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A multi-compartment SIS stochastic model with1

zonal ventilation for the spread of nosocomial2

infections: detection� outbreak management and3

infection control4

Abstract5

In this work we study the environmental and operational factors that influence airborne trans-6

mission of nosocomial infections. We link a deterministic zonal ventilation model for the airborne7

distribution of infectious material in a hospital ward, with a Markovian multi-compartment SIS model8

for the infection of individuals within this ward, in order to conduct a parametric study on ventilation9

rates and their effect on the epidemic dynamics. Our stochastic model includes arrival and discharge1�

of patients, as well as the detection of the outbreak by screening events or due to symptoms being11

shown by infective patients. For each ventilation setting, we measure the infectious potential of a12

nosocomial outbreak in the hospital ward by means of a summary statistic: the number of infections13

occurred within the hospital ward until end or declaration of the outbreak. We analytically compute14

the distribution of this summary statistic, and carry out local and global sensitivity analysis in order15

to identify the particular characteristics of each ventilation regime with the largest impact on the epi-16

demic spread. Our results show that ward ventilation can have a significant impact on the infection17

spread, especially under slow detection scenarios or in over-occupied wards, and that decreasing the18

infection risk for the whole hospital ward might increase the risk in specific areas of the health-care19

facility. Moreover, the location of the initial infective individual and the protocol in place for outbreak2�

declaration both form an interplay with ventilation of the ward.21

22

Keywords� nosocomial infections, airborne spread, SIS stochastic model, outbreak detection, sum-23

mary statistic24

1 Introduction25

The risk of acquiring nosocomial infections is a recognised problem in health-care facilities26

worldwide.9 While the transmission routes for some diseases are well documented, the precise27

mode of transmission is uncertain for many infections, particularly for those pathogens that28

cause health-care acquired infections (HCAI). Although it is probable that the majority of29

transmission occurs via contact routes,25 there is increasing recognition that the air plays an3�

important role in disease spread.15 Understanding the role that ventilation airflow plays in the31

dispersion of infectious microorganisms is tantamount to assessing exposure to pathogens and32

hence infection risk. This study aims to provide an analytical link between airborne hospital33

infection spread, ventilation design and outbreak management.34

Ventilation has been found to have a significant impact on the distribution of infectious35

material in hospital settings. Examples include Influenza A (e.g. H5N1 and H7N9),24 M.36

tuberculosis ,6 measles1 and norovirus .28 One of the most infamous examples occurred in 200337

during the severe acute respiratory syndrome (SARS) outbreak in Hong Kong. Analysis of38

airflow patterns and outbreak data demonstrated that ventilation routes were critical in the39

short- and long-range spread of aerosolised coronavirus .14 Ventilation is recognised as an4�

important infection control approach in health-care design, with strategies such as mechanical41

ventilation and pressure zoning set out in international1 and national guidance.442

1

Page 3 of 26 Risk Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

Evaluating the influence of ventilation on infection risk typically applies models such as the43

Wells-Riley equation23 or a dose-response approach26 to estimate the influence of ventilation44

on the number of new cases of an infection. Liao et al.16 presented a probabilistic transmission45

dynamic model to assess indoor airborne infection risks and Ko et al.12,13 developed models for46

Tuberculosis spread including incorporating a zonal ventilation model. A number of authors47

have also looked at control strategies including Wein et al.29 who modelled infection control48

measures for pandemic influenza, Brienen et al.,2 where authors analyse the effect of mask49

use on the spread of influenza, and King et al.11 who developed a stochastic model to link5�

airborne and contact transmission. It is also worth mentioning the recent work by Carruthers51

et al.,3 where a zonal ventilation model similar to the one considered in this paper is linked to52

a dose-response approach to estimate the risk of infection after an accidental release of bacteria53

Francisella tularensis in a microbiology laboratory.54

While these studies enable some understanding of the influence of the environment on55

transmission, they do not consider relationships between ventilation parameters and the pro-56

gression and control of an infection outbreak. In an earlier study it was demonstrated that57

the Wells-Riley model could be coupled to an SI epidemic model to relate ventilation rate58

and transmission in a fully-mixed environment.19 In later work a zonal air distribution and a59

stochastic formulation20 was considered, and cost-benefits of ventilation from an energy and6�

infection risk perspective were explored.2161

The model presented in this paper is constructed on a scenario defined in previous work,2062

where the role played by the airflow during a nosocomial outbreak is assessed by linking a63

deterministic zonal ventilation model with an SI stochastic epidemic model using a compu-64

tational approach. While the previous approach enabled exploration of the basic interaction65

between the ventilation and the outbreak, there are a number of limitations:66

• The epidemic dynamics are represented through a simple SI epidemic model, not account-67

ing for relevant factors such as the discharge and admission of patients, or the detection68

and declaration of the outbreak.69

• Results reported in20 have high variability, which is related to the fact that they were7�

obtained by means of stochastic simulations of the epidemic process.71

• The large number of parameters associated with each ventilation scenario makes it dif-72

ficult to identify, from stochastic simulations, the specific factors of the ventilation air73

distribution that facilitate or mitigate epidemic spread.74

We refer the reader to10 where the limitations of analysing this type of epidemic processes by75

simulation are discussed in more detail, and where the benefits of following exact analytical76

approaches instead are highlighted.77

Our aim here is to show how this zonal ventilation model can be linked to more complex78

stochastic epidemic models for the spread of nosocomial pathogens, while accounting for pa-79

tients admission and discharge, and different outbreak detection and declaration hypotheses.8�

We show how to implement exact analytical procedures for computing summary statistics of81

the outbreak (statistics measuring outbreak infectiousness), which by means of a perturba-82

tion analysis enables identification of specific characteristics of the ventilation setting that are83

crucial for the spread or control of the infection.84

Finally, we carry out a comprehensive numerical study of six ventilation strategies for an85

hypothetical hospital ward in order to identify particular ventilation characteristics that may86

promote or inhibit spread of airborne nosocomial infections. Our results explore the interplay87

between ward ventilation, location of patients, ward over-occupancy and outbreak detection88
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management.89

2 The model9�

In Noakes et al.20 a stochastic model is proposed that links a zonal ventilation model with91

epidemic dynamics by means of an SI model for the infection spread among individuals in a92

hospital setting. The combined model can be thought of as an adaptation of the Wells-Riley93

model,23,26 where each susceptible individual is infected with a per capita rate94

λ =
Ipq

Q
�

that is proportional to the number I of infective individuals. Here Q is the room ventilation95

rate (m3s�1), p is the pulmonary ventilation (breathing) rate (m3s�1) and q is the unit of96

infection (quantum) as described in Riley et al.23 In a standard SI stochastic epidemic model,97

where individuals are either susceptible or infective, individuals do not recover. This can be98

expressed in terms of a continuous-time Markov chain (CTMC) {S(t) : t ≥ 0} where the99

random variable S(t) represents the number of susceptible individuals at time t, and the aim is1��

to compute transient probabilities pS(t) = �(S(t) = S), for any S ∈ Ω = {0� 1� . . . � N} where1�1

N is the number of individuals in the population. These probabilities satisfy the Kolmogorov1�2

differential equations1�3

dpS(t)

dt
= −λSpS(t) + λ(S + 1)pS+1(t)� S ∈ Ω.

Inter-event times are assumed to be exponentially distributed and the stochastic process is1�4

simulated using the Gillespie algorithm.7 In particular, this algorithm generates samples of the1�5

inter-event times by using the fact that1�6

U ∼ U(0� 1) ⇒ T = −
ln(U)

λS
∼ Exp(λS)� (1)

and then updates the state of the system according to the probabilities of each possible event1�7

occurring.1�8

2.1 A zonal ventilation model for linking airflow dynamics and in-1�9

fection rates11�

In Noakes et al.20 this Wells-Riley process is adapted to investigate ventilation scenarios in an111

hypothetical hospital ward split in M ventilation zones. The air is assumed to be uniformly112

mixed within each zone, however, there is incomplete mixing between the zones and unbalanced113

zone boundaries allow for the effect of directional flow to be examined. In particular the per114

capita infection rate λk for susceptible individuals at zone k is defined as λk = pkCk, where115

Ck is the concentration of infectious material at zone k, and pk is the pulmonary rate of116

these individuals. We note that this concentration could depend on the amount of infected117

individuals, ij, in every zone 1 ≤ j ≤ M , due to airflow. In Noakes et al.20 the spatial118

distribution of infectious material is represented through the differential equation119

Vk

dCk

dt
= qkik −Qo�kCk −

�

j

βkjCk +
�

j

βjkCj� 1 ≤ k ≤ M� (2)

3
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where Vk is the volume of zone k, qkik is the generation rate of infectious quanta, Qo�k represents
the extract ventilation rate in zone k, and

�

j βkjCk and
�

j βjkCj amount to the volume flow
of air between zones k and j. Moreover, each inter-zonal flow rate βkj represents the sum of
two contributions

βkj = β0 + βQkj�

where β0 is a global mixing rate and βQkj is an additional contribution representing net flow12�

across the k/j zonal boundary, from zone k to zone j.121

Eq. (2) leads to a ventilation matrix that characterises the ventilation air distribution under122

study,123

V =

�



















Qo�1 +
�

k

β1k −β21 . . . −βM�1�1 −βM1

−β12 Qo�2 +
�

k

β2k . . . −βM�1�2 −βM2

−β13 −β23 . . . −βM�1�3 −βM3
...

...
. . .

...
...

−β1M −β2M . . . −βM�1�M Qo�M +
�

k

βMk





















representing ventilation in a hospital ward divided into M ventilation zones.124

By assuming steady-state conditions for airflow, and taking into account Eq. (2), authors125

then propose in20 to link infection rates λj, j ∈ {1� . . . �M}, with the ventilation matrix V as126

follows:127

�









λ1

p1
λ2

p2
...

λM

pM











= V�1

�









q1i1
q2i2
...

qM iM











. (3)

This means that per capita infection rates {λ1� . . . � λM} for susceptible individuals at zones128

{1� . . . �M} depend on how many infective individuals (i1� . . . � iM) there are at any zone at any129

given time, computed in an specialised manner (Eq. (3)) that takes into account the ventilation13�

distribution through matrix V. Once this procedure for computing infection rates is proposed,131

stochastic simulations for the SI epidemic dynamics are carried out in20 by following steps (i)-132

(iv),20 which assume exponentially distributed inter-event times and make use of the property133

depicted in Eq. (1).134

We note here that Eq. (3) means considering per capita infection rates at each zone135

1 ≤ j ≤ M as functions λj(i1� . . . � iM) of the number of infectives (i1� . . . � iM) within each136

ventilation zone at the hospital ward. In subsection 2.2, we now go on to exploit this, to link137

the zonal ventilation model with a multi-compartment SIS model with detection, to evaluate138

the infection spread dynamics within the hospital ward until detection of the outbreak. Instead139

of carrying out stochastic simulations, we present an exact approach for analysing a summary14�

statistic of the outbreak: the total number of infections occurring until the outbreak ends or is141

detected and declared. This exact approach does not only allow us to compute this quantity142

of interest, but it also allows one to carry out a sensitivity analysis on the model parameters,143

so that the impact that different characteristics of the ventilation setting has on this summary144

statistic can be evaluated.145

4
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2.2 A multi-compartment SIS stochastic model for the infection146

spread dynamics147

At the epidemic level, we assume that patients at each zone i are discharged at rate γi, so that148

γ�1
i amounts to the average length-of-stay (LOS) of patients at zone i. Discharges are immedi-149

ately replaced by new admitted patients; a reasonable approximation for hospital wards under15�

high demand.22,30 Moreover, we consider that the nosocomial outbreak will go undetected by151

health-care workers for some time, and incorporate this fact into our model by considering that152

each infected individual at zone i can be discovered/detected at some rate δi. The reciprocal153

δ�1
i represents the average time until some symptoms arise which alert health-care workers154

to a patient’s infection, or the average time until the infected individual is detected through155

screening policies put in place at this hospital ward. Figure 1 represents the epidemic dynamics156

for an individual at zone i.157

Figure 1: Individual epidemic dynamics for a patient at zone i. Event Ii → Si represents the discharge of
the infective patient at zone i, immediately replaced by a susceptible one.

This leads to a multi-compartment SIS epidemic model, that can be described as a CTMC158

X = {(I1(t)� . . . � IM(t)) : t ≥ 0}, where Ij(t) represents the number of infective individuals at159

zone j at time t ≥ 0, defined over the space of states S = {(i1� i2� . . . � iM) : ij ∈ {0� . . . � Nj}� j ∈16�

{1� . . . �M}} ∪ {Δ} = � ∪ {Δ}. Nj is the total number of patients at zone j, leading to161

N =
�M

j=1 Nj patients in the hospital ward. State Δ represents that the nosocomial outbreak162

has been detected and declared by health-care workers by the first detection of an infected163

patient in the hospital ward. We note that absorbing state (0� . . . � 0) represents the end of the164

outbreak (lack of infective individuals), due to patients discharge (that is, if all the patients165

infected by the pathogen are discharged before the outbreak is actually detected). We consider166

Δ also as an absorbing state in this process, since we are only interested in the dynamics of the167

process until the end or declaration of the outbreak, and the transitions (obtained from diagram168

in Figure 1) described in Table 1. We note that, according to our comments in subsection 2.1,169

λj(i1� . . . � iM) is a function of the state (i1� . . . � iM), representing the per capita infection rate17�

of susceptible individuals at zone j when we have (i1� . . . � iM) infective individuals within the171

ward, computed from Eq. (3) for each (i1� . . . � iM) ∈ �.172

3 Methodology173

Our interest is in analysing the infectious potential of an outbreak in a given hospital ward,174

for different ventilation configurations and outbreak detection hypotheses. We measure the175

infectious potential in terms of the following discrete random variable:176

R = “number of infections occurred until the end or declaration of the outbreak”�

5
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Table 1: Transitions or events occurring in the stochastic process X , and corresponding rates

Event Stochastic transition Rate

Infection of a patient at zone j (i1� . . . � ij � . . . � iM )→ (i1� . . . � ij + 1� . . . � iM ) λj(i1� . . . � iM )(Nj − ij)

Discharge of an infective patient at zone j (i1� . . . � ij � . . . � iM )→ (i1� . . . � ij − 1� . . . � iM ) γjij

Detection of the outbreak (i1� . . . � iM )→ Δ
M
�

j=1
δjij

which can take values in {0� 1� 2� . . . }. R is used here as a measure of how well ventilation can177

act as a preventive infection control strategy, which is in place even before the actual detection178

of the outbreak by health-care workers occurs, and reactive strategies can be implemented.179

3.1 Analysing R18�

For an initial state (i1� . . . � iM) ∈ �, our aim is to compute probabilities181

p�i1�i2�...�iM )(n) = �(R = n | (I1(0)� I2(0)� . . . � IM(0)) = (i1� i2� . . . � iM))�

for n ≥ 0; that is, the probability distribution of R for some initial state (i1� . . . � iM). We can182

compute these probabilities from a system of linear equations, which is obtained by a first-step183

argument. In particular, by proposing notation184

i = (i1� . . . � iM)�

i+(s) = (i1� . . . � is + 1� . . . � iM)�

i�(s) = (i1� . . . � is − 1� . . . � iM)�

we get

p�(0)
M
�

j=1

(λj(i)(Nj − ij) + (γj + δj)ij) =
M
�

k=1

�

γkikp���k)(0) + δkik
�

� (4)

p�(n)
M
�

j=1

(λj(i)(Nj − ij) + (γj + δj)ij) =
M
�

k=1

�

γkikp���k)(n) + λk(i)(Nk − ik)p�+�k)(n− 1)
�

�

(5)

for n ≥ 1 and any (i1� . . . � iM) ∈ �, and with boundary conditions p�0�0�...�0)(0) = 1, p�0�0�...�0)(n) =185

0 for all n ≥ 1; a detailed explanation on how Eqs. (4)-(5) are obtained is in the Appendix.186

This means that probabilities for n = 0 (Eq. (4)) can be computed by solving a system of187

�� =
M
�

i=1

(Ni + 1) (6)

linear equations∗. Once these are in hand, probabilities for n ≥ 1 can be computed by solving188

the system of linear equations given by Eq. (5), which also consists of �� equations.189

Algorithm 1 in the Appendix computes probabilities p�i1�...�iM )(n) for any (i1� . . . � iM) ∈ �,19�

n ≥ 0. It works sequentially, computing probabilities p�i1�...�iM )(n) for i1 + i2 + · · ·+ iM = I for191

increasing values of n = 0� 1� 2� . . . and I = 1� 2� 3� . . . � N .192

��� represents the number of elements (states) in �

6
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3.2 Local sensitivity analysis193

Our analysis allows one to identify the most important characteristics of the ventilation sce-194

nario, regarding the infectious potential of the outbreak until detection, by means of com-195

puting partial derivatives of the form ∂E[R]/∂θ with respect to ventilation parameters θ ∈196

{β0} ∪ {βQij : i� j ∈ {1� . . . �M}} ∪ {Qo�i : i ∈ {1� . . . �M}}. We note that, for an initial state197

(i1� . . . � iM) ∈ �, E[R] =
�+∞

n=0 np�i1�...�iM )(n), so that198

∂E[R]

∂θ
=

+∞
�

n=0

n
∂p�i1�...�iM )(n)

∂θ
. (7)

Partial derivatives
∂p�i1�...�iM )�n)

∂θ
can be computed from direct differentiation of Eqs. (4)-(5).

In Eqs. (4)-(5), the only quantities that depend on parameter θ ∈ {β0} ∪ {βQij : i� j ∈
{1� . . . �M}} ∪ {Qo�i : i ∈ {1� . . . �M}} are infection rates λj(i1� . . . � iM), and probabilities
p�i1�...�iM )(n). Thus we get

M
�

j=1

∂λj(i)

∂θ
(Nj − ij)p�(0) +

M
�

j=1

�

λj(i)(Nj − ij) + (γj + δj)ij

�

∂p�(0)

∂θ
=

M
�

k=1

γkik
∂p���k)(0)

∂θ
�

M
�

j=1

∂λj(i)

∂θ
(Nj − ij)p�(n) +

M
�

j=1

�

λj(i)(Nj − ij) + (γj + δj)ij

�

∂p�(n)

∂θ
=

M
�

k=1

�

γkik
∂p���k)(n)

∂θ

+
∂λk(i)

∂θ
(Nk − ik)p�+�k)(n− 1) + λk(i)(Nk − ik)

∂p�+�k)(n− 1)

∂θ

�

�

for n ≥ 1, and any (i1� . . . � iM) ∈ �. Partial derivatives
∂p�i1�...�iM )�n)

∂θ
can then be computed from199

equations above by following similar arguments than in Algorithm 1 in the Appendix. In order2��

to solve these equations, one needs to have in hand values of p�i1�...�iM )(n) (previously computed2�1

from Algorithm 1), as well as derivatives
∂λj�i1�...�iM )

∂θ
. These derivatives can be straightforwardly2�2

obtained from Eq. (3) as2�3

�











1
p1

· ∂λ1�i1�...�iM )
∂θ

1
p2

· ∂λ2�i1�...�iM )
∂θ

...
1

pM
· ∂λM �i1�...�iM )

∂θ













= −V�1V�θ)V�1

�









q1i1
q2i2
...

qM iM











�

where V�θ) represents the element-by-element partial derivative of matrix V with respect pa-2�4

rameter θ.82�5

3.3 Spread until the Dth individual detection2�6

As outlined above, declaration of the outbreak is identified with the first detection of an in-2�7

fective patient, where each patient is detected at zone j at rate δj. If detection of an infective2�8

patient occurs because this patient shows symptoms, outbreak declaration might require sev-2�9

eral (D > 1) patients showing some common symptoms, since for some nosocomial pathogens21�

associated symptoms are quite common and pass unnoticed.5 For example, norovirus causes211

gastrointestinal symptoms such as nausea, vomiting, or diarrhoea that are common to many212

7
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diseases and conditions. The national guidelines on the management of outbreaks of norovirus213

infection in health-care settings,18 issued by the National Disease Surveillance Centre in Ire-214

land, requires for D = 2 patients to show these symptoms in a hospital ward for a potential215

norovirus outbreak declaration. Once the outbreak has been declared, control strategies such216

as immediate cleaning and decontamination, frequent handwashing, or cohorting of affected217

patients are recommended.218

Thus, our interest in this subsection is to analyse the summary statistic R when the detection219

of the outbreak requires for D patients to show symptoms, for some value D ≥ 1, and results22�

in the subsections above can be seen as the particular case D = 1. We define the augmented221

process X aug = {(I1(t)� . . . � IM(t)� D(t)) : t ≥ 0} where the increasing variable D(t) amounts222

to the number of detected patients up to time t ≥ 0. We consider that the outbreak is declared223

once D(t) = D, and the space of states of this CTMC is given by224

Saug = {(i1� i2� . . . � iM � d) : ij ∈ {0� . . . � Nj}� j ∈ {1� . . . �M}� 0 ≤ d ≤ D − 1} ∪ {Δ}.

Thus, Saug = �aug ∪ Δ, with state Δ representing outbreak declaration (i.e., the detection of225

the Dth infected patient). Events occurring in this process, at different rates, are described in226

Table 2.227

Table 2: Transitions or events occurring in the stochastic process X aug, and corresponding rates

Event Stochastic transition Rate

Infection of a patient at zone j (i1� . . . � ij � . . . � iM � d)→ (i1� . . . � ij + 1� . . . � iM � d) λj(i1� . . . � iM )(Nj − ij)

Discharge of an infective patient (i1� . . . � ij � . . . � iM � d)→ (i1� . . . � ij − 1� . . . � iM � d) γjij

at zone j

Detection of an infective patient (i1� . . . � iM � d)→ (i1� . . . � iM � d+ 1), 0 ≤ d ≤ D − 2
M
�

j=1
δjij

Outbreak declaration (i1� . . . � iM � D − 1)→ Δ
M
�

j=1
δjij

Our arguments in subsections above can be adapted for process X aug. For example, Eqs.
(4)-(5) become

p�i1�...�iM �d)(0)
M
�

j=1

(λj(i1� . . . � iM)(Nj − ij) + (γj + δj)ij) =
M
�

k=1

�

γkikp�i1�...�ik�1�...�iM �d)(0)

+δkik(1d=D�1 + 1d<D�1p�i1�...�iM �d+1)(0))
�

�

p�i1�...�iM �d)(n)
M
�

j=1

(λj(i1� . . . � iM)(Nj − ij) + (γj + δj)ij) =
M
�

k=1

�

γkikp�i1�...�ik�1�...�iM �d)(n)

+λk(i1� . . . � iM)(Nk − ik)p�i1�...�ik+1�...�iM �d)(n− 1) + δkik1d<D�1p�i1�...�iM �d+1)(n)
�

� n ≥ 1�

for any (i1� . . . � iM � d) ∈ �aug, and with boundary conditions p�0�0�...�0�d)(0) = pΔ(0) = 1, and228

p�0�0�...�0�d)(n) = pΔ(n) = 0 for all n ≥ 1 and 0 ≤ d ≤ D− 1. 1A represents a function that takes229

value 1 if A is satisfied, and 0 otherwise. An adapted version of Algorithm 1, not reported here23�

for the sake of brevity, allows for an efficient solution of this system.231
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4 Results232

We consider here the hypothetical hospital ward in Figure 2 in,20 and ventilation settings233

according to Table 1 in.20 This hypothetical hospital ward consists of three six-bedded bays234

connected through a corridor. Each bay is split into two ventilation zones, and each ventilation235

zone contains three patients. The corridor is split into three ventilation zones and in the first236

instance has no patients, so that the ward has N = 18 patients. Ventilation rate over the whole237

ward was 27 m3 · min�1 which equated to an air change rate of 3 AC · h�1. Diagrams of the238

ventilation flows and specific rates within and between each zone for each setting are given in239

Figure 2. Moreover, we set pi = 0.01 m3 · min�1 and qi = 0.5 quanta · min�1 for all patients24�

at all zones and for every ventilation scenario,20 and assume an average length-of-stay (LOS)241

for each patient γ�1
i = 7 days.242

If we order the M = 9 ventilation zones as

1a ≺ 1b ≺ c1 ≺ 2a ≺ 2b ≺ c2 ≺ 3a ≺ 3b ≺ c3�

the ventilation matrix is given by243

V =

�



















Qo�1a +
�

k

β1a�k −β1b�1a . . . −β3b�1a −βc3�1a

−β1a�1b Qo�1b +
�

k

β1b�k . . . −β3b�1b −βc3�1b

−β1a�c1 −β1b�c1 . . . −β3b�c1 −βc3�c1
...

...
. . .

...
...

−β1a�c3 −β1b�c3 . . . −β3b�c3 Qo�c3 +
�

k

βc3�k





















and ventilation settings in Table 1 in20 lead to the ventilation matrices reported in Figure 2.244

In subsections 4.1-4.3 and 4.6, we consider that outbreak declaration occurs after one patient245

shows symptoms, with each patient showing symptoms after an average time δ�1 (i.e., δj = δ246

for all 1 ≤ j ≤ M). Alternative outbreak detection and declaration hypotheses are discussed247

in subsections 4.4-4.5, while the impact of parameter q in our numerical results is explored in248

subsection 4.7.249

4.1 Impact of ventilation setting on spread dynamics25�

In Figure 3 we plot the probability mass function of R versus different values of the global251

mixing rate β0, the average time δ�1 at which each infective patient shows symptoms, and for252

ventilation scenarios A − F . For these results, it is assumed that an infective patient at zone253

1a starts the outbreak, and we report in Table 3 the mean values E[R] computed for these254

distributions.255

Table 3: Mean number E[R] of infections until end or declaration of the outbreak, for scenarios in Figure
3

β0 δ�1 A B C D E F
9 12h 1.75 1.54 1.24 1.75 1.74 1.50

48h 5.01 4.34 3.87 5.20 4.86 4.50
27 12h 1.88 1.76 1.61 1.86 1.87 1.77

48h 5.59 5.25 5.03 5.59 5.53 5.37

9
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Figure 2: Diagrams of the ventilation settings considered, and corresponding ventilation matrices V (for
β0 = 9 m3 ·min�1). Grey arrows: ventilation between zones (βij -m3 ·min�1-); Black arrows: ventilation
supply and extract to the ward; Circled values: extract ventilation rates (Qo�j -m3 ·min�1-)
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Figure 3: Probability mass function of the number R of infections until the end or detection of the
outbreak, for ventilation settings A − F . Declaration of the outbreak occurs once one patient shows
symptoms, and each infective patient shows symptoms after an average time δ�1 ∈ {12h� 48h}. Global
mixing rate β0 ∈ {9� 27} m3 · min�1. Initial infective located at zone 1a. Red stars identify the best
ventilation settings in terms of E[R], while black circles identify the worst ones; see Table 3

Ventilation setting C can be identified in Figure 3 and Table 3 as the best one, while settings256

A, D and E are identified as the worst ones depending on the detection parameter δ and the257

global mixing rate β0. We note that ventilation setting C has significant extract ventilation258

at the initially infected zone 1a, so that the airflow is directed from 1a outwards the hospital259

ward. On the other hand, ventilation setting D represents a well-mixed ward (βQik = 0 for all26�

i and k) and no extract ventilation at zone 1b (Qo�1b = 0), which might favor the spread of261

pathogens from 1a towards other zones within the ward, leading to more infections occurring262

until outbreak detection.263

In general terms, worse scenarios can be identified for values δ�1 = 48h and β0 = 27m3 ·264

min�1, where the long-tailed distribution of R for these scenarios in Figure 3 indicates that265

large outbreaks occur with significant probability. Larger differences among ventilation settings266

are also found for value δ�1 = 48h. Thus, our results suggest that ventilation of the ward should267

11
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be of special concern for pathogens that have longer infectious asymptomatic periods, or in268

hospital wards with more limited surveillance policies. It is also clear that the average individual269

detection time δ�1 has a higher impact on the infection spread than the specific ventilation27�

setting in the ward, so that outbreak detection seems to dominate ventilation regarding infection271

spread.272

4.2 Dependence on location of initial infective273

In Figure 4 we plot analogous results to those in Figure 3 when the infective patient start-274

ing the outbreak is located at zones {1a� 1b� 2a� 2b}, for δ�1 = 12h and β0 = 9 m3 · min�1.275

Corresponding mean values E[R] are reported in Table 4. We note that zones 3a and 3b are276

equivalent to zones 1a and 1b, for all ventilation settings in Figure 2, and thus we do not test277

them. For zones near the corridor (i.e., 1b and 2b), ventilation setting B is identified as the best278

one, while D is identified as the worst one. We note that ventilation setting B has no extract279

ventilation at zones 1b and 2b (Qo�1b = Qo�2b = 0), but it directs the airflow instead towards28�

corridor areas. In this setting B, corridor areas have no patients and significant ventilation,281

with airflow unbalance from bays to corridor areas acting in practice as an infection control282

measure. Thus, our results suggest that the spread control ability of a given ventilation setting283

depends on the location of the patient starting the outbreak as well as the airflow direction.284

However, from results in Figure 4 and Table 4, ventilation setting D seems to perform poorly285

regardless of the initial infective location, suggesting that some ventilation settings might be286

inadvisable regardless of this location (i.e., if this location is unknown).287

Table 4: Mean values E[R] for distributions in Figure 4; that is, for different locations of the initial infective
Location A B C D E F
1a 1.75 1.54 1.24 1.75 1.75 1.50
1b 1.74 1.28 1.57 1.93 1.50 1.73
2a 1.79 1.57 1.27 1.79 1.78 1.54
2b 1.78 1.32 1.62 1.98 1.54 1.78

When focusing on a particular location for the initial infective, comments above are sup-288

ported by the sensitivity analysis on the ventilation parameters. For example, in Tables 5-289

6 we report, for ventilation parameters θ ∈ {β0� Qo�1a� . . . � Qo�c3� βQ1a�1b� . . . � βQc3�3b}, partial29�

derivatives ∂E[R]/∂θ and elasticities (∂E[R]/∂θ) · (θ/E[R]) for ventilation settings B and D,291

δ�1 = 12h, β0 = 9 m3 · min�1 and an infective patient starting the outbreak at zone 1b. We292

note that while dimensionless elasticities are useful for comparison purposes, they equal zero293

if parameter θ is zero.294

Regime B requires airflow towards the corridor in order to expel pathogens from zone 1b,295

since Qo�1b = 0. Thus, rates βQ1b�c1, Qo�c1, Qo�c2 and Qo�c3 correspond to significantly large296

negative elasticities reported in Table 5 (i.e., increasing the values of these rates would lead297

to decreasing values of E[R]). Global mixing rate β0 has a significant impact (large positive298

elasticity) favoring disease spread, since increasing the value of β0 represents increasing the rate299

at which pathogens flow among all zones, instead of flowing specifically towards the extract3��

ventilation areas (corridors in this setting).3�1

According to results in Table 6, ventilation setting D could be significantly improved by3�2

increasing extract ventilation (especially at zones 1a, 1b and c1), as well as increasing airflow3�3

from 1b to 1a and to c1. This is directly related to the fact that, since there is no extract3�4

12
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Figure 4: Probability mass function of the number R of infections until the end or detection of the outbreak,
for ventilation settings A− F . Declaration of the outbreak occurs once one patient shows symptoms, and
each infective patient shows symptoms after an average time δ�1 = 12h. Initial infective located at zones
{1a� 1b� 2a� 2b}. Global mixing rate β0 = 9 m3 ·min�1

ventilation at zone 1b, infectious material in this zone can only be expelled by directing it3�5

towards adjacent zones 1a and c1.3�6

4.3 Decreasing hospital ward infection spread risk might increase3�7

risk at specific bays3�8

It is clear that the number, R, of infections occurring until the end or detection of the outbreak3�9

can be split according to where these infections actually occur as31�

R = R(1) + R(2) + R(3);

where R(j) is the number of infections occurring at bay j. Although probabilities �(R(j) = n)311

can be analytically computed by adapting arguments in Section 3, details are omitted here for312
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Table 5: Partial derivatives and elasticities of E[R] with respect to ventilation parameters, for setting
B. Average individual detection time δ�1 = 12h, global mixing rate β0 = 9 m3 · min�1, and an initially
infective patient starting the outbreak at zone 1b

Partial Derivatives Elasticities
β0 0.0230 βQ2b�c2 −0.0141 Qo�1b −0.0890 β0 0.2899 βQ2b�c2 −0.1042 Qo�1b 0

βQ1a�1b −0.0201 βQc2�2b 0.0243 Qo�c1 −0.0398 βQ1a�1b −0.1483 βQc2�2b 0 Qo�c1 −0.2876
βQ1b�1a 0.0207 βQc2�c3 0.0019 Qo�2a −0.0209 βQ1b�1a 0 βQc2�c3 0 Qo�2a 0
βQ1b�c1 −0.0382 βQc3�c2 −0.0008 Qo�2b −0.0274 βQ1b�c1 −0.2735 βQc3�c2 0 Qo�2b 0
βQc1�1b 0.0301 βQ3a�3b −0.0032 Qo�c2 −0.0221 βQc1�1b 0 βQ3a�3b −0.0240 Qo�c2 −0.1615
βQc1�c2 0.0097 βQ3b�3a 0.0060 Qo�3a −0.0120 βQc1�c2 0 βQ3b�3a 0 Qo�3a 0
βQc2�c1 −0.0041 βQ3b�c3 −0.0081 Qo�3b −0.0159 βQc2�c1 0 βQ3b�c3 −0.0601 Qo�3b 0
βQ2a�2b −0.0056 βQc3�3b 0.0141 Qo�c3 −0.0132 βQ2a�2b −0.0420 βQc3�3b 0 Qo�c3 −0.0971
βQ2b�2a 0.0106 Qo�1a −0.1089 βQ2b�2a 0 Qo�1a 0

Table 6: Partial derivatives and elasticities of E[R] with respect to ventilation parameters, for setting
D. Average individual detection time δ�1 = 12h, global mixing rate β0 = 9 m3 · min�1, and an initially
infective patient starting the outbreak at zone 1b

Partial Derivatives Elasticities
β0 −0.0032 βQ2b�c2 −0.0198 Qo�1b −0.1746 β0 −0.0151 βQ2b�c2 0 Qo�1b 0

βQ1a�1b 0.0184 βQc2�2b 0.0241 Qo�c1 −0.0872 βQ1a�1b 0 βQc2�2b 0 Qo�c1 −0.1356
βQ1b�1a −0.0248 βQc2�c3 0.0046 Qo�2a −0.0411 βQ1b�1a 0 βQc2�c3 0 Qo�2a −0.1278
βQ1b�c1 −0.0212 βQc3�c2 −0.0026 Qo�2b −0.0718 βQ1b�c1 0 βQc3�c2 0 Qo�2b 0
βQc1�1b 0.0124 βQ3a�3b 0.0053 Qo�c2 −0.0590 βQc1�1b 0 βQ3a�3b 0 Qo�c2 −0.0918
βQc1�c2 0.0167 βQ3b�3a −0.0074 Qo�3a −0.0293 βQc1�c2 0 βQ3b�3a 0 Qo�3a −0.0912
βQc2�c1 −0.0090 βQ3b�c3 −0.0140 Qo�3b −0.0516 βQc2�c1 0 βQ3b�c3 0 Qo�3b 0
βQ2a�2b 0.0074 βQc3�3b 0.0171 Qo�c3 0.0434 βQ2a�2b 0 βQc3�3b 0 Qo�c3 −0.0675
βQ2b�2a −0.0102 Qo�1a −0.1017 βQ2b�2a 0 Qo�1a −0.3165

the sake of brevity, and results in Table 7 are obtained from 106 stochastic simulations of the313

process.314

In Table 7, we report values of E[R] = E[R(1)] +E[R(2)] +E[R(3)] for β0 = 9 m3 ·min�1,315

δ�1 = 48h, ventilation settings A, D and E, and an infective patient starting the outbreak at316

zone 1a. Results suggest that epidemic spread can be limited by switching ward ventilation317

from setting D to A, and further containment is obtained by switching to ventilation setting E.318

However, infection risk in bay 1 (in terms of E[R(1)]) behaves contrarily; although the global319

hospital ward infection risk (in terms of E[R]) is lower for setting E, this is at the expense32�

of expelling pathogens from the infected zone 1a towards zones 1b and c1, and thus posing a321

greater risk to patients in bay 1.322

Table 7: Mean values of E[R], E[R(1)], E[R(2)] and E[R(3)] for β0 = 9 m3 · min�1, δ�1 = 48h and
ventilation settings A, D and E. Initially infective individual at zone 1a

Regime E[R] E[R(1)] E[R(2)] E[R(3)]
A 5.01 2.65 1.34 1.02
D 5.20 2.56 1.47 1.17
E 4.86 2.69 1.25 0.92

14

Page 16 of 26Risk Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

4.4 Interplay with detection management323

As explained in subsection 3.3, detection and declaration of an outbreak in the hospital ward324

may require several patients showing symptoms, and not only one. In Figure 5 we plot analo-325

gous results to those in Figure 3 when declaration of the outbreak occurs after D = 2 patients326

show symptoms (each after average time δ�1). The corresponding mean values of E[R] are327

reported in Table 8.328

We note that values in Table 8 are significantly larger than those in Table 3, since outbreak329

declaration takes longer to occur allowing for more infections to take place. This increase is33�

significantly larger than the differences that can be observed, in Table 3, between different331

ventilation settings, suggesting again that detection policy is likely to dominate ventilation332

as an infection control strategy. Under slow detection scenarios (δ�1 = 48h), we observe in333

Figure 5 a clear bi-modality for the distribution of R. Thus, our model predicts that under334

slow detection, a two-output situation can be expected: either the initially infective patient is335

discharged before infecting any other patient (so that R = 0), or this patient infects a second336

patient, leading to a large outbreak (represented by the second mode in Figure 5).337

Figure 5: Probability mass function of the number R of infections until the end or detection of the
outbreak, for ventilation settings A − F . Declaration of the outbreak occurs once two patients show
symptoms, and each infective patient shows symptoms after an average time δ�1 ∈ {12h� 48h}. Global
mixing rate β0 ∈ {9� 27} m3 ·min�1. Initial infective located at zone 1a
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Table 8: Mean values of E[R] for scenarios in Figure 5.
β0 δ�1 A B C D E F
9 12h 3.20 2.78 2.33 3.26 3.14 2.79

48h 8.42 7.31 6.78 8.79 8.10 7.72
27 12h 3.52 3.28 3.07 3.50 3.49 3.34

48h 9.37 8.87 8.63 9.39 9.26 9.10

4.5 Screening at admission338

In subsections 4.1-4.4, we analyse infection spread under the assumption that each individual339

at zone j is detected (by showing symptoms) at rate δj, with δj = δ for all j, and where the34�

outbreak is detected and declared after one (or several) infective patients are detected. This341

leads to the contribution
�M

j=1 δjij in Eqs. (4)-(5). However, if the detection of the outbreak342

is due instead to the screening of the newly admitted patient who starts the outbreak, and343

results of this screening arrive after an average time δ�1, then the outbreak is detected at rate344

δ, and one needs to replace
�M

j=1 δjij by δ in Eqs. (4)-(5).345

Under this hypothesis, we plot in Figure 6 the probability mass function of the number R346

of infections until the end or detection of the outbreak, when the results of this screening (and347

thus, the declaration of the outbreak) arrive after an average time δ�1 ∈ {4h� 8h� 12h� 24h}.348

Corresponding mean values of E[R] are reported in Table 9. If results arrive after δ�1 = 4349

hours, ventilation has a less significant impact on the nosocomial spread, and low values of E[R]35�

are reported in Table 9. The number of infections until the end or detection of the outbreak351

proportionally increases with the delay δ�1 in obtaining the screening results. In particular, for352

δ�1 = 24 hours significant differences in E[R] can be noticed among the different ventilation353

settings, and a marked bi-modality can be observed in Figure 6.354

Table 9: Mean values E[R] for scenarios in Figure 6
δ�1 A B C D E F
4h 1.12 0.92 0.66 1.11 1.11 0.89
8h 2.66 2.13 1.63 2.72 2.59 2.16
12h 4.24 3.43 2.74 4.36 4.11 3.54
24h 8.15 6.91 5.94 8.36 7.91 7.17

4.6 Ventilation and over-occupancy355

In this subsection our aim is to shed some light on the interplay between ventilation, nosocomial356

spread and over-occupancy of the hospital ward. We represent hospital ward over-occupancy357

by locating three additional patients at the corridor areas; in particular, we set N = 21 and358

locate one additional patient at each of the {c1� c2� c3} zones. This practice is common in UK359

hospitals during times of high demand. We assume that the outbreak is detected and declared36�

after the first patient shows symptoms, each patient showing symptoms after an average time361

δ�1 = 12h. For interzonal mixing β0 = 9 m3 ·min�1, we report in Table 10 the mean number362

R of infections until the end or detection of the outbreak, for ventilation settings A− F , and363

for the initial infective patient being located at zones {1a� c1� c2� c3}.364

We first note that results in Table 10 are exactly the same for an initially infective individual365

being located at zones c1 and c3. This is explained by noting that bays 1 and 3 are completely366
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Figure 6: Probability mass function of the number R of infections until the end or detection of the
outbreak, for ventilation settings A− F . Declaration of the outbreak occurs after an average time δ�1 ∈
{4h� 8h� 12h� 24h}, which is independent of the number of infectives and represents a screening event.
Global mixing rate β0 = 9 m3 ·min�1. Initial infective located at zone 1a

Table 10: Mean values E[R] for a hospital ward with over-occupancy. Patients show symptoms after an
average time δ�1 = 12h, and we set β0 = 9 m3 ·min�1

Location of initial infective A B C D E F
1a 2.01 1.82 1.37 2.04 2.02 1.72
c1 1.95 1.14 1.95 2.19 1.71 1.92
c2 1.99 1.18 2.00 2.23 1.75 1.96
c3 1.95 1.14 1.95 2.19 1.71 1.92

symmetric for all ventilation settings as noted in subsection 4.2; see diagrams and matrices in367

Figure 2. On the other hand, when the initial infective patient is located at zone 1a, results368

in Table 10 can be compared to those in Table 3 for (δ�1� β0) = (12h� 9 m3 · min�1). For369

zone 1a, values of E[R] are larger in Table 10 than in Table 3; if the nosocomial outbreak is37�

initiated by an infective patient at zone 1a, more infections during this outbreak should be371

expected under ward over-occupancy. This might not be only related to having more patients372

in the ward under over-occupancy (21 instead of 18), but also to the potential of patients in the373

corridor to act as infection links between bays. For example under over-occupancy, an infective374

individual at zone 1a might infect individuals in bay 2 by, as a first step, infecting individuals375

in the corridor areas. These people then might more easily infect individuals at bay 2, before376

being discharged, due to being in closer proximity and depending on the particular ventilation377
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setting in place in the ward.378

Infection dynamics related to the scenario above highly depend on the particular ventilation379

setting under study, which can be noticed by inspecting rows corresponding to zones {c1� c2� c3}38�

in Table 10. While an individual at zone 1a has a larger infectious potential (in terms of E[R])381

than individuals located at the corridor when ventilation settings B and E are in place, this is382

not the case for ventilation settings C, D and F, and these infectious potentials are comparable383

under ventilation setting A which represents a well-mixed scenario. Our results then indicate384

that over-occupancy leads in general to higher airborne spread risks, and that this increase can385

be especially significant depending on the specific ventilation in place.386

4.7 The unit of infection387

We note that parameter q is highly pathogen-dependent, ranging from q ∼ 0.01 quanta ·min�1
388

for rhinovirus to q ∼ 10 quanta · min�1 for measles.20 We perform a parametric analysis by389

varying q to assess the sensitivity of our conclusions, and report expected infections E[R] until39�

the end of the outbreak in Table 11. In particular, we are interested in the mean number E[R]391

of infections if the outbreak is detected upon the first patient showing symptoms, each patient392

showing symptoms after an average time δ�1 = 12h, and where we consider β0 = 9 m3 ·min�1.393

We note that, as expected, increasing values of q lead to increasing mean number E[R] of394

infections. However, this does not seem to affect the relative infectiousness of ventilation setting395

C, which is identified as the best scenario regardless of the value of q. On the other hand, less396

advantageous ventilation schemes are dependent on value of q. For example, ventilation setting397

A and E can be identified as the worst for q = 0.1 quanta ·min�1, while setting D can be seen398

as the worst one for q = 50.0 quanta ·min�1.399

Table 11: Mean number E[R] of infections until end or declaration of the outbreak, for β0 = 9 m3 ·
min�1 and when outbreak declaration occurs after the first patient shows symptoms. Each patient shows
symptoms after an average time δ�1 = 12h. Different values of q (quanta ·min�1) considered

q A B C D E F
0.1 0.41 0.36 0.27 0.38 0.42 0.34
0.5 1.75 1.54 1.24 1.75 1.74 1.50
1.0 3.06 2.66 2.26 3.14 3.00 2.69
10.0 11.43 10.44 10.16 11.75 11.13 10.92
50.0 15.54 15.12 15.05 15.66 15.41 15.35

5 Discussion and Conclusions4��

In this work, we link a zonal ventilation model for the generation and airborne spread of4�1

infectious material within a hospital ward, with a multi-compartment SIS Markovian model for4�2

the infection of patients within this ward. Our model incorporates the possibility of considering4�3

a wide range of ventilation settings, the discharge and arrival of patients within the ward, as well4�4

as different hypotheses regarding how outbreak detection and declaration occurs. Moreover,4�5

it allows us to explore the interplay between ventilation, outbreak management, ward over-4�6

occupancy and the location of the infective patient starting the outbreak.4�7

Our results suggest that detection time dominates ventilation when the variable of interest4�8

is the number of infections occurring before the declaration or end of the outbreak, with longer4�9
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detection times leading to significantly more infections happening. Longer detection times can41�

arise when analysing pathogens with long infectious asymptomatic periods, when declaration of411

an outbreak requires for several patients to show symptoms, or when this declaration depends412

on screening events for which results take longer to arrive. The interplay between ventilation413

of the hospital ward and location of the initially infective patient starting the outbreak implies414

that recommendations on where to locate potentially infected (e.g. newly admitted) patients415

in a given hospital ward could be issued depending on the ventilation in place in the ward.416

Our model also predicts that decreasing the infection spread risk in the hospital ward can417

sometimes go at the expense of increasing the risk in particular areas of the ward.418

Similar models have already been considered in the literature for linking zonal ventilation419

scenarios with epidemic spread models,3,13,20 where epidemic dynamics are usually analysed42�

by means of stochastic simulations. To the best of our knowledge, this is the first time that421

this link is carried out by defining in detail the continuous-time Markov chain for the infection422

spread, where infection rates at each ventilation zone are in fact functions λj(i1� . . . � iM) of423

the number of infectives at each zone at any given time, and where (i1� . . . � iM) represents in424

fact a state of the CTMC under study. This detailed mathematical construction allows for the425

analytical computation of summary statistics (such as R in this work), and for carrying out a426

local sensitivity analysis that allows one to identify the particular factors of each ventilation427

setting having the most significant impact on the infection spread.428

It should be noted that the primary objective in this study is to demonstrate this detailed429

mathematical analysis and how it can be applied to evaluate the relative influence of different43�

parameters. The model is applied to a hypothetical hospital ward, which, while it is represen-431

tative of multi-bed ward environments in many hospitals, is a very simplified model of reality.432

The results demonstrate that the ventilation flow settings may influence the dispersion of air-433

borne pathogens and hence the risk of transmission, however these should be interpreted with434

caution. We assume a steady state ventilation scenario with the flow pattern replicated exactly435

between neighboring bays 1, 2 and 3. In reality, the flows will not be exactly identical for every436

bay, and other factors such as heat sources and movement of people will alter the mixing with437

and between zones. In particular, corridor ventilation often has a directional flow due to wider438

spacing of ventilation supply/extract grilles which may hinder or improve the control of infec-439

tion. However, the analysis we have carried out gives some clear insight into why particular44�

directional flows influence risk, and the relative importance of detection strategies, ventilation441

control and occupancy.442

It is clear that some of our conclusions could be highly dependent on the hospital ward443

structure, and therefore the flexibility of our methodology comes into play. It can be applied444

to any hospital ward of interest by appropriately adapting the corresponding ventilation matrix445

V. Although carrying out a detailed mathematical analysis of a number of potentially different446

hospital ward structures is out of the scope of this paper, we include a short numerical study447

of an alternative hospital ward in the Supplementary Material. The aim of this is two-fold: (i)448

to show how our methodology can be easily implemented for a different hospital ward to that449

in Figure 2 by just adapting the ventilation matrix V, illustrating how this matrix varies with45�

hospital ward structure; and (ii) to show that while some of our conclusions might be hospital451

ward structure dependent, others seem to be valid for a wide range of hospital ward structures452

(e.g. detection dominates ventilation as well in this alternative hospital ward).453

In this paper, we go beyond the SI epidemic model in,20 proposing an SIS-type model which454

allows us to incorporate patients’ arrival/discharge and outbreak detection and declaration. We455

note that this epidemic model structure would be especially relevant for pathogens with no or456
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short (i.e. negligible compared to the average patient’s length of stay) non-infectious or latent457

periods, and where the infectious period is long enough so that recovery of patients does not458

occur before discharge (or detection). Depending on the hospital ward under analysis and the459

average length of stay of patients in this ward, this could be the case for influenza or norovirus.46�

Pathogens with non-negligible incubation periods (e.g. 7-21 days for measles) might require461

more complex stochastic epidemic model structures such as the SEIR (susceptible-exposed-462

infective-recovered). On the other hand, when analysing hospital wards with longer average463

patient’s length of stay, so that individuals may become infected and recover during their stay,464

SIRS-type epidemic models would be required, to represent the recovery of patients (I → R)465

before discharge (R → S) occurs. We note here that in principle, the methodology outlined466

in Section 3 can be extended to any of these compartmental-based epidemic models for the467

disease spread dynamics, where the link between the deterministic zonal ventilation model for468

the airflow dynamics and the stochastic epidemic model for disease spread dynamics would still469

be as in Section 2. In a similar way, more complex epidemic model structures could allow one47�

to study the infection spread dynamics after outbreak detection and declaration occurs. In this471

paper, we have focused instead on the impact of ventilation on disease spread until the end472

or declaration of the outbreak. Considering these alternative compartmental-based epidemic473

model structures could be the aim of future work.474

Finally, we note that when carrying out our analysis, the main computational effort lies475

in solving systems of linear equations, where the number of equations is determined by the476

number of states of the corresponding CTMC, given by Eq. (6) in our model. Limitations of477

our approach are then of computational nature, since highly complex epidemic models (here,478

a multi-compartment SIS stochastic model with detection) linked to large hospital wards split479

in many different ventilation zones (here, M = 9 zones with three empty zones and six zones48�

containing three patients each) would lead to an intractable number of equations, and stochastic481

simulation approaches would prevail.482

Data� Software and Reproducibility483

Computer codes (in Python) in order to reproduce our numerical results are available at an484

on-line repository.31485
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Appendix565

First-step arguments566

We explain here in detail how Eq. (4) is obtained, in order to compute probabilities567

p�i1�i2�...�iM )(n) = �(R = n | (I1(0)� I2(0)� . . . � IM(0)) = (i1� i2� . . . � iM))�

for any initial state (i1� . . . � iM) ∈ �. These equations are obtained by following a first-step
argument, and applying the total probability law regarding the following event occurring in
the stochastic process. In particular, let us denote by (i1� i2� . . . � ij� . . . � iM) → (i1� i2� . . . � ij +
1� . . . � iM) the event representing that, if the process is initially at state (i1� i2� . . . � ij� . . . � iM), it
moves to state (i1� i2� . . . � ij+1� . . . � iM) in the next jump (that is, that we have (i1� i2� . . . � ij� . . . � iM)
infectives within the hospital ward at current time, and the next event that occurs is an infec-
tion at zone j). From the theory of CTMCs, it is well-know that the probability of this event
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occurring is

�((i1� i2� . . . � ij� . . . � iM) → (i1� i2� . . . � ij + 1� . . . � iM))

=
λj(i1� . . . � iM)(Nj − ij)

�

k

(λk(i1� . . . � iM)(Nk − ik) + (γk + δk)ik)
;

that is, it is equal to the ratio between the rate corresponding to this event and the sum of
all the rates corresponding to all the possible events that can actually occur (infection at any
zone, discharge at any zone or detection of an infective individual at any zone). Same argument
applies to any other possible event, so that �((i1� i2� . . . � ij� . . . � iM) → (i1� i2� . . . � ij−1� . . . � iM))
is given by

γjij
�

k

(λk(i1� . . . � iM)(Nk − ik) + (γk + δk)ik)

and �((i1� i2� . . . � ij� . . . � iM) → Δ) is given by

�

j

δjij

�

k

(λk(i1� . . . � iM)(Nk − ik) + (γk + δk)ik)
.

Thus, we can apply the total probability law so that p�i1�...�iM )(0) = �(R = 0) is equal to

M
�

k=1

�

�(R = 0 | (i1� . . . � iM) → (i1� . . . � ik + 1� . . . � iM))�((i1� . . . � iM) → (i1� . . . � ik + 1� . . . � iM))

+ �(R = 0 | (i1� . . . � iM) → (i1� . . . � ik − 1� . . . � iM))�((i1� . . . � iM) → (i1� . . . � ik − 1� . . . � iM))

�

+ �(R = 0 | (i1� . . . � iM) → Δ)�((i1� . . . � iM) → Δ)

=
1

M
�

j=1

(λj(i1� . . . � iM)(Nj − ij) + (γj + δj)ij)

M
�

k=1

�

γkikp�i1�...�ik�1�...�iM )(0) + δkik
�

�

corresponding to Eq. (4).568

Algorithms569

Algorithm 1 (For computing the probability distribution of R)57�

For all (i1� . . . � iM) ∈ �, compute and store λj(i1� . . . � iM), for 1 ≤ j ≤ M , from Eq. (3);571

n = 0;572

p�0�0�...�0)(0) = 1;573

For I = 1� 2� . . . � N :574

For all i = (i1� i2� . . . � iM) s.t.
M
�

j=1

ij = I:575

p�(0) = 1�

j

�λj�i1�...�iM )�Nj�ij)+�γj+δj)ij)

�

k

�

γkikp�i1�...�ik�1�...�iM )(0) + δkik
�

576
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For Peer Review

For n = 1� 2� 3� . . . :577

p�0�0�...�0)(n) = 0;578

For I = 1� 2� . . . � N :579

For all i = (i1� i2� . . . � iM) s.t.
M
�

j=1

ij = I:58�

p�(n) = 1�

j

�λj�i1�...�iM )�Nj�ij)+�γj+δj)ij)

�

k

�

γkikp�i1�...�ik�1�...�iM )(n) + λk(i1� . . . � iM)581

×(Nk − ik)p�i1�...�ik+1�...�iM )(n− 1)
�

;582
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