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13 Abstract

14 In this work we study the environmental and operational factors that influence airborne trans-
12 mission of nosocomial infections. We link a deterministic zonal ventilation model for the airborne
19 distribution of infectious material in a hospital ward, with a Markovian multi-compartment SIS model
18 for the infection of individuals within this ward, in order to conduct a parametric study on ventilation
19 rates and their effect on the epidemic dynamics. Our stochastic model includes arrival and discharge
20 of patients, as well as the detection of the outbreak by screening events or due to symptoms being
2ib shown by infective patients. For each ventilation setting, we measure the infectious potential of a
23 nosocomial outbreak in the hospital ward by means of a summary statistic: the number of infections
23 occurred within the hospital ward until end or declaration of the outbreak. We analytically compute
;% the distribution of this summary statistic, and carry out local and global sensitivity analysis in order
% to identify the particular characteristics of each ventilation regime with the largest impact on the epi-
oy demic spread. Our results show that ward ventilation can have a significant impact on the infection
28 spread, especially under slow detection scenarios or in over-occupied wards, and that decreasing the
20 infection risk for the whole hospital ward might increase the risk in specific areas of the health-care
30 facility. Moreover, the location of the initial infective individual and the protocol in place for outbreak
22% declaration both form an interplay with ventilation of the ward.

22

:% Keywords: nosocomial infections, airborne spread, SIS stochastic model, outbreak detection, sum-
3% mary statistic

36

37 .

38 1 Introduction

39

4Q The risk of acquiring nosocomial infections is a recognised problem in health-care facilities
4l worldwide. While the transmission routes for some diseases are well documented, the precise
;% mode of transmission is uncertain for many infections, particularly for those pathogens that
o) cause health-care acquired infections (HCAI). Although it is probable that the majority of
45 transmission occurs via contact routes,?® there is increasing recognition that the air plays an
49 important role in disease spread.!® Understanding the role that ventilation airflow plays in the
4 dispersion of infectious microorganisms is tantamount to assessing exposure to pathogens and
:g hence infection risk. This study aims to provide an analytical link between airborne hospital
59 infection spread, ventilation design and outbreak management.

53 Ventilation has been found to have a significant impact on the distribution of infectious
5% material in hospital settings. Examples include Influenza A (e.g. H5N1 and H7N9)2 M.
3 tuberculosis,® measles’ and norovirus.?® One of the most infamous examples occurred in 2003
gsg during the severe acute respiratory syndrome (SARS) outbreak in Hong Kong. Analysis of
58 airflow patterns and outbreak data demonstrated that ventilation routes were critical in the
5% short- and long-range spread of aerosolised coronavirus.'* Ventilation is recognised as an
58 important infection control approach in health-care design, with strategies such as mechanical
24% ventilation and pressure zoning set out in international! and national guidance.*
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Evaluating the influence of ventilation on infection risk typically applies models such as the
Wells-Riley equation?® or a dose-response approach?® to estimate the influence of ventilation
on the number of new cases of an infection. Liao et al.!% presented a probabilistic transmission
dynamic model to assess indoor airborne infection risks and Ko et al.!?!3 developed models for
Tuberculosis spread including incorporating a zonal ventilation model. A number of authors
have also looked at control strategies including Wein et al.?? who modelled infection control
measures for pandemic influenza, Brienen et al.,> where authors analyse the effect of mask
use on the spread of influenza, and King et al.!! who developed a stochastic model to link
airborne and contact transmission. It is also worth mentioning the recent work by Carruthers
et al.,> where a zonal ventilation model similar to the one considered in this paper is linked to
a dose-response approach to estimate the risk of infection after an accidental release of bacteria
Francisella tularensis in a microbiology laboratory.

While these studies enable some understanding of the influence of the environment on
transmission, they do not consider relationships between ventilation parameters and the pro-
gression and control of an infection outbreak. In an earlier study it was demonstrated that
the Wells-Riley model could be coupled to an ST epidemic model to relate ventilation rate
and transmission in a fully-mixed environment.'® In later work a zonal air distribution and a
stochastic formulation®® was considered, and cost-benefits of ventilation from an energy and
infection risk perspective were explored.?!

The model presented in this paper is constructed on a scenario defined in previous work,?
where the role played by the airflow during a nosocomial outbreak is assessed by linking a
deterministic zonal ventilation model with an ST stochastic epidemic model using a compu-
tational approach. While the previous approach enabled exploration of the basic interaction
between the ventilation and the outbreak, there are a number of limitations:

e The epidemic dynamics are represented through a simple ST epidemic model, not account-
ing for relevant factors such as the discharge and admission of patients, or the detection
and declaration of the outbreak.

e Results reported in?® have high variability, which is related to the fact that they were
obtained by means of stochastic simulations of the epidemic process.

e The large number of parameters associated with each ventilation scenario makes it dif-
ficult to identify, from stochastic simulations, the specific factors of the ventilation air
distribution that facilitate or mitigate epidemic spread.

We refer the reader to!® where the limitations of analysing this type of epidemic processes by
simulation are discussed in more detail, and where the benefits of following exact analytical
approaches instead are highlighted.

Our aim here is to show how this zonal ventilation model can be linked to more complex
stochastic epidemic models for the spread of nosocomial pathogens, while accounting for pa-
tients admission and discharge, and different outbreak detection and declaration hypotheses.
We show how to implement exact analytical procedures for computing summary statistics of
the outbreak (statistics measuring outbreak infectiousness), which by means of a perturba-
tion analysis enables identification of specific characteristics of the ventilation setting that are
crucial for the spread or control of the infection.

Finally, we carry out a comprehensive numerical study of six ventilation strategies for an
hypothetical hospital ward in order to identify particular ventilation characteristics that may
promote or inhibit spread of airborne nosocomial infections. Our results explore the interplay
between ward ventilation, location of patients, ward over-occupancy and outbreak detection
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management.

2 The model

In Noakes et al.?’ a stochastic model is proposed that links a zonal ventilation model with

epidemic dynamics by means of an SI model for the infection spread among individuals in a
hospital setting. The combined model can be thought of as an adaptation of the Wells-Riley

model,?*26 where each susceptible individual is infected with a per capita rate
I
N = ﬂ)
Q@

that is proportional to the number I of infective individuals. Here () is the room ventilation
rate (m3s™'), p is the pulmonary ventilation (breathing) rate (m3s~') and ¢ is the unit of
infection (quantum) as described in Riley et al.?® In a standard ST stochastic epidemic model,
where individuals are either susceptible or infective, individuals do not recover. This can be
expressed in terms of a continuous-time Markov chain (CTMC) {S(¢) : ¢t > 0} where the
random variable S(t) represents the number of susceptible individuals at time ¢, and the aim is
to compute transient probabilities ps(t) = P(S(t) = S), for any S € @ = {0,1,..., N} where
N is the number of individuals in the population. These probabilities satisfy the Kolmogorov
differential equations

dps(t)
dt
Inter-event times are assumed to be exponentially distributed and the stochastic process is

simulated using the Gillespie algorithm.” In particular, this algorithm generates samples of the
inter-event times by using the fact that

—ASps(t) + A(S + D)psa(t), Se

In(U)
AS

and then updates the state of the system according to the probabilities of each possible event
occurring.

U~U®0,1) = T=-—

~ Exp(\S), (1)

2.1 A zonal ventilation model for linking airflow dynamics and in-
fection rates

In Noakes et al.?? this Wells-Riley process is adapted to investigate ventilation scenarios in an
hypothetical hospital ward split in M wventilation zones. The air is assumed to be uniformly
mixed within each zone, however, there is incomplete mixing between the zones and unbalanced
zone boundaries allow for the effect of directional flow to be examined. In particular the per
capita infection rate A\, for susceptible individuals at zone k is defined as A\, = p,C}, where
Cy is the concentration of infectious material at zone k, and p, is the pulmonary rate of
these individuals. We note that this concentration could depend on the amount of infected
individuals, i;, in every zone 1 < j < M, due to airflow. In Noakes et al.?*® the spatial
distribution of infectious material is represented through the differential equation

dc, .
de—tk = qrir — QokC — ZBijk + Zﬁjijv l<k=<M, (2)
J J

3
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where V}, is the volume of zone k, gy is the generation rate of infectious quanta, ), ; represents
the extract ventilation rate in zone k, and ; BrjCr and > ; BjrC; amount to the volume flow
of air between zones k and j. Moreover, each inter-zonal flow rate (3;; represents the sum of
two contributions

Br; = Bo + Baokj

where f is a global mixing rate and Bqy; is an additional contribution representing net flow
across the k/j zonal boundary, from zone k to zone j.

Eq. (2) leads to a ventilation matriz that characterises the ventilation air distribution under
study,

Qo1+ Pk — o1 oo —Bu-1p —Ban
k
— P12 Qo2+ Bor .. —PBu-12 —Bar2
k
vV = —B13 — 323 oo —Bu-g —Burs
—BlM _BQM .- _ﬁM‘—l,M QoM +'Z Bk
k

representing ventilation in a hospital ward divided into M ventilation zones.
By assuming steady-state conditions for airflow, and taking into account Eq. (2), authors

then propose in?” to link infection rates \;, j € {1,..., M}, with the ventilation matrix V as
follows:
A .
: Z;z;
P2 = Vv! _ : (3)
pPmMm QMZM
This means that per capita infection rates {A,..., Ay} for susceptible individuals at zones
{1,..., M} depend on how many infective individuals (i1, ...,4s) there are at any zone at any

given time, computed in an specialised manner (Eq. (3)) that takes into account the ventilation
distribution through matrix V. Once this procedure for computing infection rates is proposed,
stochastic simulations for the ST epidemic dynamics are carried out in?® by following steps (i)-
(iv),%° which assume exponentially distributed inter-event times and make use of the property
depicted in Eq. (1).

We note here that Eq. (3) means considering per capita infection rates at each zone
1 < j < M as functions A;(iy,...,iy) of the number of infectives (i1, ...,4)) within each
ventilation zone at the hospital ward. In subsection 2.2, we now go on to exploit this, to link
the zonal ventilation model with a multi-compartment SIS model with detection, to evaluate
the infection spread dynamics within the hospital ward until detection of the outbreak. Instead
of carrying out stochastic simulations, we present an exact approach for analysing a summary
statistic of the outbreak: the total number of infections occurring until the outbreak ends or is
detected and declared. This exact approach does not only allow us to compute this quantity
of interest, but it also allows one to carry out a sensitivity analysis on the model parameters,
so that the impact that different characteristics of the ventilation setting has on this summary
statistic can be evaluated.
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;6 2.2 A multi-compartment SIS stochastic model for the infection
347 spread dynamics

Qs At the epidemic level, we assume that patients at each zone ¢ are discharged at rate ;, so that
g“g ;1 amounts to the average length-of-stay (LOS) of patients at zone 4. Discharges are immedi-
&0 ately replaced by new admitted patients; a reasonable approximation for hospital wards under
10 high demand.??3% Moreover, we consider that the nosocomial outbreak will go undetected by
15 health-care workers for some time, and incorporate this fact into our model by considering that
12 each infected individual at zone i can be discovered/detected at some rate ¢;. The reciprocal
%521 6; ' represents the average time until some symptoms arise which alert health-care workers
3% to a patient’s infection, or the average time until the infected individual is detected through
1% screening policies put in place at this hospital ward. Figure 1 represents the epidemic dynamics
15 for an individual at zone .

18

19

20

21 Yi 5

22 = 2

2 N @—+ DETECTED

;g Az(f1s v 5tm)

26

27

,g Flgure 1: Individual epidemic dynamics for a patient at zone i. Event I; — S; represents the discharge of
29 the infective patient at zone i, immediately replaced by a susceptible one.

30

25;3 This leads to a multi-compartment SIS epidemic model, that can be described as a CTMC
3y X ={(L(t),...,Inm(t)) : t > 0}, where I;(t) represents the number of infective individuals at
3% zone j at time ¢ > 0, defined over the space of states S = {(i1,42,...,inm) : i; € {0,...,N;}, j €
35 {1,...,M}} U{A} = CU{A}. N; is the total number of patients at zone j, leading to
geg N = Z]Nil N; patients in the hospital ward. State A represents that the nosocomial outbreak

1% has been detected and declared by health-care workers by the first detection of an infected
patient in the hospital ward. We note that absorbing state (0, ...,0) represents the end of the

39

40 outbreak (lack of infective individuals), due to patients discharge (that is, if all the patients

4b infected by the pathogen are discharged before the outbreak is actually detected). We consider

% A also as an absorbing state in this process, since we are only interested in the dynamics of the

i% process until the end or declaration of the outbreak, and the transitions (obtained from diagram

a9 in Figure 1) described in Table 1. We note that, according to our comments in subsection 2.1,

46 Aj(i1, ... ip) is a function of the state (iy,..., 45 ), representing the per capita infection rate

44 of susceptible individuals at zone j when we have (iy,...,7ys) infective individuals within the

3#2 ward, computed from Eq. (3) for each (i,...,iy) € C.

50

51

o 3 Methodology

53

58 Our interest is in analysing the infectious potential of an outbreak in a given hospital ward,

55 for different ventilation configurations and outbreak detection hypotheses. We measure the
infectious potential in terms of the following discrete random variable:

2R infecti tential in t f the following discret d iabl

57

22 R = “number of infections occurred until the end or declaration of the outbreak”,

60
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Table 1: Transitions or events occurring in the stochastic process X', and corresponding rates

Event Stochastic transition Rate
Infection of a patient at zone j (01 ey tjyeeying) = (i1, oty + 1,00 00in) Aj(in, -y ia) (NG —45)
Discharge of an infective patient at zone j  (i1,...,45,...,9n) = (41,...,% — L,...,im) Y55
M
Detection of the outbreak (i1,...,0p) = A ]; ;4

which can take values in {0,1,2,...}. R is used here as a measure of how well ventilation can
act as a preventive infection control strategy, which is in place even before the actual detection
of the outbreak by health-care workers occurs, and reactive strategies can be implemented.

3.1 Analysing R
For an initial state (i1,...,iy) € C, our aim is to compute probabilities

p(ihi%“w)(n) = ]P(R =N \ (11(0), IQ(O), Ce ,IM(O)) = (il,i27 e ,iM)),

for n > 0; that is, the probability distribution of R for some initial state (i, ...,iy). We can
compute these probabilities from a system of linear equations, which is obtained by a first-step
argument. In particular, by proposing notation

i = (i1, i),
(s) = (irseerig+ 1, in),
7(s) = (i1, vig—1,... in),

we get

pi(0)> (NG)(N; —i5) + (5 +6,)i;) = (Veikpi- ) (0) + Oxi) (4)

-

(ikpi- ey (1) + Ae(Q) (Ni, — i )pie ey (n — 1))

(5)
forn > 1 and any (i1, ...,4y) € C, and with boundary conditions p(,..0)(0) = 1, p(o,,...0)(n) =
0 for all n > 1; a detailed explanation on how Eqs. (4)-(5) are obtained is in the Appendix.
This means that probabilities for n = 0 (Eq. (4)) can be computed by solving a system of

pi(n) > (N )Ny —i5) + (5 +65)i5) =

M1
NERANE

B

Il
—
£

Il
—

M
#C = J[Vi+1) (6)
i=1
linear equations®. Once these are in hand, probabilities for n > 1 can be computed by solving
the system of linear equations given by Eq. (5), which also consists of #C equations.
Algorithm 1 in the Appendix computes probabilities p(;,, . i,,)(n) for any (i1,... i) € C,
n > 0. It works sequentially, computing probabilities pg, . ;. (n) for iy +is+--- 4y = I for
increasing values of n =0,1,2,... and [ =1,2,3,..., N.

*#C represents the number of elements (states) in C
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3.2 Local sensitivity analysis

Our analysis allows one to identify the most important characteristics of the ventilation sce-
nario, regarding the infectious potential of the outbreak until detection, by means of com-
puting partial derivatives of the form OFE[R]/00 with respect to ventilation parameters 6 €
{Bo} U{Bqij: 4,5 €{1,...,M}}U{Q,;: i € {l,...,M}}. We note that, for an initial state

(i1,...,im) €C, E[R] = : 0 "D (ir,....in) (M), O that
aE[R] = ap(ih-u,iM)(n)
3 -2 e (7)
n=0

Partial derivatives 2 can be computed from direct differentiation of Eqs. (4)-(5).
In Egs. (4)-(5), the only quantities that depend on parameter § € {fy} U {fBgi; : 1,5 €
{1,....M}}U{Q,; : i€ {1,...,M}} are infection rates \;(i1,...,ipn), and probabilities
Din,...ing) (). Thus we get

M M M
(i -\ 9pi(0) - Opi- ) (0)
Z 8]9 5)pi(0) + Z A1) —ij) + (v +65)i; 00 ZW%T’
j=1 7=1 k=1
M M M
8>\3(i -\ 9pi(n) - Opi-y (1)
> %9 pi(n) + ()\a —ij)+(y + 5j)2j) 0 > ik =5
j=1 j=1 k=1
oA, (1 . . _.Ops n—1
+ ;(9< )(Nk a zk)pi+(k)(n — 1) -+ )\k(l)(Nk — Zk)%) s
for n > 1, and any (iy,...,iy) € C. Partial derivatives %};m(”) can then be computed from

equations above by following similar arguments than in Algorithm 1 in the Appendix. In order
to solve these equations, one needs to have in hand values of p;, . ; M)(n) (previously computed

from Algorithm 1), as well as derivatives 8’\(”8% These derivatives can be straightforwardly
obtained from Eq. (3) as

L . 3}\1(1:1,‘..,i]\4) .

P1 a0 q1?1

L . 8)\2(1‘1,...,1‘M) Z

P2 o0 _ _Vflv(e)vfl q% 2 ’

1 8/\1\/;(1'1,---7@1) 1

M 00 amtM

where V(@ represents the element-by-element partial derivative of matrix V with respect pa-
rameter 0.8

3.3 Spread until the D" individual detection

As outlined above, declaration of the outbreak is identified with the first detection of an in-
fective patient, where each patient is detected at zone j at rate d;. If detection of an infective
patient occurs because this patient shows symptoms, outbreak declaration might require sev-
eral (D > 1) patients showing some common symptoms, since for some nosocomial pathogens
associated symptoms are quite common and pass unnoticed.® For example, norovirus causes
gastrointestinal symptoms such as nausea, vomiting, or diarrhoea that are common to many

7
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diseases and conditions. The national guidelines on the management of outbreaks of norovirus
infection in health-care settings,'® issued by the National Disease Surveillance Centre in Ire-
land, requires for D = 2 patients to show these symptoms in a hospital ward for a potential
norovirus outbreak declaration. Once the outbreak has been declared, control strategies such
as immediate cleaning and decontamination, frequent handwashing, or cohorting of affected
patients are recommended.

Thus, our interest in this subsection is to analyse the summary statistic R when the detection
of the outbreak requires for D patients to show symptoms, for some value D > 1, and results
in the subsections above can be seen as the particular case D = 1. We define the augmented
process X = {(I,(t),...,Ip(t),D(t)) : t > 0} where the increasing variable D(¢) amounts
to the number of detected patients up to time t > 0. We consider that the outbreak is declared
once D(t) = D, and the space of states of this CTMC is given by

S = {(il,’ig,...,iM,d>I ijG{O,...,Nj}, jE{l,...,M}, OSdSD—l}U{A}

Thus, §% = C* U A, with state A representing outbreak declaration (i.e., the detection of
the D infected patient). Events occurring in this process, at different rates, are described in
Table 2.

Table 2: Transitions or events occurring in the stochastic process X**9, and corresponding rates

Event Stochastic transition Rate

Infection of a patient at zone j (P1, sty i, d) = (1, .. .,0 + 1,00 iy, d) Aj(i1, .t ) (N — i)
Discharge of an infective patient (i1,...,%,...,im,d) = (é1,...,% — 1,...,ip, d) vit4

at zone j

M
Detection of an infective patient  (i1,...,in,d) = (i1,...,im,d+1),0<d <D -2 > §;i;
=1

M
Outbreak declaration (i1,...,ip, D—1) = A > 054
j=1

Our arguments in subsections above can be adapted for process X**9. For example, Eqgs.
(4)-(5) become

M=
NE

Pivsing,d)(0) Y (Njlin, oy ipg) (N —45) + (5 + 05)i5) = (VetkD(ir, g —1,..nsingt) (0)

<
Il
—
i
—_

+0kik(La=p—1 + lacp-1P1,...in1.a+1)(0)))

M M
Pliroeine () D (Ni(in, i) (N; = i) + (35 + 6)i;) Z VRERD i i Loeoniing ) (70)
=1

FXi (i1, - i) (Nk = ) Dy i 41,innd) (M — 1) + 5ka1d<D71p(i1,...,z’M,d+1)(n)) , n=>1,

<.
Il
—_

for any (i1,...,in,d) € C*, and with boundary conditions p(,..0,4)(0) = pa(0) = 1, and
P(0,0,..04)(n) =pa(n) =0foralln > 1and 0 < d < D —1. 14 represents a function that takes
value 1 if A is satisfied, and 0 otherwise. An adapted version of Algorithm 1, not reported here
for the sake of brevity, allows for an efficient solution of this system.
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> 4 Results

4

533 We consider here the hypothetical hospital ward in Figure 2 in,?° and ventilation settings

6, according to Table 1 in.2® This hypothetical hospital ward consists of three six-bedded bays

gss connected through a corridor. Each bay is split into two ventilation zones, and each ventilation

& zone contains three patients. The corridor is split into three ventilation zones and in the first

19 instance has no patients, so that the ward has N = 18 patients. Ventilation rate over the whole

1 ward was 27 m3 - min~! which equated to an air change rate of 3 AC' - h~!. Diagrams of the

12 ventilation flows and specific rates within and between each zone for each setting are given in

,1'% Figure 2. Moreover, we set p; = 0.01 m3 - min~! and ¢; = 0.5 quanta - min~* for all patients

1% at all zones and for every ventilation scenario,?® and assume an average length-of-stay (LOS)

16 for each patient v, * = 7 days.

17 If we order the M = 9 ventilation zones as

18

;g la<1b<cl <2a=<2b<¢2<3a<3b<c3,

% the ventilation matrix is given by

;i Qo1a + ; Bia,k —Bib1a oo —B3bia —Be3.1a

;Z —B1a,1b Qo + ; Bk - —DBabb —Bes b

;; vV = _Bla,cl —51b,c1 ce _ﬂ3b,cl —5c3,c1

29 : : : :

;? —Pl1a,c3 —Pib,c3 v —Pabes Qoes+ ; Bes i

32

33 and ventilation settings in Table 1 in?° lead to the ventilation matrices reported in Figure 2.

34 In subsections 4.1-4.3 and 4.6, we consider that outbreak declaration occurs after one patient

%426 shows symptoms, with each patient showing symptoms after an average time 6! (i.e., 6; = ¢

3 for all 1 < j < M). Alternative outbreak detection and declaration hypotheses are discussed

38 in subsections 4.4-4.5, while the impact of parameter ¢ in our numerical results is explored in

38 subsection 4.7.

40

41

42 4.1 Impact of ventilation setting on spread dynamics

3; In Figure 3 we plot the probability mass function of R versus different values of the global

45 mixing rate fy, the average time d~1 at which each infective patient shows symptoms, and for

49 ventilation scenarios A — F. For these results, it is assumed that an infective patient at zone

?‘sé la starts the outbreak, and we report in Table 3 the mean values F[R] computed for these

55 distributions.

50

; Table 3: Mean number E[R] of infections until end or declaration of the outbreak, for scenarios in Figure
3

gz B 16 'TA [B [C |D [E |F

55 9 | 12h | 1.75 | 1.54 | 1.24 | 1.75 | 1.74 | 1.50

56 48h | 5.01 | 4.34 | 3.87 | 5.20 | 4.86 | 4.50

57 27 | 12h | 1.88 | 1.76 | 1.61 | 1.86 | 1.87 | 1.77

gg 48h | 5.59 | 5.25 | 5.03 | 5.59 | 5.53 | 5.37

60
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Figure 2: Diagrams of the ventilation settings considered, and corresponding ventilation matrices V (for

Bo =9 m3-min~'). Grey arrows: ventilation between zones (8;; -m
supply and extract to the ward; Circled values: extract ventilation rates (Q,; -m

10

3

3 min~1-)

-min~'-); Black arrows: ventilation



Page 13 of 26 Risk Analysis

oNOTULL b WN =

o}

SEZLBEREBRIEELEIRERED

Bo=9 Bo = 27
0.5 — T T T T 0.5 T T T
OmN A oW A
12h B B N B
0.4 I C |- 0.4 N C |
@I D @ D
p— @ E Ol E
£ 03 N F N F
|
Q: 0.2
S
=8
01
0 Jlan . = EE = fiis L
4] 5 10 15 20 10 15 20
n n
0.5 T T T r 0.5 T
- A omm A
48h . 5 mm B
0.4 I C | 0af *HE C |/
@ D @ D
— I E f;‘\ I E
2 ek [ I R S e F |
| Il
20 0 5 10 15 20

n

Figure 3: Probability mass function of the number R of infections until the end or detection of the
outbreak, for ventilation settings A — F'. Declaration of the outbreak occurs once one patient shows
symptoms, and each infective patient shows symptoms after an average time 61 € {12h,48h}. Global
mixing rate By € {9,27} m® - min~!'. Initial infective located at zone la. Red stars identify the best
ventilation settings in terms of E[R], while black circles identify the worst ones; see Table 3

Ventilation setting C can be identified in Figure 3 and Table 3 as the best one, while settings
A, D and E are identified as the worst ones depending on the detection parameter 6 and the
global mixing rate 5. We note that ventilation setting C has significant extract ventilation
at the initially infected zone la, so that the airflow is directed from la outwards the hospital
ward. On the other hand, ventilation setting D represents a well-mixed ward (8gix = 0 for all
i and k) and no extract ventilation at zone 1b (Q,1, = 0), which might favor the spread of
pathogens from la towards other zones within the ward, leading to more infections occurring
until outbreak detection.

In general terms, worse scenarios can be identified for values =! = 48h and By = 27m? -
min~!, where the long-tailed distribution of R for these scenarios in Figure 3 indicates that
large outbreaks occur with significant probability. Larger differences among ventilation settings
are also found for value 6! = 48h. Thus, our results suggest that ventilation of the ward should

11
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;s be of special concern for pathogens that have longer infectious asymptomatic periods, or in
450 hospital wards with more limited surveillance policies. It is also clear that the average individual
30 detection time 6! has a higher impact on the infection spread than the specific ventilation
?71 setting in the ward, so that outbreak detection seems to dominate ventilation regarding infection
g7 spread.

9

%7(1)3 4.2 Dependence on location of initial infective

%é In Figure 4 we plot analogous results to those in Figure 3 when the infective patient start-
T ing the outbreak is located at zones {la,1b,2a,2b}, for 6! = 12h and By = 9 m> - min~".
1% Corresponding mean values E[R] are reported in Table 4. We note that zones 3a and 3b are
16 equivalent to zones la and 1b, for all ventilation settings in Figure 2, and thus we do not test
14 them. For zones near the corridor (i.e., 1b and 2b), ventilation setting B is identified as the best
%78 one, while D is identified as the worst one. We note that ventilation setting B has no extract
33 ventilation at zones 1b and 2b (Qo1p = Qo2s = 0), but it directs the airflow instead towards
» corridor areas. In this setting B, corridor areas have no patients and significant ventilation,
22 with airflow unbalance from bays to corridor areas acting in practice as an infection control
% measure. Thus, our results suggest that the spread control ability of a given ventilation setting
%% depends on the location of the patient starting the outbreak as well as the airflow direction.
35 However, from results in Figure 4 and Table 4, ventilation setting D seems to perform poorly
2 regardless of the initial infective location, suggesting that some ventilation settings might be
28 inadvisable regardless of this location (i.e., if this location is unknown).

29

30

31 Table 4: Mean values E[R] for distributions in Figure 4; that is, for different locations of the initial infective
32 Location | A B C D E F

i la 175 | 154 | 1.24 | 1.75 | 1.75 | 1.50

35 1b 1.74 1 1.28 | 1.57 | 1.93 | 1.50 | 1.73

36 2a 1.79 | 1.57 | 1.27 | 1.79 | 1.78 | 1.54

;; 2b 1.78 1 1.32 | 1.62 | 1.98 | 1.54 | 1.78

39

2% When focusing on a particular location for the initial infective, comments above are sup-
4 ported by the sensitivity analysis on the ventilation parameters. For example, in Tables 5-
% 6 we report, for ventilation parameters 6 € {So, Qo1a,- - - Qocss Bo1a1bs - - - » Boes s}, partial
43 derivatives OF[R]/00 and elasticities (OE[R]/00) - (6/E[R]) for ventilation settings B and D,
g% 071 = 12h, By = 9 m® - min~! and an infective patient starting the outbreak at zone 1b. We
2% note that while dimensionless elasticities are useful for comparison purposes, they equal zero

if parameter 6 is zero.

Regime B requires airflow towards the corridor in order to expel pathogens from zone 10,
since Qo1p = 0. Thus, rates Boipc1, Qoet, Qo2 and @, 3 correspond to significantly large
negative elasticities reported in Table 5 (i.e., increasing the values of these rates would lead
to decreasing values of E[R]). Global mixing rate f, has a significant impact (large positive
elasticity) favoring disease spread, since increasing the value of By represents increasing the rate
at which pathogens flow among all zones, instead of flowing specifically towards the extract
ventilation areas (corridors in this setting).

According to results in Table 6, ventilation setting D could be significantly improved by
increasing extract ventilation (especially at zones la, 1b and cl), as well as increasing airflow
from 1b to la and to cl. This is directly related to the fact that, since there is no extract

SEBEISNE Y 8 BSEH &
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Figure 4: Probability mass function of the number R of infections until the end or detection of the outbreak,
for ventilation settings A — F. Declaration of the outbreak occurs once one patient shows symptoms, and
each infective patient shows symptoms after an average time 6~ = 12h. Initial infective located at zones
{1a, 1b, 2a, 2b}. Global mixing rate By = 9 m3 - min~!

ventilation at zone 1b, infectious material in this zone can only be expelled by directing it
towards adjacent zones la and cl.

4.3 Decreasing hospital ward infection spread risk might increase
risk at specific bays

It is clear that the number, R, of infections occurring until the end or detection of the outbreak
can be split according to where these infections actually occur as

R = R(1)+R(2) + R(3):

where R(j) is the number of infections occurring at bay j. Although probabilities P(R(j) = n)
can be analytically computed by adapting arguments in Section 3, details are omitted here for

13
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Table 5: Partial derivatives and elasticities of F[R] with respect to ventilation parameters, for setting
B. Average individual detection time 6! =
infective patient starting the outbreak at zone 1b

12h, global mixing rate 3y = 9 m3 - min~

1

, and an initially

Partial Derivatives Elasticities

Bo 0.0230 | Bgape2 | —0.0141 | Q15 | —0.0890 Bo 0.2899 | Boape2 | —0.1042 | Qo 1p 0
Boiaip | —0.0201 | Bgeoy | 0.0243 | Qo1 | —0.0398 | Boia,1p | —0.1483 | Boe2.2n 0| Qoc1 | —0.2876
Ble,la 0.0207 /BQC2,C3 0.0019 Qo,Qa —0.0209 /Ble,la 0 ﬁQC2,C3 0 Qo,Qa 0
Ble,cl —0.0382 5@03,02 —0.0008 Qo,Qb —0.0274 ﬁle,cl —0.2735 ﬁQc3,c2 0 Qo,Zb 0
Boet, b 0.0301 | Bg3sasy | —0.0032 | Qo2 | —0.0221 | Boer,1p 0 | Bgsazy | —0.0240 | Qo2 | —0.1615
/BQCI,CQ 0.0097 BQ3b,3a 0.0060 Qo,?)a —0.0120 /BQCLQ 0 BQBb,Sa 0 Qo,Sa 0
Boez,er | —0.0041 | Bospes | —0.0081 | Qp3p | —0.0159 | Boe.c1 0| Bosbez | —0.0601 | Q,3p 0
Bg2a,2e | —0.0056 | Boe3 3p 0.0141 | Qo3 | —0.0132 | Bpag,2p | —0.0420 | Bges,3p 0| Qoez | —0.0971
Bo2w2a | 0.0106 |  Qo1q | —0.1089 BQ2b,2a 0] Qo1a 0

Table 6: Partial derivatives and elasticities of E[R] with respect to ventilation parameters, for setting

D. Average individual detection time §~! = 12h, global mixing rate 3y = 9 m? - min~

infective patient starting the outbreak at zone 1b

1

, and an initially

Partial Derivatives Elasticities

Bo | —0.0032 | Boape2 | —0.0198 | Qo 1p | —0.1746 Bo | —0.0151 | Boap,c2 0| Qo1p 0
Bota,1b 0.0184 | Bge2,2 0.0241 | Qo1 | —0.0872 | Bgia,1p 0| Bge2,26 0| Qo1 | —0.1356
Botb1a | —0.0248 | Boea,es | 0.0046 | Qo0 | —0.0411 | Bo1b1a 0| Bge2,c3 0| Qo2q | —0.1278
6Q1b,cl —0.0212 5@03,02 —0.0026 Qo,Qb —0.0718 /Ble,cl 0 BQCS,CQ 0 Qo,2b 0
ﬁch,lb 0.0124 ﬁQBa,?)b 0.0053 Qo,c2 —0.0590 IBch,lb 0 ﬁQ3a,3b 0 Qo,cZ —0.0918
/BQCI,CQ 0.0167 6Q3b,3a —0.0074 QO,Sa —0.0293 BQCI,CQ 0 ﬁQSb,Sa 0 Qo,3a —0.0912
Bae2,e1 | —0.0090 | Boapez | —0.0140 | Qo3 | —0.0516 | Boe,c1 0| Bo3b,e3 0] Qo3p 0
Bg2a2n | 0.0074 | Boezsy | 0.0171 | Qo3 | 0.0434 | Bgoa2n 0| Bges,3b 0| Qo3 | —0.0675
Bg2b,2q | —0.0102 Qo,1a | —0.1017 BQ2b,2a 0 Qo,1a | —0.3165

the sake of brevity, and results in Table 7 are obtained from 10® stochastic simulations of the
process.

In Table 7, we report values of E[R] = E[R(1)] + E[R(2)] + E[R(3)] for By =9 m* - min™1,

d~1 = 48h, ventilation settings A, D and E, and an infective patient starting the outbreak at
zone la. Results suggest that epidemic spread can be limited by switching ward ventilation
from setting D to A, and further containment is obtained by switching to ventilation setting E.
However, infection risk in bay 1 (in terms of E[R(1)]) behaves contrarily; although the global
hospital ward infection risk (in terms of E[R]) is lower for setting E, this is at the expense
of expelling pathogens from the infected zone la towards zones 1b and cl, and thus posing a

greater risk to patients in bay 1.

Table 7: Mean values of E[R], E[R(1)], E[R(2)] and E[R(3)] for By = 9 m® - min~ !, =1 = 48h and

ventilation settings A, D and E. Initially infective individual at zone la

Regime | E[R] | E[R(D)] | E[R(2)] | E[R(3)]
A 501 | 2.65 1.34 1.02
D 520 | 2.56 1.47 117
E 136 | 2.69 1.25 0.92

14
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4.4 Interplay with detection management

As explained in subsection 3.3, detection and declaration of an outbreak in the hospital ward
may require several patients showing symptoms, and not only one. In Figure 5 we plot analo-
gous results to those in Figure 3 when declaration of the outbreak occurs after D = 2 patients
show symptoms (each after average time d~'). The corresponding mean values of E[R] are
reported in Table 8.

We note that values in Table 8 are significantly larger than those in Table 3, since outbreak
declaration takes longer to occur allowing for more infections to take place. This increase is
significantly larger than the differences that can be observed, in Table 3, between different
ventilation settings, suggesting again that detection policy is likely to dominate ventilation
as an infection control strategy. Under slow detection scenarios (67! = 48h), we observe in
Figure 5 a clear bi-modality for the distribution of R. Thus, our model predicts that under
slow detection, a two-output situation can be expected: either the initially infective patient is
discharged before infecting any other patient (so that R = 0), or this patient infects a second
patient, leading to a large outbreak (represented by the second mode in Figure 5).

0 5 10 15 20 0 5 10 15
n n

15

20

Figure 5: Probability mass function of the number R of infections until the end or detection of the
outbreak, for ventilation settings A — F. Declaration of the outbreak occurs once two patients show
symptoms, and each infective patient shows symptoms after an average time ' € {12h,48h}. Global
mixing rate 5y € {9,27} m?® - min~!. Initial infective located at zone la
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Table 8: Mean values of E[R] for scenarios in Figure 5.
Glo'[A [B |C |D [E |F

9 | 12h | 3.20 | 2.78 | 2.33 | 3.26 | 3.14 | 2.79
48h | 8.42 | 7.31 | 6.78 | 8.79 | 8.10 | 7.72
27 | 12h | 3.52 | 3.28 | 3.07 | 3.50 | 3.49 | 3.34
48h | 9.37 | 8.87 | 8.63 | 9.39 | 9.26 | 9.10

4.5 Screening at admission

In subsections 4.1-4.4, we analyse infection spread under the assumption that each individual
at zone j is detected (by showing symptoms) at rate J;, with ; = § for all j, and where the
outbreak is detected and declared after one (or several) infective patients are detected. This
leads to the contribution Z;\il d;i; in Eqgs. (4)-(5). However, if the detection of the outbreak
is due instead to the screening of the newly admitted patient who starts the outbreak, and
results of this screening arrive after an average time !, then the outbreak is detected at rate
9, and one needs to replace Zﬁl d;i; by 0 in Egs. (4)-(5).

Under this hypothesis, we plot in Figure 6 the probability mass function of the number R
of infections until the end or detection of the outbreak, when the results of this screening (and
thus, the declaration of the outbreak) arrive after an average time §=' € {4h,8h, 12h,24h}.
Corresponding mean values of E[R] are reported in Table 9. If results arrive after =1 = 4
hours, ventilation has a less significant impact on the nosocomial spread, and low values of E|R)|
are reported in Table 9. The number of infections until the end or detection of the outbreak
proportionally increases with the delay 6! in obtaining the screening results. In particular, for
6! = 24 hours significant differences in F[R] can be noticed among the different ventilation
settings, and a marked bi-modality can be observed in Figure 6.

Table 9: Mean values E[R] for scenarios in Figure 6
oA B C D E F

4h | 1.12 1092 ] 0.66 | 1.11 | 1.11 | 0.89
8h |2.66 | 2.13 | 1.63 | 2.72 | 2.59 | 2.16
12h | 4.24 | 3.43 | 2.74 | 4.36 | 4.11 | 3.54
24h | 8.1516.91 | 5.94 | 8.36 | 7.91 | 7.17

4.6 Ventilation and over-occupancy

In this subsection our aim is to shed some light on the interplay between ventilation, nosocomial
spread and over-occupancy of the hospital ward. We represent hospital ward over-occupancy
by locating three additional patients at the corridor areas; in particular, we set N = 21 and
locate one additional patient at each of the {cl, 2, 3} zones. This practice is common in UK
hospitals during times of high demand. We assume that the outbreak is detected and declared
after the first patient shows symptoms, each patient showing symptoms after an average time
d~1 = 12h. For interzonal mixing By = 9 m? - min~!, we report in Table 10 the mean number
R of infections until the end or detection of the outbreak, for ventilation settings A — F', and
for the initial infective patient being located at zones {la, cl, ¢2, ¢3}.

We first note that results in Table 10 are exactly the same for an initially infective individual
being located at zones cl and ¢3. This is explained by noting that bays 1 and 3 are completely

16
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30 Figure 6: Probability mass function of the number R of infections until the end or detection of the
31 outbreak, for ventilation settings A — F. Declaration of the outbreak occurs after an average time 6! €
32 {4h,8h,12h,24h}, which is independent of the number of infectives and represents a screening event.
Global mixing rate 3y = 9 m?® - min~'. Initial infective located at zone la

36 Table 10: Mean values E[R] for a hospital ward with over-occupancy. Patients show symptoms after an

:; average time 0! = 12h, and we set By = 9 m3 - min~!

39 Location of initial infective | A B C D E F

40 la 201 | 1.82 | 1.37 | 2.04 | 2.02 | 1.72

41 cl 1.95 ] 1.14 | 1.95 | 2.19 | 1.71 | 1.92

42 c2 1.99 | 1.18 | 2.00 | 2.23 | 1.75 | 1.96

:i c3 1.95 ] 1.14 | 1.95 | 2.19 | 1.71 | 1.92

45

gg symmetric for all ventilation settings as noted in subsection 4.2; see diagrams and matrices in

a8 Figure 2. On the other hand, when the initial infective patient is located at zone la, results
in Table 10 can be compared to those in Table 3 for (671, 8y) = (12h,9 m? - min~'). For

3R zone la, values of F[R] are larger in Table 10 than in Table 3; if the nosocomial outbreak is

% initiated by an infective patient at zone la, more infections during this outbreak should be

2% expected under ward over-occupancy. This might not be only related to having more patients

34 in the ward under over-occupancy (21 instead of 18), but also to the potential of patients in the

5h corridor to act as infection links between bays. For example under over-occupancy, an infective

3R individual at zone la might infect individuals in bay 2 by, as a first step, infecting individuals

%é in the corridor areas. These people then might more easily infect individuals at bay 2, before

G being discharged, due to being in closer proximity and depending on the particular ventilation

60
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setting in place in the ward.

Infection dynamics related to the scenario above highly depend on the particular ventilation
setting under study, which can be noticed by inspecting rows corresponding to zones {cl, ¢2, ¢3}
in Table 10. While an individual at zone 1a has a larger infectious potential (in terms of E[R))
than individuals located at the corridor when ventilation settings B and E are in place, this is
not the case for ventilation settings C, D and F, and these infectious potentials are comparable
under ventilation setting A which represents a well-mixed scenario. Our results then indicate
that over-occupancy leads in general to higher airborne spread risks, and that this increase can
be especially significant depending on the specific ventilation in place.

4.7 The unit of infection

We note that parameter ¢ is highly pathogen-dependent, ranging from ¢ ~ 0.01 quanta-min~!

for rhinovirus to ¢ ~ 10 quanta - min~! for measles.?® We perform a parametric analysis by
varying ¢ to assess the sensitivity of our conclusions, and report expected infections E[R| until
the end of the outbreak in Table 11. In particular, we are interested in the mean number E|R]
of infections if the outbreak is detected upon the first patient showing symptoms, each patient
showing symptoms after an average time 6! = 12h, and where we consider By = 9 m?-min~1.
We note that, as expected, increasing values of ¢ lead to increasing mean number E[R] of
infections. However, this does not seem to affect the relative infectiousness of ventilation setting
C, which is identified as the best scenario regardless of the value of g. On the other hand, less
advantageous ventilation schemes are dependent on value of ¢q. For example, ventilation setting
A and E can be identified as the worst for ¢ = 0.1 quanta - min~—!, while setting D can be seen

as the worst one for ¢ = 50.0 quanta - min=!.

Table 11: Mean number E[R] of infections until end or declaration of the outbreak, for S5 = 9 m? -
min~' and when outbreak declaration occurs after the first patient shows symptoms. Each patient shows

symptoms after an average time §~! = 12h. Different values of q (quanta - min~') considered

g | A B C D E F

0.1 | 041 |0.36 |027 |0.38 |042 |0.34
05 | 1.75 | 1.54 | 1.24 | 1.75 | 1.74 | 1.50
1.0 [3.06 | 266 |226 |3.14 |3.00 |2.69
10.0 | 11.43 [ 10.44 | 10.16 | 11.75 | 11.13 | 10.92
50.0 | 15.54 | 15.12 | 15.05 | 15.66 | 15.41 | 15.35

5 Discussion and Conclusions

In this work, we link a zonal ventilation model for the generation and airborne spread of
infectious material within a hospital ward, with a multi-compartment SIS Markovian model for
the infection of patients within this ward. Our model incorporates the possibility of considering
a wide range of ventilation settings, the discharge and arrival of patients within the ward, as well
as different hypotheses regarding how outbreak detection and declaration occurs. Moreover,
it allows us to explore the interplay between ventilation, outbreak management, ward over-
occupancy and the location of the infective patient starting the outbreak.

Our results suggest that detection time dominates ventilation when the variable of interest
is the number of infections occurring before the declaration or end of the outbreak, with longer

18



Page 21 of 26 Risk Analysis

414

detection times leading to significantly more infections happening. Longer detection times can
arise when analysing pathogens with long infectious asymptomatic periods, when declaration of
an outbreak requires for several patients to show symptoms, or when this declaration depends
on screening events for which results take longer to arrive. The interplay between ventilation
of the hospital ward and location of the initially infective patient starting the outbreak implies
that recommendations on where to locate potentially infected (e.g. newly admitted) patients
in a given hospital ward could be issued depending on the ventilation in place in the ward.
Our model also predicts that decreasing the infection spread risk in the hospital ward can
sometimes go at the expense of increasing the risk in particular areas of the ward.

Similar models have already been considered in the literature for linking zonal ventilation
scenarios with epidemic spread models,* 32 where epidemic dynamics are usually analysed
by means of stochastic simulations. To the best of our knowledge, this is the first time that
this link is carried out by defining in detail the continuous-time Markov chain for the infection
spread, where infection rates at each ventilation zone are in fact functions A;(iy,..., %) of
the number of infectives at each zone at any given time, and where (7y,...,7ys) represents in
fact a state of the CTMC under study. This detailed mathematical construction allows for the
analytical computation of summary statistics (such as R in this work), and for carrying out a
local sensitivity analysis that allows one to identify the particular factors of each ventilation
setting having the most significant impact on the infection spread.

It should be noted that the primary objective in this study is to demonstrate this detailed
mathematical analysis and how it can be applied to evaluate the relative influence of different
parameters. The model is applied to a hypothetical hospital ward, which, while it is represen-
tative of multi-bed ward environments in many hospitals, is a very simplified model of reality.
The results demonstrate that the ventilation flow settings may influence the dispersion of air-
borne pathogens and hence the risk of transmission, however these should be interpreted with
caution. We assume a steady state ventilation scenario with the flow pattern replicated exactly
between neighboring bays 1, 2 and 3. In reality, the flows will not be exactly identical for every
bay, and other factors such as heat sources and movement of people will alter the mixing with
and between zones. In particular, corridor ventilation often has a directional flow due to wider
spacing of ventilation supply/extract grilles which may hinder or improve the control of infec-
tion. However, the analysis we have carried out gives some clear insight into why particular
directional flows influence risk, and the relative importance of detection strategies, ventilation
control and occupancy.

It is clear that some of our conclusions could be highly dependent on the hospital ward
structure, and therefore the flexibility of our methodology comes into play. It can be applied
to any hospital ward of interest by appropriately adapting the corresponding ventilation matrix
V. Although carrying out a detailed mathematical analysis of a number of potentially different
hospital ward structures is out of the scope of this paper, we include a short numerical study
of an alternative hospital ward in the Supplementary Material. The aim of this is two-fold: (i)
to show how our methodology can be easily implemented for a different hospital ward to that
in Figure 2 by just adapting the ventilation matrix V, illustrating how this matrix varies with
hospital ward structure; and (ii) to show that while some of our conclusions might be hospital
ward structure dependent, others seem to be valid for a wide range of hospital ward structures
(e.g. detection dominates ventilation as well in this alternative hospital ward).

In this paper, we go beyond the SI epidemic model in,?° proposing an SIS-type model which
allows us to incorporate patients’ arrival /discharge and outbreak detection and declaration. We
note that this epidemic model structure would be especially relevant for pathogens with no or
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short (i.e. negligible compared to the average patient’s length of stay) non-infectious or latent
periods, and where the infectious period is long enough so that recovery of patients does not
occur before discharge (or detection). Depending on the hospital ward under analysis and the
average length of stay of patients in this ward, this could be the case for influenza or norovirus.
Pathogens with non-negligible incubation periods (e.g. 7-21 days for measles) might require
more complex stochastic epidemic model structures such as the SEIR (susceptible-exposed-
infective-recovered). On the other hand, when analysing hospital wards with longer average
patient’s length of stay, so that individuals may become infected and recover during their stay,
SIRS-type epidemic models would be required, to represent the recovery of patients (I — R)
before discharge (R — S) occurs. We note here that in principle, the methodology outlined
in Section 3 can be extended to any of these compartmental-based epidemic models for the
disease spread dynamics, where the link between the deterministic zonal ventilation model for
the airflow dynamics and the stochastic epidemic model for disease spread dynamics would still
be as in Section 2. In a similar way, more complex epidemic model structures could allow one
to study the infection spread dynamics after outbreak detection and declaration occurs. In this
paper, we have focused instead on the impact of ventilation on disease spread until the end
or declaration of the outbreak. Considering these alternative compartmental-based epidemic
model structures could be the aim of future work.

Finally, we note that when carrying out our analysis, the main computational effort lies
in solving systems of linear equations, where the number of equations is determined by the
number of states of the corresponding CTMC, given by Eq. (6) in our model. Limitations of
our approach are then of computational nature, since highly complex epidemic models (here,
a multi-compartment SIS stochastic model with detection) linked to large hospital wards split
in many different ventilation zones (here, M = 9 zones with three empty zones and six zones
containing three patients each) would lead to an intractable number of equations, and stochastic
simulation approaches would prevail.

Data, Software and Reproducibility

Computer codes (in Python) in order to reproduce our numerical results are available at an
on-line repository.3!
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Appendix

First-step arguments

We explain here in detail how Eq. (4) is obtained, in order to compute probabilities

p(il,iz 77777 iM)(n) = ]P(R =n ‘ (_[1(0)7.[2<0), e ,IM(O)) = (il,ig,. .. ,iM)>,

for any initial state (i1,...,ip) € C. These equations are obtained by following a first-step
argument, and applying the total probability law regarding the following event occurring in
the stochastic process. In particular, let us denote by (i1, 42,...,%;, ..., i) = (1,42, ...,%; +
1,...,4pr) the event representing that, if the process is initially at state (i1, 42, ...,%,...,9pm), it

moves to state (iq, 42, ...,4;+1, ..., 7)) in the next jump (that is, that we have (i1, s, ..., %5, ..., )

infectives within the hospital ward at current time, and the next event that occurs is an infec-
tion at zone j). From the theory of CTMCs, it is well-know that the probability of this event
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occurring is

P((’il,ig,...,ij,...,iM) — (il,ig,...,ij+ 1,,ZM)>
Ni(i1, . in) (N — )

Zk:()\k(il, oy in) (N — i) + (v + 5k)ik);

that is, it is equal to the ratio between the rate corresponding to this event and the sum of
all the rates corresponding to all the possible events that can actually occur (infection at any
zone, discharge at any zone or detection of an infective individual at any zone). Same argument

applies to any other possible event, so that P((i1, 2, ..., %5, ...,90) = (41,92,...,0;—1, ... i)
is given by
Vsl
;(/\k(ilv ey ing) (N — ik) + (9 + Ok )ix)

and P((i1,92,...,%5,...,9m) — A) is given by
> 05t
j

;O\k(ila vy b)) (N — ig) + (v + 0k )ik)

Thus, we can apply the total probability law so that pg, . ;,,)(0) = P(R = 0) is equal to

M
Z (]P)(R:O | (Zl,,’LM) — (Zl,,Zk—l—l,,ZM))P((Zl,,ZM) — (21,,Zk—|—1,,ZM))
k=1
+]P><R:O | (Zl,,ZM) — (Zl,,lk—l,,ZM>)P((Z1,,ZM) — (11,,Zk—1,,2M)>)
FP(R =0 (ir,. .. ine) = AVP((ir, .. ing) = A)
1 M

== (VeikD(ir, =1, in) (0) + Ok

2 (Njlins o) (N — 45) + (5 + 65)15) k=1

=1

corresponding to Eq. (4).

Algorithms
Algorithm 1 (For computing the probability distribution of R)

For all (¢y,...,ip) € C, compute and store A;(iy, ...,y ), for 1 < j < M, from Eq. (3);
n = 0;

P(0,0,..0(0) =1;

For I =1,2,...,N:

For alli= (il,ig,...,iM) s.t. Z ij =1:

1 . .
pi(0) = 22 (A (isensing ) (N =)+ (75 40;)i5) ; (%ka(ilv---vik—1»---7iM)(0) + 5klk)
7
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Formn=1,2,3,...:
29(0,0,...,0)(”) =0;
ForI=1,2,... N:
M
For alli= (il,ig, ce ,ZM) s.t. Z ij =1:
j=1

pi(n) - Z()\j(7:17-.-,Z'JM)(A}J'—ij)'i‘('}/j“r(sj)ij) zk: (vkikp(il7--~,ik—1,~~,iM)(n) + )‘k(ih ce >iM)
J

X(Nk: - ik))p(h,...,ik+1,...,i1\4)(n - 1)))
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