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Microglial cells in the central nervous system (CNS) are crucial in maintaining a
healthy environment for neurons to function properly. However, aberrant microglial cell
activation can lead to excessive generation of neurotoxic proinflammatory mediators
and neuroinflammation, which represents a contributing factor in a wide spectrum
of CNS pathologies, including ischemic stroke, traumatic brain damage, Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, psychiatric disorders, autism spectrum
disorders, and chronic neuropathic pain. Oxidative stress is a salient and common
feature of these conditions and has been strongly implicated in microglial cell activation
and neuroinflammation. The transient receptor potential melastatin-related 2 (TRPM2)
channel, an oxidative stress-sensitive calcium-permeable cationic channel, is highly
expressed in microglial cells. In this review, we examine the recent studies that
provide evidence to support an important role for the TRPM2 channel, particularly
TRPM2-mediated Ca2+ signaling, in mediating microglial cell activation, generation
of proinflammatory mediators and neuroinflammation, which are of relevance to CNS
pathologies. These findings lead to a growing interest in the TRPM2 channel, a new
player in neuroinflammation, as a novel therapeutic target for CNS diseases.

Keywords: TRPM2 channel, microglial cell activation, CNS pathologies, neuroinflammation,
proinflammatory mediators

INTRODUCTION

The central nervous system (CNS), which is composed of the brain and spinal cord, is a highly
integrated and complex network made up principally by neuronal and glial cells. Neuronal cells
or neurons as the working unit of the CNS are specialized to transmit information. Glial cells
function more in a supportive capacity to surrounding neurons and, nonetheless, as has been
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increasingly recognized, also actively participate in many
functional aspects of the CNS through bi-directional and
dynamic interactions (Jäkel and Dimou, 2017; Allen and Lyons,
2018; Luca et al., 2018). There are several types of glial cells
with different embryonic origins (Menassa and Gomez-Nicola,
2018). Astrocytes, oligodendrocytes, and neural-glial antigen
2-positive cells are derived from neuro-ectoderm that also
gives rise to neurons, whereas microglial cells are myeloid-
lineage cells originated from mesoderm that generates cells
of the blood and immune system. Therefore, microglial cells
are privileged to be the immune-competent cells of the CNS,
like macrophages in the systemic immune system, and thus
are often referred to as CNS-resident macrophages. Under
healthy or steady-state conditions, microglial cells exhibit a
distinctive morphology characteristic of high ramification with
an extensive network of fine processes stemming from a
small cell body and a resting phenotype (Saijo and Glass,
2011). Microglial cells can secret neurotrophic factors [e.g.,
brain-derived neurotrophic factor (BDNF)] and, using their
phagocytic capability, eliminate excessive or dysfunctional
synapses and clear apoptotic developing neurons. In this
way, microglial cells support neuronal functions, particularly
important processes such as neurogenesis and synaptogenesis
during brain development and in the adult brain (Marin-Teva
et al., 2004; Sierra et al., 2010; Kettenmann et al., 2013; Yirmiya
et al., 2015; Kierdorf and Prinz, 2017; Ising and Heneka, 2018;
Luca et al., 2018). In addition, microglial cells act as the
sentinel of the CNS and unceasingly patrol the surroundings
with their fine processes to monitor environmental changes
and provide the first defensive mechanism in response to
damage and infection. Microglial cells express a repertoire of
the so-called pattern recognition receptors (PRRs), with Toll-
like receptors (TLRs), and nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs) being two example groups.
PRRs detect danger-associated molecular patterns (DAMPs)
released from host cells due to damage or stress or pathogen-
associated molecular patterns (PAMPs) generated by invading
pathogens (Brubaker et al., 2015; Jassam et al., 2017). Upon
ligation of PRRs by DAMPs and/or PAMPs, microglial cells
become activated and, after retracting their processes and
taking on a spherical form, adopt an amoeboid morphology,
proliferate and migrate to the site of damage or infection,
where they remove damaged cells or pathogens via phagocytosis
(Hanisch and Kettenmann, 2007). Microglial cells can generate
proinflammatory mediators that are instrumental in heightening
acute immune responses, including chemokines [e.g., C-X-
C motif ligand 2 (CXCL2)], cytokines [e.g., interleukin (IL)-
1β, tumor necrosis factor (TNF)-α, IL-6], nitric oxide (NO),
and reactive oxygen species (ROS). Activated microglial cells
can also assume distinctive and anti-inflammatory phenotypes
and produce anti-inflammatory cytokines and neurotrophic
factors [e.g., IL-10, tissue growth factor (TGF)-β and BDNF]
that are important in resolving inflammation and stimulating
tissue repair (Wang et al., 2015; Tay et al., 2017; Luca et al.,
2018). It is increasingly clear that microglial cells exhibit
a high level of heterogeneity in the developing brain and
an increase in varied proinflammatory subtypes in the aged,

inflamed or neurodegenerative brain (Hammond et al., 2018;
Sousa et al., 2018).

It is known that numerous DAMPs are released by cells in the
CNS as a result of aging, traumatic damage, chronic psychological
stress or neurodegenerative diseases, with ATP being one such
well-documented example (Jassam et al., 2017; Wei et al.,
2018). It is also well-known that DAMPs are released from
degenerating neurons in the brain, such as misfolded amyloid
β-peptides (Aβ), α-synuclein, and superoxide dismutase 1 (Glass
et al., 2010). These DAMPs are potent inducers of chronical
activation or senescence of microglial cells, leading to elevated
generation of pro-inflammatory mediators that alters neuronal
functions and induces neurotoxicity, a process often referred to as
neuroinflammation (Glass et al., 2010; Heneka et al., 2018; Luca
et al., 2018). Studies over the past decade have gathered a large
body of evidence to support that microglial cells play a key role
in mediating neuroinflammation as a significant contributing
factor in the progression of aging and a wide spectrum of
CNS conditions, including ischemic stroke, traumatic brain
damage, Alzheimer’s disease (AD), Parkinson’s disease (AD),
multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS),
neuropsychiatric disorders [e.g., depression, bipolar disorder
(BD), and schizophrenia], autism spectrum disorders (ASD),
and neuropathic pain (Glass et al., 2010; Yirmiya et al., 2015;
Du et al., 2017; Inoue, 2017; Jassam et al., 2017; Maiti et al.,
2017; Ramirez et al., 2017; Salter and Stevens, 2017; Alibhai
et al., 2018; Bodnar et al., 2018; Ising and Heneka, 2018;
Luca et al., 2018; Shetty et al., 2018; Szepesi et al., 2018;
Voet et al., 2018).

Oxidative stress, resulting from excessive ROS generation,
impaired antioxidant capacity, or both, is a common and
salient feature in aging and the aforementioned CNS
diseases. The transient receptor potential melastatin-
related 2 (TRPM2) channel is a Ca2+-permeable cationic
channel with a high sensitivity to oxidative stress or ROS
(Hara et al., 2002; Zhang et al., 2003) and is a member of
the large transient receptor potential (TRP) superfamily
(Clapham, 2003). In the systemic immune system, the
TRPM2 channel has been recognized as an important
molecular mechanism mediating DAMP/PAMP-induced
generation of proinflammatory mediators and innate immune
responses (Knowles et al., 2013; Syed Mortadza et al., 2015).
Expression of the TRPM2 channel is widely distributed
in the CNS with a high level in microglial cells. In this
article, we focus on the TRPM2 channel in microglial cells
and its role in neuroinflammation. We start with a brief
introduction of the TRPM2 channel activation followed
by a summary of the evidence supporting TRPM2 channel
expression in microglial cells. We proceed to describe the
studies that show an important role of the TRPM2 channel in
microglial cell activation and generation of proinflammatory
mediators in response to various DAMPs and PAMPs, and
also the current understanding regarding the molecular
mechanisms responsible for DAMP/PAMP-induced TRPM2
channel activation and the downstream TRPM2-dependent
signaling pathways engaged in microglial cell activation and
generation of proinflammatory mediators. We also discuss
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the studies using rodent models that demonstrate the role
of the TRPM2 channel in microglial cell activation and
neuroinflammation in CNS diseases. Finally, we highlight the
gaps in our understanding that require further investigation
in order to test whether targeting the TRPM2 channel,
a new player in neuroinflammation, could represent a
neuroprotective approach to tempering the progression of
aging or CNS diseases.

TRPM2 CHANNEL ACTIVATION

Up to now, it has been established both functionally and
structurally that the TRPM2 channel is a ligand-gated Ca2+-
permeable cationic channel activated by intracellular ADP-ribose
(ADPR), and that ADPR-induced TRPM2 channel activation
displays strong dependence of intracellular Ca2+ (Figure 1A)
(Perraud et al., 2001; McHugh et al., 2003; Mei et al., 2006;
Tong et al., 2006; Xia et al., 2008; Du et al., 2009; Tóth
and Csanády, 2010; Huang et al., 2018; Wang et al., 2018;
Zhang et al., 2018). Several ADPR analogs, including ADPR-
2′-phosphate, 2′-O-acetyl-ADPR and 2′-deoxy-ADPR, have been
shown to gate the TRPM2 channel (Figure 1A) (Grubisha et al.,
2006; Toth et al., 2015; Fliegert et al., 2017). Cyclic ADPR
(cADPR), nicotinamide adenine dinucleotide (NAD) and other
structurally or metabolically ADPR-related compounds were
also reported in earlier studies using whole-cell recording to
activate the TRPM2 channel (Sano et al., 2001; Kolisek et al.,
2005; Beck et al., 2006; Togashi et al., 2006). This notion
however has been challenged by more recent studies using the
excised inside-out recording to show that application of these
compounds to the intracellular face of the TRPM2 channel failed
to induce TRPM2 channel activation (Tóth and Csanády, 2010;
Toth et al., 2015).

It is also known that warm temperature (≥35◦C) induces
TRPM2 channel activation alone or in synergy with other
TRPM2 channel activators (Figure 1A), as shown in
pancreatic β-cells and macrophages (Togashi et al., 2006;
Kashio et al., 2012; Kashio and Tominaga, 2015). In this
aspect, recent studies have revealed an important role for
the TRPM2 channel in sensory neurons in the peripheral
and central nervous systems in detecting non-noxious
warmth and regulating body temperature (Song et al., 2016;
Tan and McNaughton, 2016).

As introduced above, TRPM2 channels display high sensitivity
to activation under oxidative stress or more specifically exposure
to elevated levels of ROS, thus gaining increasing recognition
for their role in mediating cellular responses to oxidative stress
(Jiang et al., 2010; Miller and Zhang, 2011; Takahashi et al.,
2011; Knowles et al., 2013; Ru and Yao, 2014; Li et al., 2015,
2017; Syed Mortadza et al., 2015; Yamamoto and Shimizu,
2016). While some earlier studies suggested that ROS such
as H2O2 may directly activate the TRPM2 channel, it is now
widely accepted that ROS-induced TRPM2 channel activation is
indirect and depends on mechanisms that promote an increase
in intracellular ADPR level (Jiang et al., 2010). One widely-
employed mechanism in many types of mammalian cells is

generation of ADPR from NAD by poly(ADPR)-polymerase
(PARP), particularly PARP-1, and poly(ADPR)-glycohydrolase
(PARG) in the nucleus (Figure 1B). Some evidence exists to
suggest that ADPR generation from NAD catalyzed by NADase
in the mitochondria also contributes in ROS-induced TRPM2
channel activation (Perraud et al., 2005).

TRPM2 CHANNEL EXPRESSION IN
MICROGLIAL CELLS

Studies examined TRPM2 channel expression in microglial
cells at the mRNA, protein and/or functional levels using
reverse transcription-polymerase chain reaction (RT-PCR),
immunostaining, western blotting, Ca2+ imaging and/or patch-
clamp current recording (Kraft et al., 2004; Fonfria et al.,
2006; Lee et al., 2010; Jeong et al., 2017; Syed Mortadza
et al., 2017). Kraft et al. (2004) were the first to examine
TRPM2 channel expression in cultured rat microglial cells.
A high level of TRPM2 mRNA expression was detected,
and exposure to H2O2 induced extracellular Ca2+ influx,
leading to an increase in intracellular Ca2+ concentration
([Ca2+]i). Furthermore, application of intracellular ADPR
opened a cationic conductance with a linear current-voltage
(I-V) relationship and a single channel conductance of ∼65 pS
(Kraft et al., 2004), the key biophysical characteristics of the
TRPM2 channels (Jiang et al., 2010). A recent study shows
strong TRPM2 mRNA and protein expression and ADPR-
induced cationic currents in cultured mouse microglial cells
(Jeong et al., 2017). Consistently, exposure to H2O2 (10–
300 µM) induced concentration-dependent Ca2+ influx and
increase in [Ca2+]i in cultured mouse microglial cells from
wild-type (WT) but not TRPM2-knockout (TRPM2-KO) mice
(Syed Mortadza et al., 2017). Profiling the TRPM2 mRNA level
in numerous human tissues, including the brain and spinal
cord, revealed abundant expression and a wide distribution
of TRPM2 expression in the CNS (Fonfria et al., 2006). In
C13, a human microglial cell line, TRPM2 mRNA transcripts
were also readily detected, and exposure to H2O2 induced
a robust increase in [Ca2+]i. Both the mRNA expression
level and H2O2-induced Ca2+ responses were reduced in
C13 cells after treatment with TRPM2-specific antisense
oligomers (Fonfria et al., 2006). Furthermore, application of
intracellular ADPR or extracellular H2O2 elicited cationic
currents that exhibited an almost linear I-V relationship and
a strong sensitivity to inhibition by flufenamic acid (FFA),
a TRPM2 channel inhibitor (Figure 1A). In cultured human
microglial cells isolated from surgically resected temporal
lobe tissues, exposure to H2O2 elicited a strong increase in
[Ca2+]i that was inhibited by treatment with clotrimazole (Lee
et al., 2010), a TRPM2 channel inhibitor (Figure 1A). These
studies have gathered compelling evidence to support TRPM2
channel expression in human and rodent microglial cells as a
Ca2+ influx pathway with a significant role in ROS-induced
Ca2+ signaling.

Interestingly, an earlier study noted that there were
significantly greater H2O2-induced Ca2+ responses and
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FIGURE 1 | Direct and indirect mechanisms inducing TRPM2 channel activation. Summary of the major mechanisms that are responsible for direct (A) or indirect (B)
activation of the Ca2+-permeable TRPM2 channel on the cell surface that mediates Ca2+ influx leading to an increase in intracellular Ca2+ concentrations.
(A) Intracellular Ca2+, ADPR and several ADPR analogs binds to and activate the TRPM2 channel alone or in synergy. Warm temperature can also induce TRPM2
channel activation in a yet not well-defined mechanism. The TRPM2 channel inhibitors used in the studies discussed in this review are shown here, and note that
none of these inhibitors are TRPM2-specific. (B) ROS can potently but indirectly induce TRPM2 channel activation, mainly via PARP-1/PARG-mediated ADPR
generation from NAD in the nucleus. ADPR, ADP-ribose; ADPR-2′-P, ADPR-2′-phosphate; 2-APB, 2-aminoethyl diphenylborinate; FFA, flufenamic acid; ROS,
reactive oxygen species; NAD, nicotinamide adenine dinucleotide; pADPR, poly(ADPR); PARP1, poly(ADPR)-polymerase 1; PARG, poly(ADPR)-glycohydrolase.

more readily detectable H2O2-induced currents in cultured
rat microglial cells after exposure to H2O2 or treatment with
lipopolysaccharide (LPS), an endotoxin found in the outer
membrane of Gram-negative bacteria and a widely-used
PAMP to induce immune cell activation via TLR4 activation

(Kraft et al., 2004). TRPM2 mRNA expression was up-regulated
in C13 cells after treatment with IL-1β (Fonfria et al., 2006).
As we discuss below, exposure to diverse pathological stimuli
or conditions can increase TRPM2 channel expression in
microglial cells.
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TRPM2 CHANNEL IN MICROGLIAL CELL
ACTIVATION AND GENERATION OF
PROINFLAMMATORY MEDIATORS

An increasing number of studies have, mainly using cultured
microglial cells, investigated the role of the TRPM2 channel in
microglial cell activation and generation of proinflammatory
mediators in response to diverse pathological stimuli.
Furthermore, as discussed in detail next, efforts have been
made to gain considerable insights into the mechanisms by
which the TRPM2 channel is activated by such stimuli and
the downstream TRPM2-dependent signaling pathways in
microglial cell activation and generation of proinflammatory
mediators (Figure 2).

Generation of TNF-α and IL-6 Resulting
From Impaired Antioxidant Capacity
Glutathione (GSH) is present as one of the important
reducing agents in most mammalian tissues including the CNS
that equip cells with a non-enzymatic antioxidant capacity
(Meister and Anderson, 1983). Glutamatecysteine ligase (or
γ-glutamylcysteine synthase) is a rate-limiting step in GSH
synthesis and thus D,L-buthionine-S,R-sulfoximine (BSO), an
inhibitor of glutamatecysteine ligase, can cause depletion
of intracellular GSH and cellular oxidative stress. It has
been proposed that a reduction in intracellular GSH with
aging increases age-related susceptibility to oxidative stress,
which is worsened in many neurodegenerative conditions
(Sohal and Weindruch, 1996). A previous study investigated
the role of the TRPM2 channel in generating neurotoxic
proinflammatory mediators in cultured human microglial
cells under BSO-induced oxidative stress (Lee et al., 2010).
Exposure to BSO (1–24 h) induced an exposure duration-
dependent increase in [Ca2+]i. Exposure to BSO for 2 h was
sufficient to activate mitogen-activated protein kinases (MAPK),
p38, extracellular signal-regulated kinase (ERK) and Jun-N-
terminal kinase (JNK), and furthermore downstream nuclear
factor NF-κB. BSO-induced increase in [Ca2+]i and activation
of MAPK and NF-κB signaling pathways were significantly
suppressed by supplementation with GSH or treatment with
clotrimazole. Exposure to BSO (0.1, 0.5 and 1 mM) also
induced concentration-dependent release of TNF-α and IL-6
from microglial cells, which was reduced by treatment with
TRPM2-specific small interference RNA (siRNA) (Lee et al.,
2010). These results suggest that oxidative stress resulting from
GSH depletion activates the TRPM2 channel and TRPM2-
mediated Ca2+ influx in turn initiates downstream MAPK
and NF-kB signaling pathways, leading to generation of
TNF-α and IL-6 (Figure 2A). Human neuroblastoma SH-
SY5Y cells cultured in the medium conditioned by BSO-
treated microglial cells exhibited substantial cell death (Lee
et al., 2010). Such cell death was significantly attenuated
in the conditioned culture medium that was prior depleted
of TNF-α and IL-6. Moreover, SH-SY5Y cell death in the
conditioned culture medium was strongly suppressed by
supplementing microglial cell culture medium with GSH or

treating microglial cells with clotrimazole or TRPM2-siRNA
(Lee et al., 2010). Collectively, these results suggest that
TNF-α and IL-6, generated by microglial cells in a TRPM2-
dependent manner, under BSO-induced oxidative stress can
induce neurotoxicity.

LPC-Induced Microglial Cell Activation
It is known that lysophosphatidylcholine (LPC), an inflammatory
phospholipid endogenously generated under physiological and
various pathological conditions, can induce extracellular Ca2+

influx in microglial cells and microglial cell activation (Schilling
et al., 2004; Sheikh et al., 2009). A recent study has investigated
the role of the TRPM2 channel in LPC-induced Ca2+-signaling
and microglial cell activation in cultured mouse microglial
cells (Jeong et al., 2017). Exposure to LPC induced cationic
currents as well as an extracellular Ca2+-dependent increase
in [Ca2+]i. LPC exposure also resulted in phosphorylation
of p38 (p-p38), an indicator of microglial cell activation.
Consistently, intrathecal injection of LPC enhanced expression
of ionized calcium binding adapter molecule 1 (Iba1) and
CD11 in spinal microglial cells, suggesting microglial cell
activation (Jeong et al., 2017). Such LPC-induced in vitro
or in vivo effects in microglial cells were largely prevented
by TRPM2-KO (Jeong et al., 2017). These results support
a key role for the TRPM2 channel in LPC-induced Ca2+

signaling and activation of downstream p38 MAPK signaling
pathways, leading to microglial cell activation (Jeong et al.,
2017) (Figure 2B). It remains unclear regarding the mechanisms
by which LPC induces TRPM2 channel activation, and the
types of proinflammatory mediators that are generated as a
result of LPC-induced microglial cell activation. This study has
made an interesting observation that the levels of both total
and cell surface TRPM2 protein expression was significantly
increased in LPC-treated microglial cells but it is not elucidated
how such up-regulation of TRPM2 expression and membrane
trafficking occurs.

LPS/IFNγ-Induced Activation of iNOS
and Generation of NO
The TRPM2 channel was shown, in an in vivo study discussed
below, to play a significant role in mediating spinal microglial
cell activation and neuropathic pain (Haraguchi et al., 2012).
In this study the authors particularly revealed a role for the
TRPM2 channel in cultured microglial cells in the activation
of inducible NO synthase (iNOS) and generation of NO
after exposure to LPS and IFNγ. A subsequent study by the
same group investigated the signaling pathways engaged
in LPS/IFNγ-induced TRPM2 channel activation and NO
generation (Miyake et al., 2014). LPS/IFNγ exposure evoked
extracellular Ca2+ influx to increase [Ca2+]i, which was
prevented by TRPM2-KO or treatment with miconazole, a
TRPM2 channel inhibitor (Figure 1A). Such Ca2+ response
was also efficiently inhibited by treatment with diphenylene
iodonium (DPI) and ML-171, inhibitors of nicotinamide
adenine dinucleotide phosphate (NADPH)-dependent
oxidases (NOXs). LPS/IFNγ-induced NO generation was
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FIGURE 2 | TRPM2 channel mechanisms mediating microglial cell activation and generation of proinflammatory mediators. Schematic illustration of the current
knowledge of the signaling mechanisms by which various danger- or pathogen-associated molecular patterns activate the TRPM2 channel in microglial cells, leading
to microglial cell activation and generation of proinflammatory mediators. (A) BSO-induced GSH depletion via inhibition of GCL-mediated GSH synthesis results in
oxidative stress that activates the TRPM2 channel. TRPM2-mediated Ca2+ influx induces activation of p38, ERK, and JNK MAPKs and NF-κB pathways that drive
expression of TNF-α and IL-6. (B) Exposure to LPC induces TRPM2 channel activation via currently unknown mechanisms and ensuring TRPM2-mediated Ca2+

influx activates p38, leading to microglial cell activation. (C) Exposure to LPS/IFN-γ induces NOX-mediated ROS generation and TRPM2 channel activation.
TRPM2-mediated Ca2+ influx activates Ca2+-sensitive proline rich tyrosine kinase PYK2 and downstream p38 and JNK, triggering iNOS expression and NO
generation. (D) Exposure to Aβ42 induces TRPM2 channel activation via PKC/NOX-mediated ROS generation, activation of nuclear PARP-1 and ADPR generation.
TRPM2-mediated Ca2+ and subsequent activation of PYK2 and MEK/ERK serves as a positive feedback mechanism for further TRPM2 channel activation.
TRPM2-mediated Ca2+ signaling induces TNF-α expression. (E) LPS priming of microglial cells promotes expression of biologically inactive pro-IL-1β via TLR4.
Exposure to Aβ42 induces mitochondrial and NOX-mediated ROS generation, activation of nuclear PARP-1, and generation of ADPR which opens the TRPM2
channel. TRPM2-mediated Ca2+ influx activates NLRP3 inflammasome and subsequently caspase-1. Caspase-1 converts by cleavage pro-IL-1β into biologically
active IL-1β. For the evidence that supports or suggests these TRPM2 channel mechanisms in mediating microglial cell activation and generation of proinflammatory
mediators, refer to the studies discussed in detail in the text. BSO, D,L-buthionine-S,R-sulfoximine; GSH, glutathione; GCL, glutamatecysteine ligase; ERK,
extracellular signal-regulated kinase; JNK, Jun-N-terminal kinase; MAPK, mitogen-activated protein kinase; TNF-α, tumor-necrosis factor-α; IL, interleukin; LPC,
lysophosphatidylcholine; Aβ42, amyloid-β peptide 42; LPS, lipopolysaccharide; IFNγ, interferon γ; NOX; NADPH oxidases; NO, nitric oxide; iNOS, inducible NO
synthase; PKC, protein kinase C; PARP-1, poly(ADPR) polymerase 1; TLR4; Toll-like receptor 4; NLRP3, nucleotide binding domain-containing leucine-rich repeat
protein 3.

also significantly reduced by TRPM2-KO, or by inclusion
of 1,2-bis(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid
(BAPTA), a Ca2+ chelator, to remove extracellular Ca2+.
These results support that LPS/IFNγ induce NOX-mediated
ROS generation, TRPM2 channel activation and an increase
in [Ca2+]i, leading to NO generation (Figure 2C). Moreover,
LPS/IFNγ-induced NO generation was attenuated by treatment
with AG17, an inhibitor for Ca2+-sensitive proline-rich
tyrosine kinase 2 (PYK2), SB203580, a p38 inhibitor, or
SP600125, a JNK inhibitor. Inhibition of LPS/IFNγ-induced
NO generation by BAPTA, AG17, SB203580 or SP600125 was
abolished by TRPM2-KO. LPS/IFNγ-induced NO generation
in microglial cells from both WT and TRPM2-KO mice
was attenuated by treatment with PD98059, a MEK/ERK
inhibitor. Likewise, exposure to LPS/IFNγ induced selective
activation of p38 in WT but not TRPM2-KO microglial
cells, but indiscriminate activation of ERK in both WT and
TRPM2-KO microglial cells. Overall, these results suggest
that LPS/IFNγ-induced TRPM2-mediated Ca2+ signaling
initiates activation of PYK2 and downstream p38/JNK MAPK

signaling pathways for activation of iNOS and subsequent NO
generation (Figure 2C).

Aβ42-Induced Microglial Cell Activation
and Generation of TNF-α
A recent in vivo study using the APP/PS1 mouse model of AD,
as discussed further below, has disclosed an important role of
the TRPM2 channel in Aβ-induced AD pathologies, including
microglial cell activation (Ostapchenko et al., 2015). It is well-
established that TNF-α contributes to AD and neurodegenerative
diseases via direct interaction with its death receptor on
neurons as well as induction of microglial cell activation to
generate additional neurotoxic mediators (Alam et al., 2016;
Jiang et al., 2018). Our recent study has explored the molecular
mechanisms responsible for TRPM2 channel activation and
TNF-α generation in cultured mouse microglial cells induced
by exposure to Aβ42, one of the amyloid-β peptides of high
relevance to AD (Syed Mortadza et al., 2018). Exposure to
Aβ42 (30–300 nM) induced a concentration-dependent and
extracellular Ca2+-dependent increase in [Ca2+]i. Aβ42-induced
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Ca2+ response was strongly suppressed by treatment with
2-APB, a TRPM2 channel inhibitor (Figure 1), or BAPTA-
AM as a membrane-permeable and thus intracellular Ca2+

chelator, and furthermore by TRPM2-KO. Exposure to Aβ42
induced cellular ROS generation and activation of nuclear
PARP-1. Both Aβ42-induced PARP-1 activation and increase in
[Ca2+]i were suppressed by treatment with PJ34, an inhibitor of
PARP enzymes including PARP-1. Furthermore, Aβ42-induced
ROS generation, PARP-1 activation and Ca2+ responses were
inhibited by treatment with chelerythrine, a protein kinase
C (PKC) inhibitor, GKT137831, a NOX1/4-seletive inhibitor,
or Phox-I2, a NOX2 inhibitor as well as the NOX generic
inhibitor DPI. These results indicate that Aβ42 activates
the TRPM2 channel by inducing PKC/NOX-mediated ROS
generation and subsequent PARP-1 activation and generation
of ADPR (Figure 2D). Aβ42-induced PARP-1 activation and
increase in [Ca2+]i were also prevented by treatment with
PF431396, a PYK2 inhibitor, or U0126, a MEK/ERK inhibitor.
Aβ42-induced PARP-1 activation was significantly reduced but
incompletely abolished by TRPM2-KO, and the remaining
Aβ42-induced PARP-1 activity in TRPM2-KO microglial cells
was prevented by treatment with GKT137831 or Phox-I2 and,
in striking contrast, not altered by treatment with PF431396
or U0126. Taken together, these results suggest that Aβ42
stimulates PKC/NOX-mediated ROS generation and PARP-1
activation leading to initial TRPM2 channel activation, and
that subsequent TRPM2-mediated Ca2+ flux and activation of
PYK2, MEK/ERK, and PARP-1 serves as a positive feedback
mechanism for further TRPM2 channel activation (Figure 2D).
Moreover, exposure to Aβ42 induced noticeable morphological
changes in microglial cells and an increase in the expression
and release of TNF-α. Aβ42-induced morphological changes
and TNF-α generation were prevented by TRPM2-KO and,
moreover, by pharmacological inhibition of the aforementioned
signaling pathways responsible for TRPM2 channel activation
(Syed Mortadza et al., 2018).

Aβ42-Induced Activation of NLRP3
Inflammasome and Generation of IL-1β
The nucleotide binding domain-containing leucine-rich
repeat protein 3 (NLRP3) is a member of the NOD family
of PRRs in the cytosol. In response to damage or infection,
NLRP3, apoptosis-associated speck-like protein containing a
caspase recruitment domain, and procaspase-1, via protein-
protein interactions, assemble a multi-protein complex often
termed as the NLRP3 inflammasome. NLRP3 inflammasome
activation is required to activate caspase-1, which in turn
cleaves pro-IL-1β into IL-1β (Tschopp and Schroder, 2010;
Brubaker et al., 2015; Jassam et al., 2017; Song et al., 2017;
White et al., 2017). It was shown that genetic inactivation of
the NLRP3 inflammasome in APP/PS1 mice reduced IL-1β

generation by microglial cells, leading to improved spatial
memory and attenuation of other AD-related pathological
phenotypes (Heneka et al., 2013). In addition, NLRP3
inflammasome inactivation shifted microglial cells toward
an anti-inflammatory phenotype that cleared Aβ peptides,

thereby resulting in a reduction in amyloid-β deposition
(Heneka et al., 2013). Therefore, neuroinflammation resulting
from NLPR3 inflammasome activation and IL-1β generation in
microglial cells has emerged as an important factor contributing
to AD pathogenesis, inciting an interest in targeting the
NLRP3 inflammasome as a therapeutic approach to AD
(Heneka et al., 2014; White et al., 2017). It is well-known
that NLRP3 inflammasome activation and IL-1β generation
in immune cells including microglial cells exhibit a striking
convergence on ROS generation (Tschopp and Schroder,
2010; Song et al., 2017). A recent pharmacological study
has examined the potential role of the TRPM2 channel in
Aβ42-induced NLRP3 inflammasome activation and IL-1β

generation in LPS-primed microglial cells (Aminzadeh et al.,
2018). Exposure to Aβ42 at a relatively high concentration
(10 µM) induced mitochondrial ROS generation and also
IL-1β generation, both of which were suppressed by treatment
with DPI at a high concentration (20 µM) that presumably
targets mitochondrial ROS generation. Aβ42-induced IL-
1β generation was inhibited by treatment with VAS2870 or
(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate, NOX inhibitors,
indicating engagement of NOX-meditated ROS generation.
In addition, Aβ42-induced IL-1β generation was reduced by
treatment with N-acetylcysteine, a ROS scavenger, or DPQ, a
PARP-1 inhibitor (Aminzadeh et al., 2018). Exposure to Aβ42
resulted in a Ca2+ influx-dependent increase in [Ca2+]i that was
also strongly inhibited by treatment with DPI, VAS2870, DPQ,
or BAPTA-AM. Finally, Aβ42-induced caspase-1 activation,
as shown by western blotting, was inhibited by treatment
with DPQ or BAPTA-AM (Aminzadeh et al., 2018). These
results are consistent with the notion that Aβ42 induces
NLRP3 inflammasome activation and IL-1β generation via
stimulating mitochondrial and NOX-mediated ROS generation,
activation of PARP-1 and the TRPM2 channel, and subsequent
TRPM2-mediated Ca2+ influx (Figure 2E). However, more and
definitive evidence is required to corroborate the proposed role
of the TRPM2 channel.

TRPM2 CHANNEL IN
NEUROINFLAMMATION AND CNS
PATHOLOGIES

It is clear from the above discussion that studies based on cultured
microglial cells support an important role for the TRPM2
channel in microglial cell activation and generation of neurotoxic
proinflammatory mediators in response to DAMPs/PAMPs of
high relevance to various CNS diseases. As discussed next, there
is increasing evidence from in vivo studies using rodent models
that supports a critical role for the TRPM2 channel in microglial
cells in microglial cell activation, generation of proinflammatory
mediators and neuroinflammation in the pathogenesis of CNS
diseases (Figure 3).

Neuropathic Pain
It is well-recognized that microglial cell activation in the
spinal cord, as well as peripheral neuroinflammation, plays
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FIGURE 3 | Contribution of TRPM2 channel-mediated neuroinflammation in
CNS pathologies. Summary of the key events in TRPM2-mediated
neuroinflammation implicated in various CNS pathologies. Activation of the
TRPM2 channel in microglial cells mediates microglial cell activation,
generation of proinflammatory mediators and/or neuroinflammation that have
been shown to contribute to the pathogenesis of neuropathic pain, brain
damage by chronic cerebral hypo-perfusion and neonatal hypoxia-ischemia,
and Aβ-induced AD. CNS, central nervous system; Aβ, amyloid β peptides;
AD, Alzheimer’s disease.

a significant role in the development of chronic neuropathic
pain (Ji and Suter, 2007; Costigan et al., 2009; Tsuda et al.,
2013). The role of the TRPM2 channel in mediating spinal
microglial cell activation and neuropathic pain was explored
in a previous study using two mouse models of neuropathic
pain induced by partial sciatic nerve ligation (SNL) and spinal
nerve transection (SNT), respectively (Haraguchi et al., 2012).
Both mechanical allodynia and thermal hyperalgesia observed
in WT mice during the 2 weeks following SNL were largely
absent in TRPM2-KO mice. In the sciatic nerves on the ligation
site, the TRPM2 mRNA level was markedly elevated. SNL
induced a significant increase in the number of neutrophils
and also in generation of CXCL2 in WT mice, both of which
were mitigated or completely prevented in TRPM2-KO mice.
SNL also resulted in a strong increase in the TRPM2 mRNA
expression in dorsal microglial cells and in the intensity of
immunoreactivity for both Iba1 and CD11b. Moreover, there
was an increase in p-p38 and strong co-localization of p-p38
and CD11b, further indicating microglial cell activation. SNL-
induced increase in the intensity of immunoreactivity for Iba1,
CD11b nd p-p38, and co-localization of p-p38 and CD11b
in spinal microglial cells was largely prevented by TRPM2-
KO. Similarly, SNT induced mechanical allodynia, increased
intensity of immunoreactivity to CD11b and p-p38 and their
co-localization in dorsal microglial cells, all of which were
significantly subdued in TRPM2-KO mice. The study further
examined the role of the TRPM2 channel in the generation of
proinflammatory mediators in cultured microglial cells exposed

to LPS/IFNγ. LPS/IFNγ stimulated CXCL2 generation and NO
release as well as an increase in the mRNA expression of CXCL2,
TNF-α, IL-1β, IL-6, and iNOS. LPS/IFNγ-induced generation
of CXCL2 and NO, and increased mRNA expression of CXCL2
and iNOS were significantly lowered by TRPM2-KO (Haraguchi
et al., 2012). However, the study revealed no significant effect of
TRPM2-KO on the mRNA expression of TNF-α, IL-1β and IL-
6, indicating engagement of TRPM2-independent mechanisms.
These results support the notion that the TRPM2 channel
in spinal microglial cells contributes to neuropathic pain by
mediating the generation of proinflammatory mediators to
aggravate pro-nociceptive inflammatory responses. As discussed
above, LPS/IFNγ-induced NO generation depends on TRPM2-
mediated Ca2+ signaling and activation of downstream PYK2
and MAPK p38 and JNK signaling pathways (Figure 2C).

Alzheimer’s Disease
Alzheimer’s disease is an age-related neurodegenerative disease
with increasing prevalence in a rapidly aging society, representing
the most common cause of dementia that afflicts tens of millions
of older people worldwide. Aβ accumulation is widely thought
to be an early and pathogenic event in AD pathogenesis.
Oxidative damage is a conspicuous but mechanistically poorly
understood feature of AD. As has been recently reviewed
(Jiang et al., 2018), studies have shown wide expression of
the TRPM2 channel in the brain and strong evidence for
the TRPM2 channel as a nexus from Aβ generation and
oxidative damage to AD pathologies via multiple cellular and
molecular mechanisms, including microglial cell activation.
Microglial cells are known to have a dual role in AD
(Boche and Nicoll, 2008). They provide a protective role by
phagocytic clearance of Aβ, but such a beneficial capacity
declines with aging and is overwhelmed by excessive toxic
aggregates, becoming inefficient. As introduced above, Aβ can
induce chronic activation and senescence of microglial cells
leading to excessive generation of ROS and numerous neurotoxic
proinflammatory cytokines, such as TNF-α, IL-1β and IL-6,
which constitutes a critical component of AD pathogenesis.
APP/PS1 mice co-express a chimeric mouse/human amyloid
precursor protein (APP) with the Swedish mutations (K670N
and M671L) and human presenilin 1 (PS1) with deletion
of exon 9 (Jankowsky et al., 2003). A recent study has
examined the role of the TRPM2 channel in Aβ-induced
AD pathogenesis using this mouse AD model (Ostapchenko
et al., 2015). As has been well-documented, the APP/PS1
mice exhibit excessive Aβ generation, amyloid deposits and
synaptic loss in the hippocampus and cortex, microglial cell
activation, and severe impairment in age-related spatial memory.
Genetic deletion of TRPM2 expression in APP/PS1 mice, while
resulting in no alteration in amyloid deposition, essentially
reversed Aβ-induced synaptic loss, microglial cell activation,
and memory impairment (Ostapchenko et al., 2015). These
results provide compelling evidence to support a critical role
for the TRPM2 channel in Aβ-induced AD-related pathologies.
As already discussed above, recent in vitro studies reveal
an important role of the TRPM2 channel in mediating
Aβ42-induced microglial cell activation and generation of
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TNF-α (Syed Mortadza et al., 2018) and possibly IL-1β

(Aminzadeh et al., 2018).

Brain Damage by Deficient Cerebral
Blood Circulation
The brain is well-known for its vulnerability to damage by
deprivation or restriction of oxygen and/or glucose supply that
can occur under conditions such as cerebral ischemic stroke,
cardiac arrest, chronic cerebral hypo-perfusion, and neonatal
hypoxia-ischemia. Oxidative stress, mainly due to increased ROS
generation, is a common characteristic of these conditions. An
early study demonstrated elevated TRPM2 mRNA expression
in rat brains at 1 and 4 weeks after transient middle cerebral
artery occlusion (MCAO), a widely-used rodent model of
ischemic stroke (Fonfria et al., 2006). A number of recent
studies, using various in vitro and in vivo mouse models
of ischemia-reperfusion in conjunction with pharmacological
inhibition or genetic deletion of the TRPM2 channel, have
supported a critical role of the TRPM2 channel in ischemia-
reperfusion brain damage and associated cognitive dysfunction
(Jia et al., 2011; Alim et al., 2013; Shimizu et al., 2013, 2016;
Gelderblom et al., 2014; Ye et al., 2014). There is also emerging
evidence to indicate a role for the TRPM2 channel in mediating
brain damage due to hypoxia-ischemia in neonates (Huang
et al., 2017) and chronic cerebral hypo-perfusion in adults
(Miyanohara et al., 2018).

Of notice, much of the research in this area has so
far been devoted to the TRPM2 channel in mediating
neuronal death. Nonetheless, there is increasing evidence
to suggest a significant contribution of TRPM2-mediated
neuroinflammation. For example, selective deletion of the
TRPM2 expression in peripheral immune cells substantially
protected infarction and cognitive impairment in mice after
transient MCAO and reperfusion (Gelderblom et al., 2014).
However, the role of the TRPM2 channel in microglial cells
in ischemia-reperfusion brain damage largely remains unclear.
In the case of neonatal hypoxia-ischemia, a recent study shows
that infarction in postnatal day 7 pups, induced by ligating the
right common carotid artery and reducing oxygen supply and
examined 24 h or 7 days afterward, was considerably attenuated
in heterozygous and homozygous TRPM2-KO pups. In addition,
WT pups exhibited sensorimotor dysfunction at 7 days post
hypoxia-ischemia, and such deficits were less noticeable in
heterozygous and homozygous TRPM2-KO pups. In WT pups,
the TRPM2 mRNA expression was greater in the damaged
hemisphere than the healthy hemisphere. Hypoxia-ischemia
induced a massive increase in the number of glial fibrillary acidic
protein (GFAP) positive cells and Iba1-positive cells in WT pups,
but not in heterozygous and homozygous TRPM2-KO pups.
These results suggest that the TRPM2 channel plays an important
role in mediating activation of glial cells, including microglial
cells, thereby inducing neonatal hypoxic-ischemic brain damage.
The role of the TRPM2 channel in microglial cells has been
best understood in brain damage by chronic cerebral hypo-
perfusion (Miyanohara et al., 2018). Mice manifested significant
white matter damage and cognitive dysfunction 28 days after

introduction of bilateral common carotid artery stenosis (BCAS),
a model of chronic cerebral hypo-perfusion. At this time point,
there was also a significant increase in the TRPM2 mRNA
expression and in the level of IL-1β, TNF-α and IL-6 in the corpus
callosum. Such BCAS-induced effects, namely, white matter
damage, cognitive dysfunction and increased generation of IL-1β,
TNF-α and IL-6, were prevented by TRPM2-KO. There was an
increase in the number of GFAP positive cells and Iba-1 positive
cells in the corpus callosum at 14 and 28 days after BCAS, but
only the number of Iba-1 positive cells was strongly suppressed
by TRPM2-KO. The increase in the number of Iba1-positive cells
and cognitive dysfunction in BCAS-operated mice was effectively
prevented by administration of minocycline, an inhibitor of
microglial cell and macrophage activation. Further analysis, using
WT and TRPM2-KO mice with bone marrow (BM)-derived cells
replaced by WT GFP-labeled BM-derived cells, indicates that the
Iba-1 positive cells in white matter mainly are largely microglial
cells. Collectively, these results therefore support a critical role
for the TRPM2 channel in mediating microglial cell activation
and generation of proinflammatory cytokines, IL-1β, TNF-α and
IL-6, in the aggravation of cognitive impairment by chronic
cerebral hypo-perfusion.

SUMMARY AND PERSPECTIVES

In summary, the TRPM2 channel is highly expressed in
microglial cells and mainly functions as a plasma membrane
Ca2+-permeable cationic channel with a key role in mediating
ROS-induced Ca2+ signaling (Figure 1B). In addition, the
TRPM2 channel in microglial cells is potently activated by
diverse DAMPs and/or PAMPs that induce mitochondrial and/or
NOX-mediated ROS generation, activation of PARP-1 and
ADPR generation (Figure 2). Studies using rodent models in
combination with pharmacological and genetic interventions
support a significant role for the TRPM2 channel in microglial
cell activation and neuroinflammation in the pathogenesis of
various CNS conditions. Currently, this includes neuropathic
pain, chronic cerebral hypo-perfusion brain damage, neonatal
hypoxia-ischemia and Aβ-induced AD (Figure 3). As mentioned
in the introduction, microglial cell-mediated neuroinflammation
is a well-recognized factor in the pathogenesis of many other
CNS conditions besides the aforementioned conditions. Research
has also implicated TRPM2 channel in PD (Sun et al., 2018;
An et al., 2019; Li and Jiang, 2019), MS (Tsutsui et al.,
2018), traumatic brain damage (Cook et al., 2010; Yürüker
et al., 2015), and neurodevelopmental disorders such as ASD
(Higashida et al., 2018) and depression (Xu et al., 2006; Jang
et al., 2015; Zhong et al., 2016; Ko et al., 2019) as well as
ischemic stroke brain damage. Evidently, further research is
required to investigate whether the TRPM2 channel in microglial
cells in mediating neuroinflammation plays a significant role in
these CNS conditions.

As discussed above, recent studies have gained significant
insights into the molecular mechanisms by which DAMPs and/or
PAMPs induce activation of the TRPM2 channel and generation
of diverse proinflammatory mediators that are of strong relevance
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to various CNS diseases. It is clear from the discussion that the
current understanding remains fragmented with better insights
in some cases than others (Figure 2). Further research is required
to provide a coherent understanding of how the TRPM2 channel
is activated in response to distinctive stimuli or under different
conditions, leading to activation of downstream Ca2+ signaling
pathways, and ultimately how such TRPM2-dependent signaling
pathways drive microglial cell activation and generation of
proinflammatory mediators.

Given the widespread indication of a significant role
for the TRPM2 channel in mediating neuroinflammation
and CNS diseases, the TRPM2 channel represents an
attractive therapeutic target. The TRPM2 channel also plays
important roles in a number of physiological processes,
such as insulin release from pancreatic β-cells, regulation
of temperature sensation, and peripheral immune responses,
which may complicate the concept of targeting TRPM2 as a
therapeutic strategy. However, TRPM2 channel expression in
the CNS is selectively up-regulated by diverse pathological
stimuli or diseased conditions. With continual research
into TRPM2 modulation and function in specific cell
types, future developments may focus on pharmacological
agents that can improve the outcome for patients with

CNS diseases while sparing the physiological functions of
the channel. Targeting the TRPM2 channel in microglial
cells, a newly-emerged player in neuroinflammation,
represents an interesting a venue of development of
promising therapeutics.
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