in actual cylinder liners under boundary lubrication conditions [41]. They are produced 

by gradual starvation of the lubricating film under hard loading conditions through sliding of piston rings. 

Thus, wear is started by the contact and collision between asperities of both ball and cylinder liner surfaces, 

producing mainly plastic deformation of the asperities of the cylinder liner surface. The asperities are 

deformed plastically to cover the scratches from the surface finishing (plateau honing), as can be seen in Fig. 

5b. This phenomenon, well known as smearing, is the initial stage of the scuffing wear mechanism. The 

progression of smearing produces surface smoothing forming larger real contact areas. It produces oil film 

starvation at the contact interface and generates mild adhesion and increase of heat. Mild or severe adhesion 

can produce detachment of flakes (wear debris) of material from the cylinder liner sample´s surface, as 

evidenced in Fig. 5c. Those debris are the cause of three-body abrasion that increases the wear rate and alters 

friction levels. Thus, the severity of wear (severe scuffing) produced by fresh JO at 100 °C could be related to 

its very low viscosity at this temperature and lack of anti-wear additives (ZDDP), as contained in EMO. 



 

 

 
 

Figure 5. a) Example of an entire wear scar produced in the cylinder liner samples by the reciprocating 

friction test; b) micrographs from the typical wear scars obtained at 100 °C using fresh EMO exhibiting mild 

scuffing; c) micrographs from the typical wear scars obtained at 100 °C using fresh JO exhibiting severe 

scuffing. 

Overall, the use of pure JO as engine oil may be harmful because it is highly susceptible to thermo-oxidation, 

which has been demonstrated to generate considerable physical and chemical changes critical for the engine 

oil performance. Also, it may be risky for use as engine oil in hydrodynamic lubrication situations, either for 

the piston assembly or other components in the engine where the viscous shear largely influences the friction 

force. Oil pumping in the engine could be considerably affected in more severe cases of thermo-oxidation 

since the observed large viscosity increase in the oil. However, JO may be positively blended with engine 

mineral oils in low concentrations to enhance lubricity properties without compromising the long-term 

performance.  

 

4. Conclusions 

 



The effects of thermo-oxidation of Jatropha oil (JO), an engine mineral oil (EMO) and a blend made of 

80%vol. EMO and 20%vol. JO (B20) on the tribological behavior of samples from engine cylinder liners by 

reciprocating friction tests in the boundary lubrication regime at 26 and 100 °C was analyzed in this work. 

The main conclusions derived from this work are listed below: 

- JO exhibited a high increase in viscosity with oxidation time due to polymerization and oxidation of 

saturated acids, namely, araquidic and behenic acids.  

- JO and B20 presented higher viscosity indexes than EMO in fresh state. However, they decreased 

with oxidation time faster than EMO.  

- Thermo-oxidation of JO and B20 increased the friction coefficients, but they were yet lower than 

those for fresh and oxidized EMO.  

- Fresh and oxidized B20 exhibited lower friction coefficients than EMO at both temperatures, 

suggesting that adding of JO in EMO could be positive to reduce friction even for harsh conditions. 

- Fresh JO generated the highest wear rates on the cylinder liner specimens at both temperatures. 

Nevertheless, the increase in viscosity caused by thermo-oxidation helped to reduce wear.  

- Mild and severe scuffing wear patterns were observed on the cylinder liner specimens. Severe 

scuffing was only seen in those specimens tested by using fresh JO at 100 °C while mild scuffing 

wear was experienced by the rest of the samples. This was attributed to the lower viscosity of JO and 

its lack of anti-wear additives as compared with EMO.  

- JO could be blended with engine mineral oils in low concentrations to enhance lubricity properties 

even for long-term use.  
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