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Synchrophasor-Based Islanding Detection for

Distributed Generation Systems Using Systematic

Principal Component Analysis Approaches
Y. Guo, Student Member, IEEE, K. Li, Senior Member, IEEE, D.M. Laverty, Member, IEEE, and Y.

Xue, Member, IEEE

Abstract—Systematic principal component analysis (PCA)
methods are presented in this paper for reliable islanding detec-
tion for power systems with significant penetration of distributed
generations (DGs), where synchrophasors recorded by Phasor
Measurement Units (PMUs) are used for system monitoring.
Existing islanding detection methods such as Rate-of-change-of-
frequency (ROCOF) and Vector Shift are fast for processing
local information, however with the growth in installed capacity
of DGs, they suffer from several drawbacks. Incumbent genset
islanding detection cannot distinguish a system wide disturbance
from an islanding event, leading to maloperation. The problem
is even more significant when the grid does not have sufficient
inertia to limit frequency divergences in the system fault/stress
due to the high penetration of DGs. To tackle such problems, this
paper introduces PCA methods for islanding detection. Simple
control chart is established for intuitive visualization of the
transients. A Recursive PCA (RPCA) scheme is proposed as a
reliable extension of the PCA method to reduce the false alarms
for time-varying process. To further reduce the computational
burden, the approximate linear dependence condition (ALDC)
errors are calculated to update the associated PCA model. The
proposed PCA and RPCA methods are verified by detecting
abnormal transients occurring in the UK utility network.

Index Terms—ROCOF, Principal Component Analysis, Re-
cursive PCA, Islanding detection, Phasor Measurement Unit,
Synchrophasors, Distributed Generation.

I. INTRODUCTION

RENEWABLE energy sources such as wind and solar

power, have become the fastest growing sources of

electricity in many countries and regions. Some networks

experienced instants of significant level of renewable infeed,

i.e. 50% in Ireland to the gross electricity consumption from

time to time. [1], [2]. Considerable impact has been brought on

the power system planning, stability, operation and protection

[3], of which the unintentional islanding is a key issue to

be addressed and it can be dangerous to utility workers and

equipments.

Conventional generator islanding detection techniques such

as the rate-of-change-of-frequency (ROCOF) [4] method were
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developed when the installed capacity of Distribution Gen-

erations (DG) had a negligible impact on system operation,

thus known deficiencies in the techniques could be discounted.

The threshold for triggering a circuit breaker usually depends

on the strength of an actual power system. Along with the

increasing penetration of DGs, distribution network begin

to present some features which are similar to the transmis-

sion network, such as bi-direction power flow within the

distribution and upstream network, and back-synchronization

after islanding, etc. Therefore, islanding detection for such

a distribution network is no longer just a local issue, and

the conventional methods are providing unreliable results for

power systems with a number of system non-synchronous

penetrations (SNSP) as the system does not have sufficient

inertia to limit frequency divergences in the event of system

fault/stress. This is particularly the case for power grids with

limited geographic scope, such as island of Ireland and island

of Great Britain, the distance between customers and main

grid is not so far away, thus the disturbance caused by

main grid more likely affect the distribution network. Large

frequency transients caused by loss of bulk generation are

causing ROCOF relays to trip as though they are experiencing

a local islanding event, even though the fault is far away across

the system [5].

The last decade has seen a surge of the deployment of

phasor measurement units (PMUs) for wide-area monitoring.

PMU technology was historically limited to transmission sys-

tem applications due to the cost of early devices. However, re-

cent development across the electronics sector has dramatically

reduced the price of PMU components. Consequently, PMUs

have become an attractive tool across the utility, including dis-

tribution systems and embedded generations [6]. [7] proposed

a PMU based method to use frequency and angle difference to

analyse islanding cases occurred in the North American power

grid. The detection ability highly depends on the empirical

thresholds of time and frequency change. Other hybrid or

novel islanding detection methods using intelligent techniques

have also been proposed recently [8], [9]. In our previous

work [1], a prototype detector has been demonstrated to

outperform the incumbent anti-islanding detectors. Further, in

[5], the proposed PMU device has been proved to address the

limitations of the incumbent methods, providing a solution that

is free of nuisance tripping. However, the threshold settings

were also recommended empirically based on data acquired

from the Great Britain and Ireland power systems. Further,
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the choice of a reference signal also has a significant impact

on the validity of the threshold.

Inspired by the statistical way of analysing industrial pro-

cess data, principal component analysis (PCA) based fault

detection methods have been introduced into islanding detec-

tion in power systems [10]–[12]. PCA is able to provide an

effective means to choose multiple reference sites across the

network, which can process the data collected from PMUs

at different locations simultaneously, thus the situation can

be avoided that some reference sites are themselves non-

synchronous. Further, for the PCA method, the detection

thresholds can be automatically calculated based on multiple

references, improving the detection reliability and accuracy.

Our previous work [10] has proved the capability of the

PCA method for automatic anti-islanding detection when it is

applied to the real system PMU data. [11] further demonstrated

the advantages of the PCA methods with the focus on the

geometric interpretation. [13] extended the work using proba-

bilistic PCA in consideration of the missing values in the PMU

measurements. However, the monitoring results using standard

PCA method had a number of false alarms due to the slow

but normal changes that real system is undergoing. In order to

develop more accurate and suitable on-line monitoring scheme

for islanding detection, this paper will develop a recursive

principal component analysis (RPCA) method to update the

training data and the monitoring threshold adaptively. The

proposed method can be potentially applied in the future

power network with higher level of penetrations of DGs,

thus different micro-grids and DGs can be well coordinated

especially when faults occur in the main grid. Moreover, grid

re-connection after the fault inception can be well organized

to prevent further damage. In summary, this paper has mainly

three contributions: 1) the threshold settings can be calculated

and updated adaptively using recursive method; 2) false alarm

rate can be further reduced; and 3) a common wide-area view

of the power network can be provided to all dispatchers.

Therefore, the proposed methods are of significant theoretic

potentials and practical values to improve the reliability and

economic efficiency of distribution networks and power sys-

tems with high penetration of renewable energies and to pro-

tect the customer connected equipment and utility personnel.

This paper is organized as follows. Section II gives an

introduction to the synchrophasor based islanding detection

scheme. Section III briefly reviews the PCA method. Section

IV details the proposed RPCA technique and the systematic

monitoring scheme. Section V gives the event analysis fol-

lowed by experimental results using the proposed PCA meth-

ods, in comparison with the conventional ROCOF method.

Results of ALDC and RPCA monitoring scheme are also

given. Finally, Section VI concludes the paper.

II. SYNCHROPHASOR BASED ISLANDING DETECTION

In the UK, islanding detection is governed by Engineering

Recommendation G59/3 [14]. This standard is concerned with

specifications for conventional methods of islanding protec-

tion, but does make allowance for new forms of protection.

To facilitate research work on islanding detection, Queen’s

University Belfast (QUB) operates an extensive PMU network

across both the island of Ireland and the island of Great

Britain, as shown in Fig.1.

Tealing

Manchester

Southern 

England

Scottish 

Islands

Belfast
Donegal

Fermanagh

Dublin

14 PMUs on Great Britain network

· 7 PMUs on Scottish Islands (Orkeney/

Shetland)

· 5 PMUs in Southern England

· Individual units at Manchester and Tealing.

5 PMUs on Irish network

· 2 PMUs in Queen’s University Belfast

· Individual units at Donegal, Fermanagh 

and Dublin.

Fig. 1. Synchrophasor islanding detection scheme and PMU locations [1]

PMUs of the OpenPMU design [6] are installed at low

voltage (415 V) at distributed generator locations, and at

medium voltage (33 kV), to provide reference synchrophasors

from the bulk system. Synchrophasors, containing estimations

of voltage amplitude, phase and frequency, are communicated

using secure Internet Protocol technologies to a server system

located at QUB. This data is analysed in this paper.

III. INTRODUCTION TO PCA

A. Conventional PCA

The raw data consisting of m variables and n samples,

is stacked into a matrix X ∈ R
n×m. PCA decomposes the

normalized data matrix into a score matrix T ∈ R
n×k and a

loading matrix P ∈ R
m×k (k is the number of retained prin-

cipal components (PCs), k ≤ m) [15]. PCA can decompose

the observation matrix X into the following form:

X = t1pT
1 + t2pT

2 + ...+ tkpT
k + E = TPT + E (1)

where ti are score vectors, pi are the loading vectors and E is

the residual matrix. The important statistic for PCA monitoring

is given by the Hotelling’s T 2, which is the sum of normalized

squared scores defined as [16]:

T 2
i = tiλ

−1tTi = xipλ
−1pT xTi (2)

where ti is the ith row of k score vectors from PCA model,

and λ
−1 is a diagonal matrix containing the k eigenvalues.

The other statistic Q or the squared prediction errors (SPE) is

defined by [17]:

Qi =

m
∑

j=1

(xij − x̂ij)
2 (3)

where xij is the ith measurement value of the jth variable,

while x̂ij is the estimated value. When the process is normal,

this value should be small. Equations for confidence limit of

T 2
α and Qα can be found in [18] and [19]. A geographical

interpretation can better illustrate how PCA works for fault

detection, as shown in Fig. 2 [11]. The ’•’ data represents
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in-control normal operations with two statistics stay in the

confidence range. If some sudden abnormal deviations occur

on system variables, which are caused by, for example, a

mismatch between load and generation, the sum of squares of

the distances from the origin along the principal component

line to the projected data points will be larger than the upper

limit. The aforementioned T 2 statistic is able to detect such

violations, which are represented by ’◦’ in Fig. 2. On the

other hand, a change to the correlation among the variables

will increase the projection on the residual subspace. As a

result, the total variation in the residual space will violate the

confidence limit, which may be caused by the deviation of the

mean value from the target, or one of the process variables

behaves differently from others. To summarize, for islanding

detection, regions in Fig. 2 with data points of ’△’ and ’+’

indicate islanding events.

T2

Q

Tα 2

Islanding events 

detected by T2 and Q

Qα 

Normal operations
Generation trip, loss of load 

events detected only by T2

Islanding events 

detected 

only by Q

Fig. 2. A geometric interpretation for islanding detection using PCA method,
revised from [11].

B. Fault Reconstruction

In the presence of a fault Fi, the estimation x̂i of the sample

vector xi can be represented using a fault direction vector ξi as

x̂i = xi − f̂iξi, where f̂i is an estimate of the fault magnitude

fi which measures the displacement in the direction ξi. Let

ξTi = [1, 0, ..., 0] so that it can represent a failure of the first

process variable in the sample vector xi. The distance between

x̂i and principal subspace is given by the magnitude of the

residual vector ‖x̃i‖
2
, or the SPE of x̂i.

SPEi = ‖x̃i‖
2
=

∥

∥

∥
x̃ − fiξ̃i

∥

∥

∥

2

=
∥

∥

∥
x̃ − f̃iξ̃0i

∥

∥

∥

2

(4)

where f̃i ≡ fi

∥

∥

∥
ξ̃i

∥

∥

∥
, and ξ̃0i = ξ̃i/

∥

∥

∥
ξ̃i

∥

∥

∥
represents the

normalized residual direction for the fault vector ξi.
Minimizing SPEi leads to:

dSPEi

df̃i
= 2ξ̃0i

T
(x̃ − f̃iξ̃0i ) = 0 (5)

or

f̃i = ξ̃0i
T

x̃ = ξ̃0i
T
(I − ppT )x (6)

Therefore, the fault vector can be reconstructed as:

fi =
f̃i

∥

∥

∥
ξ̃i

∥

∥

∥

=
ξ̃0i

T
(I − ppT )x
∥

∥

∥
ξ̃i

∥

∥

∥

(7)

Equation (7) calculates the magnitude of the residual vector. If

no fault occurs, then the reconstructed fault will be zero. On

the other hand, any significant disturbance or fault will produce

a large reconstructed fault value. Thus, this fault construction

value can be used to monitor the fault occurrence over time

for each input variable, and an islanding event will produce a

large reconstructed error according to Equation (7). This will

be illustrated in the experimental section.

IV. THE PROPOSED RPCA ALGORITHM

A. Approximate Linear Dependence Condition

The approximate linear dependence condition (ALDC) [20]

technique is used to update the model with new data samples

which can not be represented by a linear combination of

previously admitted samples. The ALDC is measured by the

approximation error:

δn+1 = min ‖

n
∑

i=1

αixi − xn+1‖
2 (8)

where δn+1 is the approximate error of the new samples, α
is the coefficient. A threshold ν is needed here to choose

the samples, if δn+1 is less than ν, the new samples can

be considered as dependent on the old samples. Further, the

ALDC could be computed as:

δn+1 = min
α

{αT
n+1Knαn+1 − 2αT

n+1nn + kn+1} (9)

where Kn = Xn · XT
n , kn = Xn · xT

n+1, kn+1 = xn+1 · xT
n+1.

In order to minimize δn+1, differentiating it with respect to

αn+1 yields the linear system solution,

αn+1 = K−1
n kn (10)

Substituting Equation (10) into (9), a recursive ALDC is

obtained:

δn+1 = kn+1 − kT
nαn+1 = kn+1 − kT

nK−1
n kn (11)

This above approximate error of the new samples in a recursive

formula can be applied for new sample selection for on-line

updating of the PCA model, thus enables real-time monitoring

and fault detection of the grid.

B. Recursive Update of Correlation Matrix

A significant issue in real-time islanding event detection is

to update the PCA model as new data samples are constantly

accumulated. A key step of this is to recursively update the

correlation matrix when building the PCA model. Let X0
l ∈

R
Nl×m be the first l data blocks received for building an initial

PCA model, and Nl =
∑l

i=1
ni where ni, i = 1, · · · , l is the

number of samples in the ith data block, then the mean of

each column is given by:

ul =
1

Nl

1Nl
X0

l (12)

where 1Nl
= [1, · · · , 1] ∈ R

1×Nl . Then scale the data to zero

mean and unit variance:

Xl = (X0
l − 1TNl

ul)Σ
−1

l (13)
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where Σl = diag(σ11, · · · , σ1m) whose ith element of σim is

the standard deviation of the ith data. The correlation matrix

is

Rl =
1

Nl − 1
XlX

T
l (14)

Suppose ul, Xl and Rl have been calculated using the above

equations when the l blocks of data are collected, the task is

to recursively calculate ul+1, Xl+1, and Rl+1 when the next

data block X0
nl+1

∈ R
nl+1×m is made available. The whole

data samples collected so far can be expressed as:

X0
l+1 =

[

X0
l

X0
nl+1

]

(15)

ul+1 is the mean value of the total Nl +nl+1 samples, which

is related to ul by the following relation:

(
l+1
∑

i=1

ni)ul+1 = (
l

∑

i=1

ni)ul + 1nl+1
X0

nl+1
(16)

(16) yields the following recursive calculation:

ul+1 =
Nl

Nl+1

ul +
1

Nl+1

1nl+1
X0

nl+1
(17)

Using (15) and (17), the recursive update of Xl+1 is given by

Xl+1 =

[

XlΣlΣ
−1

l+1
− 1Tl ∆ul+1Σ

−1

l+1

Xnl+1

]

(18)

Substituting (18) into the correlation matrix Rl+1 yields [21]:

Rl+1 =
Nl − 1

Nl+1 − 1
Σ−1

l+1
ΣlRlΣlΣ

−1

l+1
+

Nl

Nl+1 − 1
Σ−1

l+1

∆ul+1∆uT
l+1Σ

−1

l+1
+

1

Nl+1 − 1
XT

nl+1
Xnl+1

(19)

Hence, the correlation matrix Rl+1 can be updated recursively.

C. Recursive Process Monitoring

With the above elaborated techniques for calculating ALDC

errors and recursively updating the correlation matrix, a com-

plete flowchart for the proposed power system monitoring

approach can be proposed as follows which is illustrated in

Fig. 3.

Off-line training

Step 1 : Obtain initial data samples and scale the data.

Step 2 : Build the PCA model by computing the covariance

matrix and applying PCA to obtain the confidence

limit T 2
α and Qα.

On-line updating and monitoring

Step 3 : Collect new samples and scale them.

Step 4 : Compute T 2 and Q statistics. If Q > Qα or T 2 >
T 2
α, proceed, otherwise, go to step 6.

Step 5 : Fault reconstruction to identify the islanding site

and trigger the fault alarm, process end.

Step 6 : Update the training data by calculating the ALDC

errors to select samples.

Step 7 : Update the PCA model by calculating Rl+1, k, Qα,

T 2
α, set l = l + 1 and go to step 3.

The proposed method is a data-driven statistic approach,

and the proposed procedure is applicable to different power

Obtain initial data samples Obtain new 

samples

Off-line training

On-line updating and monitoring

Yes

Normal process

Trigger the fault alarm 

and output islanding site

Compute PCA model, 

confidence limit T
2
 and Q   

Compute T
2
 and 

Q statistics

No
If Q>Q

T
2
>T

2

 Fault 

reconstruction 

Compute ALDC 

errors

Update PCA model, recursively 

calculate Rl+1,k,T
2
 and Q

Fig. 3. Flowchart of the systematic RPCA Monitoring Algorithm.

systems. When applied to a new system, data collected from

the normal process will first be used as the training data, based

on which the confidence limits T 2
α and Qα will be obtained.

Once this step is completed, the trained PCA model can be ap-

plied for islanding detection. Unlike conventional methods, the

confidence limits are automatically determined using global

information from multiple sites, thus the performance can be

guaranteed. To alleviate the traffic congestion by transmit-

ting all collected measurements to a central monitoring unit,

ALDC algorithm could be implemented at local processing

units (e.g. embedded in PMUs), allowing only the data with

approximation error exceeding the threshold to be sent to the

central unit for updating the PCA model. The on-line PCA

model updating part can be implemented at the central unit

to receive and process key data samples to update the global

model and to perform on-line wide-area system monitoring

and fault detection.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Event Analysis

On 28 September 2012, an inter-connector trip event oc-

curred in the early morning between Great Britain (GB) and

France, leading to a 1 GW infeed loss in GB power system.

As a result, the main system frequency dropped from 50.08 Hz

to 49.70 Hz, which mistakenly trigged an islanding operation

at PMU-2 site (North GB). In the similar case, another trip

event occurred later in that day, which was also followed by

an islanding event. The detailed frequency plots are given in

Fig. 4. As shown, the upper two figures reveal the islanding

events, which lasted for 5 hours in the morning, and 1 hour and

23 minutes in the evening. The lower figures are the close-up

of the two inter-connector trip events. The bottom left sub-

figure shows the frequency trip occurred at 02:48:37 at PMU-

1 site, and the main frequency (red and blue line) reached

its minimum of 49.70 Hz in 10 seconds. The enlarged view

in bottom right clearly shows that a small frequency dip first

occurred in PMU-3 site at 18:17:15, followed by an islanding
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Fig. 4. Frequency plots with two sections of transients and islanding events
(upper two sub-figures) and the enlarged view enclosed by the ellipses (lower
two sub-figures) on 28th Sep. 2012

operation at PMU-2 site, while the main frequency was kept

in normal range.

B. Comparisons of ROCOF and PCA results

The data of the two sections have been processed using

ROCOF with different windows of 5 cycles (0.1 second) and

50 cycles (1 second), the results are shown in Fig. 5 and Fig.

6. The black dashed line presents the pre-determined threshold

of 0.125 Hz/s for the northern GB power grid [22]. Both of
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Fig. 5. ROCOF results of two sections based on 5 cycles.
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Fig. 6. ROCOF results of two sections based on 50 cycles.

the two figures show that ROCOF result of PMU-1 exceeded

the threshold for the first section, indicating the frequency dip

event occurred. However, calculation based on small window

(5 cycles) leads to larger ROCOF values and it is very sensitive

to noise. As seen in Fig.5, many points exceeded the threshold,

causing false alarms. The violation at time instant 02:48:37 in

the first transient comes from PMU-1, and the violations of all

the PMUs only lasted for several seconds. In fact, the islanding

situation which lasted for hours can not be verified from the

result.

For the result based on 50 cycles shown in Fig.6, false

violations has been reduced due to a bigger ROCOF window.

The same time instant of the event can be detected based

on the PMU-1 data. However, all PMUs in the first section

and PMU-2 and PMU-3 in the second section have revealed

a period of violation of the threshold, which show that the

islanding site can not be accurately identified directly from the

ROCOF results. This analysis reveals that the ROCOF method

can detect violations but failed to distinguish the islanding

event from the frequency transient, thus was unable to identify

the islanding site. In summary, the disadvantages of traditional

ROCOF method include: 1) calculation window and sampling

rate of the PMU data affect the ROCOF results, 2) threshold

needs to be determined according to the strength of the real

system, 3) can not distinguish between frequency transients

and islanding events, 4) impossible to identify the islanding

site and 5) fail to detect the duration and return-to-main time

of the islanding event.

Data consisting of 6 PMUs are used for conventional PCA

monitoring. The results are given in Fig. 7, with two statistics

T 2 and Q and the 99% confidence limits. Fig. 7 shows the suc-

02:48:37 02:48:40 02:48:49

10
0

T
2

02:48:37 02:48:40 02:48:49

10
−30

10
−25

Q

Time/Hour

99% confidence limit

99% confidence limit

Fig. 7. Successful PCA monitoring result under 99% confidence limit.

cessful and accurate detection of frequency dip event (enclosed

by the ellipse), and the exceeding values after the inception

point show continuous change in the data variance which

implies the unsynchronization. Further islanding identification

can be carried out by fault reconstruction method. Compare

to traditional ROCOF method, PCA can process the multiple

PMU data as a whole data matrix and respond very quickly

(detailed detection time will be compared with RPCA later),

without considering the strength of the actual power system.

Moreover, the monitoring charts using T 2 and Q statistics do

not need to consider the calculation cycles and sampling rate.

In order to demonstrate the problem of standard PCA

method in detecting faults for time varying processes, another

group of normal data recorded for a much longer period of

time (50 minutes) before the transient occurred were used

to build the PCA model, then the model was applied to the

same testing data. The test results are shown in Fig. 8. The

results reveal a different behaviour of the static PCA model

on the same testing data but trained with different normal

data samples. Although the first peak values (enclosed in the

ellipses) occurred at the same time instant, no correct response
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Fig. 8. Failed PCA monitoring result under 99% confidence limit.

TABLE I
COMPARISON STATISTICS OF DIFFERENT THRESHOLDS

Threshold Number of samples for updating (n) RMSE

0.1*δm 18 37 40 80 70 0.0835

0.3*δm 5 4 27 52 34 0.1430

0.5*δm 3 9 1 24 8 0.2411

0.7*δm 2 1 16 1 1 0.4935

0.9*δm 2 1 16 1 1 0.4935

Threshold Elapsed time for calculating each iteration (second)

0.1*δm 0.1474 0.2175 0.2614 0.4793 0.5519

0.3*δm 0.1475 0.1559 0.1593 0.1901 0.1952

0.5*δm 0.1507 0.1492 0.1806 0.1779 0.2021

0.7*δm 0.1545 0.1551 0.1457 0.1707 0.1731

0.9*δm 0.1509 0.1537 0.1540 0.1553 0.1545

was generated for other samples and all values are above

the limits even before the transient inception time (02:48:37).

This reflects the defect of static PCA model that due to the

time-varying characteristic of power systems, process variables

often experience slow but normal changes, the confidence

limits calculated based on old training data will no longer

be suitable for new data samples. Therefore, it is difficult to

monitor a time-varying system based on a static model. This

is also the motivation of this paper in proposing a recursive

PCA method to keep the PCA model updated in real time.

C. Sample Reduction by ALDC

The first step of the recursive method is to use ALDC

algorithm to check the independence of the new data. The

first 600 samples of the PMU data were divided into six parts,

each of the remaining parts went through an independence

check against the first group. After updating, the size of the

training data is reduced to 187 samples instead of 600 samples,

thus the computational burden is reduced. The selection of

the threshold used in the independence check is a trade-

off between the estimation accuracy and computing time.

Comparisons of the ’Number of samples for updating (n)’,

’Root mean square error (RMSE)’ and the ’Elapsed time (s)’

for calculating each block of data under different thresholds

are shown in Table.1. δm represents the maximum value of the

approximation error. High accuracy is expected (with RMSE

of 0.0835) when the threshold was chosen to be small enough

(10% of the maximum value) as more data were added to the

training sample pool. The statistics are almost the same for

the thresholds of 0.7*δm and 0.9*δm. This is because the data

numbers with relatively higher approximation error is very

limited, thus these large thresholds do not have any significant

impact on the choice of training data. Given this consideration

and also the trade-off of the three aspects listed in Table I,

0.3*δm is chosen as the threshold for acceptable computational

time and small RMSE. It should be noted that the threshold

is obtained by calculating the linear relationship between the

newly arrived samples and existing training samples under

normal operation conditions. This threshold once chosen is

usually fixed and robust for the same bulk power system.

The following experimental section shows that the proposed

RPCA based on-line monitoring scheme with this above

chosen ALDC threshold is capable of detecting the violations

accurately appearing in abnormal PMU data and the islanding

event, regardless of load and DG operating conditions.

D. RPCA Modelling Results

The initial result without model updating is given in Fig.

9, the T 2 and Q statistics demonstrate an obvious trend of

violating the control limits between 500th to 600th samples.

The samples after 600th all exceeded the control limits in both

charts, as shown in the circled area. On contrast, the results

produced from the model updating is given in Fig.10, which

shows that it effectively captured this trend of slow changing

in operation conditions in the model and the number of false

alarms is significantly reduced. Confidence level can even be

switched to 99.5% if higher accuracy is needed. Finally,
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Fig. 9. The monitoring result of PCA for normal PMU data.

the proposed RPCA was verified by monitoring the transients.

With model updating scheme, the detection results of the

inter-connector failure are shown in Fig.11. The calculated T 2

and Q statistics have successfully detected the occurring time

of the inter-connector failure (02:48:37), as enclosed in the

solid ellipse. In addition, an instant of return-to-main situation

has been detected during islanding event by the Q statistic

after 02:48:40 (enclosed in the dashed ellipse), which was

however not detected using conventional PCA. Furthermore,

Fig.12 reveals the successful detection of return-to-main time

(07:43:57) when the islanding event ended and PMU-2 site

returned to the main and was in synchronization with the utility

grid. This situation was however not detected when the RO-

COF method was used. Once an islanding event was detected,
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Fig. 10. The normal data monitoring result of RPCA.
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Fig. 11. The transients monitoring result of RPCA.

another important issue was to identify the islanding site. As

shown in Fig.13, using the fault reconstruction method, PMU-

5 is shown to have a dramatically large fault reconstruction

error which indicates that this variable contributes the most in

the fault reconstruction, and the corresponding site is therefore

the islanding site.

E. Discussion

The proposed RPCA method for islanding detection in-

volves off-line PCA modelling, on-line updating and moni-

toring procedure. The implementation of the proposed method

requires the consideration of the response time, false alarm rate

(FAR) and fault detection ability (FDA). The comparisons of

traditional ROCOF, PCA and RPCA are given in Table II.

In summary, traditional ROCOF method is very easy to

implement and can quickly respond to any violating point.

However, it is not reliable for complex situations and sensitive

to noise and measurement errors. Moreover, ROCOF fails to

identify islanding site and detect the return-to-main time. On

the other hand, PCA methods can process the multivariate

data in a whole matrix thus the FDA could be significantly

increased while FAR is decreased for short term monitoring.

RPCA is designed for time-varying systems by which the time-

varying trend can be captured in time. In addition, ALDC is

used to reduce the training data, this allows the computation

time to be further reduced within 2 seconds to meet the

IEEE standard. In terms of FDA and FAR, RPCA generally

outperform PCA and the traditional ROCOF as demonstrated

in the experimental results. In particular, RPCA can capture

the time-varying characteristic of the normal process, thus high
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Fig. 12. The monitoring result of RPCA for return-to-main detection.
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Fig. 13. Fault reconstruction result for islanding site identification.

accuracy detection results for islanding situation can provide

the operator with more reliable information from the prospect

of wide-area power system monitoring framework. Other non-

islanding events such as load switching, load shedding and

inter-connector trip often cause sudden frequency changes and

deviations. This will lead to violations of the statistics limits

in the PCA and RPCA methods, but such violations normally

will not last for long if no islanding event occurs. This has

been clearly demonstrated in the above experimental section.

VI. CONCLUSION

PCA based methods including both static and recursive

approach have been proposed in this paper to adaptively

monitor transient situations in power systems with significant

penetration of renewable energies and a number of distribution

networks, while the system do not have sufficient inertia to

limit frequency divergences in the event of system fault/stress.

Comparisons of ROCOF with PCA and RPCA monitoring re-

sults have demonstrated the efficacy of the proposed methods.

Traditional methods such as ROCOF is not reliable for time-

varying process and is sensitive to noise. More importantly,

the identification of islanding site is not possible for ROCOF

method due to the lack of analysis between process variables.

PCA based methods have thus been applied to wide-area

monitoring system at the distribution level. Accurate event

occurring time could be pinpointed by T 2 and Q statistics,

and the islanding site could be identified through the fault

reconstruction method. The advantages of the proposed PCA

methods in comparison with traditional islanding approaches

include: 1) effective and fast on-line monitoring, 2) avoid the

situation that reference site itself is non-synchronous, and 3)

extend the functionality of PMU devices and provide a useful
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TABLE II
COMPARISONS OF ROCOF, PCA AND RPCA

ROCOF PCA RPCA

Response time

/seconds (off-line)

3 PMUs 0.004686 0.1866 0.4573

6 PMUs 0.004686 0.1880 0.4903

Response time

/seconds (on-line)

3 PMUs 0.000022 0.0038 0.0256

6 PMUs 0.000023 0.0044 0.0312

False alarm rate
5 cycles 5.6% Short-term 0%

0.1%
50 cycles 1.7% Long-term 12.4%

Fault detection ability
5 cycles 12.97% Short-term 100%

100%
50 cycles 14.62% Long-term 100%

Advantages
1. Fast response.

2. Easy to implement.

1. Fast online response.

2. Theoretically calculated threshold.

3. Intuitive control charts.

1. High accuracy for both short

and long term monitoring.

2. Simpler presentation with T 2.

Disadvantages

1. Not reliable for time-varying system.

2. Difficult to determine the empirical threshold.

3. Impossible to identify islanding site.

1. Not suitable for time-varying

system and long-term monitoring.

2. High false alarm rate.

1. Complex off-training procedure.

2. Slower response than

traditional method.

method for more intelligent information system in the future

grid.

To handle the time-varying situations, the PCA method

has been extended to RPCA for islanding detection. The

experimental results with and without updating training data

have shown the capability of RPCA in capturing the time-

varying characteristic of the power system. In order to reduce

the computation time, ALDC is used, thus only data containing

useful and different information is added to the training data.

Although, RPCA based monitoring has a slower response than

ROCOF and PCA, the merits of excellent fault detection ability

and nearly zero false alarm rate will help engineers to identify

the faults in time, and a common wide-area view of the power

system and early warning of the network abnormality can also

be provided. Therefore, the risk of damaging utility plants and

customer connected equipments due to unintentional islanding

events can be greatly reduced.
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