

This is a repository copy of *Biotic responses to volatile volcanism and environmental* stresses over the Guadalupian-Lopingian (Permian) transition.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/142783/

Version: Accepted Version

Article:

Huang, Y, Chen, ZQ, Wignall, PB et al. (4 more authors) (2019) Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lopingian (Permian) transition. Geology, 47 (2). pp. 175-178. ISSN 0091-7613

https://doi.org/10.1130/G45283.1

© 2018 Geological Society of America. This is an author produced version of a paper published in Geology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

	D' /'	1 . 1	1 •	1	• / 1
1	Biofic responses	to volatile	volcanism	and	environmental
1		to volutile	voicambin	unu	onvironnentui

- 2 stresses over Guadalupian-Lopingian (Permian) transition
- 3 Yuangeng Huang¹, Zhong-Qiang Chen^{1*}, Paul B. Wignall², Stephen E. Grasby³,
- 4 Laishi Zhao⁴, Xiangdong Wang⁴, and Kunio Kaiho⁵
- ⁵ ¹State Key Laboratory of Biogeology and Environmental Geology, China University of
- 6 Geosciences, Wuhan 430074, China
- ⁷ ²School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- 8 ³Geological Survey of Canada, Calgary AB T2L-2A7, Canada
- ⁹ ⁴State Key Laboratory of Geological Processes and Resource Geology, China University
- 10 of Geosciences, Wuhan 430074, China
- ⁵Institute of Paleontology and Geology, Tohoku University, Sendai, Japan
- 12 *E-mail: zhong.qiang.chen@cug.edu.cn

13 ABSTRACT

Biotic extinction during the Guadalupian–Lopingian (G–L) transition is actively debated, with its timing, validity, and causality all questioned. Here we show, based on detailed sedimentary, paleoecologic, and geochemical analyses of the Penglaitan section in South China, that this intra-Permian biotic crisis began with the demise of a metazoan reef system and extinction of corals and alatoconchid bivalves in the late Guadalupian. A second crisis, amongst nektonic organisms occurred around the G-L boundary. Mercury concentration/total organic Carbon (Hg/TOC) ratios show two anomalies. The first

21	Hg/TOC peak broadly coincided with the reef collapse and a positive shift in Δ^{199} Hg
22	values during a lowstand interval, which was followed by a microbial proliferation. A
23	larger Hg/TOC peak is found just above the G-L boundary and speculatively represents a
24	main eruption episode of Emeishan Large Igneous Province (ELIP). This volatile
25	volcanism coincided with nektonic extinction, a negative $\delta^{13}C_{carb}$ excursion, anoxia, and
26	sea-level rise. The temporal coincidence of these phenomena supports a cause-and-effect
27	relationship, and indicates that the eruption of ELIP likely triggered the G-L crisis.
28	INTRODUCTION
29	The fossil record of several major benthic groups from South China reveals a
30	major extinction event around the G-L transition (Jin, 1993; Stanley and Yang, 1994). A
31	contemporaneous biotic crisis has also been recognized in the high-latitude Spitsbergen
32	sections (Bond et al., 2015). However, study of this crisis is hindered by the widespread
33	absence of uppermost Guadalupian and lowermost Lopingian strata due to a major
34	eustatic regression (Haq and Schutter, 2008). Thus, there remains considerable debate
35	about the timing of the extinction: did it occur at the G-L boundary (GLB) or within the
36	Late Guadalupian? Furthermore, the temporal link of the G-L crisis with Emeishan large
37	igneous province (ELIP) suggests that these flood basalt eruptions triggered the crisis
38	(Wignall et al., 2009; Bond et al., 2010).
39	Here, we examined the G-L succession at the Global Stratotype Section and Point
40	(GSSP) at Penglaitan (PLT) in South China (Fig. 1). This study reports a new metazoan

41	reef, which is investigated alongside a diverse new data set including new carbon isotope
42	values, mercury (Hg) concentrations, and Hg isotopes, that reveal reef collapse and
43	nektonic crisis coincided with extreme environment and volatile volcanism.
44	GEOLOGICAL SETTING AND METHODS
45	During the G–L transition, the South China craton was located near the equator in
46	the eastern Paleo-Tethys Ocean (Fig. 1A). Today, the PLT is situated ~20 km southwest
47	of Laibin, Guangxi Province. Here, the Guadalupian strata comprise the Maokou
48	Formation, and the basal Lopingian consists of the Heshan Formation. The G-L strata are
49	subdivided into seven beds (Fig. 1B). Bed 1 is made of siliceous mudstone with chert
50	nodules, and Beds 2–6 have been termed the Laibin Limestone. Beds 2–4 form the major
51	part of a skeletal reef (Fig. 1B), which is capped by bioclastic packstone (Bed 5). Bed 6 is
52	dominantly a crinoidal grainstone while Bed 7 consists of thin-bedded, siliceous
53	mudstone and chert. The GLB is placed at the base of Bed 6k (Fig. 3) and defined by the
54	first occurrence of conodont Clarkina postbitteri postbitteri (Jin et al., 2006).
55	Fresh rock chips were prepared for microanalysis using a scanning electron
56	microscope to search for microbiota. Rock chips were ground to fine powder using a
57	puck mill for geochemical analysis. $\delta^{13}C_{carb}$ were determined using a Finnigan MAT 251
58	mass spectrometer, and reported as per mil (‰) relative to Vienna Pee Dee belemnite
59	standard. Volcanism is a major source of Hg to Earth's surface environments, and the
60	accumulation of Hg in sediment can be used as a proxy indicating ancient volcanism

61	(Sanei et al., 2012). Hg enrichment is depicted by normalizing to total organic carbon
62	(TOC) due to its high affinity to organic matter. TOC and Hg contents were measured on
63	Elementar vario Macro cube, and LECO AMA254 mercury analyzer, respectively.
64	Hg isotopes are used to trace the origin and the pathways of the Hg (e.g. Blum
65	and Bergquist., 2007), and their variations are reported in δ^{202} Hg notation referenced to
66	the NIST-3133 Hg standard:
67	$\delta^{202} \text{Hg} (\%) = \left[(^{202} \text{Hg}/^{198} \text{Hg}_{\text{sample}}) / (^{202} \text{Hg}/^{198} \text{Hg}_{\text{standard}}) - 1 \right] \times 1000 (1)$
68	Mass-independent fractionation (MIF) of Hg isotope is reported in Δ -notation
69	(Δ^{xxx} Hg), describing the difference between the measured δ^{xxx} Hg and the theoretically
70	predicted δ^{xxx} Hg value:
71	$\Delta^{xxx}Hg \approx \delta^{xxx}Hg - \delta^{202}Hg \times \beta (2)$
72	β is equal to 0.2520 for $^{199}\text{Hg},$ 0.5024 for $^{200}\text{Hg},$ and 0.7520 for ^{201}Hg (Blum and
73	Bergquist, 2007).
74	The analytical precision is better than $\pm 0.1\%$ for $\delta^{13}C$, $\pm 0.2\%$ for $\delta^{18}O$, $\pm 10\%$
75	for Hg concentration, \pm 5% for TOC and \pm 0.04‰ for Δ^{199} Hg. Detailed laboratory
76	methods and full data are given in the GSA Data Repository.
77	RESULTS
78	Reef Ecosystem Collapse, and Biodiversity Variations near the GLB
79	Beneath the Laibin Limestone, the Maokou Formation consists of cherty
80	wackestone beds with radiolarians, indicative of a distal ramp to basin setting. A sharp
81	contact is then followed by massive limestones that form a ~ 25 m wide and ~ 5 m thick
	Page 4 of 18

82	reef (Beds 2–4) (Fig. 1B), with the reef core composed of bryozoan-Tubiphytes
83	framestone (Fig. 2A), coral framestone (Fig. 2C), bryozoan bindstone, and alatoconchid
84	wacke-packstone. The first facies forms the major part of the reef, with in situ bryozoan
85	colonies acting as bafflers and binders. The reef core yields a diverse assemblage of
86	algae, echinoderms, brachiopods, and crinoids encrusted with the bryozoan Fistulipora
87	(Fig. 2B). Alatoconchid shells (Fig. DR1) are another conspicuous component of the reef.
88	The reef is overlain by a cross-stratified grainstone (shoal bank facies; Bed 5) that is in
89	turn capped by a hardground surface. The overlying crinoidal grainstone with Skolithos
90	traces (Fig. DR2), records the persistence of shallow-water following demise of the reef.
91	Bed 7 includes chert and siliceous mudstone, as well as pelagic faunas (ammonoid,
92	sponges, radiolarians), that point to deep-water conditions.
93	We identified 13 species including small foraminifers (Pachyphloia ovate,
94	Diplosphaerina sp., and Ammodiscus planus), bryozoans (Septopora indet., Fenstella
95	indet., and Fistulipora indet.), corals (Ufimia elongata and Amplexocarinia sp.), giant
96	bivalve (Shikamaia sp.), ammonoid (Pleuronautilus sp.), incertae sedis species
97	(Tubiphytes obscures, Girvanella sp., and Archaeolithoporella sp.). A total of 48
98	species/indet. species have been obtained from PLT, including: calcareous algae,
99	bivalves, brachiopods, bryozoans, corals, crinoids, echinoids, foraminifera, gastropods,
100	ostracods, sponges and trilobites (Fig. 3). Most (46) species occur in the Laibin
101	Limestone, and only two persisted into the overlying Heshan Formation (Fig. 3). Around

102	half the biodiversity occurs in the reef facies and the remaining taxa, mostly foraminifera
103	occur in Bed 6 while few taxa are recorded by Bed 7 (Fig. 3).
104	Diverse Microbiota
105	Microbiota are abundant in the shoal bank facies of the upper Laibin Limestone,
106	including microborings and calcisphere aggregates. Four types of microbe-originated
107	microfossils are identified. Coccoid-like calcispheres (Figs. 2E-F) are comprised of
108	coarse-grained sparitic calcite nuclei coated with thin micritic envelopes, and they are
109	interpreted as endolithic coccoid bacteria (Salama et al., 2015). Bacterial clump-like
110	spheroids (Figs. 2H–I) consisting of dark colored, rounded micritic nuclei surrounded by
111	sparry calcite rims, are consistent with nucleation of bacterial clumps. The problematic
112	microorganism Ovummurus duoportius (Fig. 2G) is made of an ovoid wall, with an
113	internal chamber divided into two equal spaces by a septum-like structure. Microboring
114	Eurygonum nodosum occurs in brachiopod shells (Fig. 2D) and crinoid stems (Fig. 2J),
115	and is thought to be produced by the endolithic cyanobacterium Mastigocoleus testarum
116	(Gektidis et al., 2007).
117	Sea-level Changes
118	Sea-level changes associated with a 2nd-order global regression occurs around the

120 boundary occurs at the basal Laibin Limestone (Wignall et al., 2009). This level is

119

121 marked by the replacement of deep-water cherty limestones by the reef facies. Water

G-L transition (Haq and Schutter, 2008) and is well recorded at PLT where a sequence

122	depths continued to shallow and the trend culminates at the top of Bed 5 with the
123	development of a hardground. This was followed by a rapid upward deepening with
124	grainstone shoal facies of Bed 6 overlain by deep-water, finer grained facies of Bed 7
125	(Fig. 3).
126	Hg and TOC Concentrations
127	The strata below the Laibin Limestone comprise chert-rich limestones, and
128	contain low TOC, usually <0.1 wt.%, and Hg concentrations (mostly < 10 ppb) (Fig.
129	DR3). These low Hg values suggest only background levels of volcanic activity. Low
130	TOC values are not suitable for evaluating Hg/TOC (Grasby et al., 2016) below the
131	Laibin Limestone. In contrast, sediments of the Laibin Limestone and Heshan formations
132	have TOC concentrations varying from 0.12 to 2.76 wt.% that are decoupled from
133	variations of Hg concentrations that range up to 26.6 ppb. Hg/TOC ratios fluctuate from
134	2.1 to 64.1 ppb/wt.% during the Jinogondolella xuanhanensis Zone to lowermost C.
135	postbitteri postbitteri Zone, with a minor peak occurring in Bed 6b (Fig. 3). The ratio
136	then declines again before abruptly rising to peaks in the C. postbitteri postbitteri to C.
137	dukouensis Zones and finally returns to pre-extinction levels in the upper C. dukouensis
138	Zone.
139	Carbon and Mercury Isotopes
140	Our $\delta^{13}C_{carb}$ profile (Fig. 3) broadly tracks previous data (Wang et al., 2004; Jost

141 et al., 2014). The $\delta^{13}C_{carb}$ increases from +3‰ to +5‰ during J. xuanhanensis–C.

142	hongshuiensis Zones, with a minor negative excursion ($\sim 0.5\%$) in the upper J. granti
143	Zone, before a major shift to lighter values occurred in the Lopingian C. postbitteri
144	postbitteri–C. dukouensis Zones. MIF (Δ^{199} Hg) have negative values (-0.1‰ to -0.02‰)
145	in the PLT reef and suddenly rise to positive values in Bed 5 after the termination of the
146	reef, Δ^{199} Hg finally drop to negative values at the top of Bed 7 (Fig. 3). MDF (δ^{202} Hg)
147	ranges from -1.34% to 0.15‰. Because MDF (δ^{202} Hg) can result from many physical,
148	chemical and biological reactions, we do not interpret MDF (δ^{202} Hg) signatures here.
149	DISCUSSION
150	Reef Ecosystem Collapse, Benthos Turnover, and Proliferation of Microbiota
151	The PLT reef is composed of several microfacies suggesting the construction
152	occurred over a spectrum of bathymetric and environmental conditions. This helps
153	explain the high faunal diversity, because communities from many depths are recorded.
154	Following reef collapse, hardground and peritidal facies (Beds 5–6) were developed. Of
155	the reef biota, bryozoans are especially abundant but disappeared by the end-
156	Guadalupian. The alatoconchids represent the youngest occurrence of this aberrant giant
157	bivalve family, and their loss, along with the rugose corals, coincides with reef collapse.
158	Most foraminiferal species disappeared prior to Bed 7, and the forms in Bed 6 are already
159	dominated by post-extinction types. The turnover of pelagic fauna is clearly close to the
160	GLB. The ammonoid turnover from goniatite- to ceratite-dominated faunas right at the

161	earliest Lopingian (Ehiro and Shen, 2008). Conodonts also underwent a major turnover
162	from Jinogondolella group to Clarkina group 20 cm below the GLB (Jin et al., 2006).
163	In addition, an coeval sponge reef has also been reported from the adjacent
164	Tieqiao section in Laibin (Chen et al., 2009). Termination of reef development in both
165	PLT and Tieqiao sections suggests the collapse of metazoan reefs prior to the GLB. The
166	diversity of microbe-originated fossils in the Beds 5–6 is also noteworthy, indicating that
167	the vacated ecospace lost by metazoan reef was immediately refilled by microbiota.
168	Range data from the Laibin Limestone (Fig. 3) undoubtedly show a facies control on
169	taxonomic occurrences near the GLB. In contrast, there is a turnover of pelagic elements
170	(ammonoids and conodonts) around the GLB. Thus, biodiversity shows a stepwise
171	depletion in the Laibin Limestone, suggesting a disconnection between benthic and
172	pelagic crises.
173	Environment Perturbations
174	Two Hg spikes are recorded near the GLB in PLT (Fig. 3). The weak correlation
175	between Hg and TOC concentrations (correlation test, $P = 0.0138$, estimate = -0.4066 ; R^2
176	= 0.12; Fig. DR4) suggests that the stratigraphic pattern of Hg concentration is not due to
177	variation in TOC content. With respect to Hg sources, volcanic Hg has insignificant MIF
178	$(\Delta^{199}\text{Hg} \approx 0 \%)$ (Thibodeau and Bergquist, 2017). Once emitted to the environment, MIF
179	(Δ^{199} Hg) mostly occurs and results in positive Δ^{199} Hg values (Blum et al., 2014). In
180	general, marine sediments that received $Hg^{0}_{(g)}$ through terrestrial runoff tend to have

181	greater negative Δ^{199} Hg than atmospheric Hg ⁰ _(g) , and terrestrial resources acquire
182	negative Δ^{199} Hg values when plants and soils sequestrate Hg ⁰ _(g) (Thibodeau and
183	Bergquist, 2017).
184	In PLT, two Hg spikes occur with sustained positive Δ^{199} Hg values (Fig. 3),
185	indicating that sediments received Hg primarily through atmospheric Hg deposition.
186	Thus, the observed Hg peaks are likely due to increased atmospheric mercury loading
187	from a volcanic source. The termination age of ELIP (259.1 \pm 0.5 Ma) is likely to be
188	close to the age of GLB (Zhong et al., 2014), suggesting ELIP may be the Hg source. A
189	notable positive Hg/TOC anomaly observed around the GLB in the Festningen section,
190	Spitsbergen, (Grasby et al., 2016), has similar amplitude to the main Hg/TOC anomaly at
191	PLT, suggesting that biotic changes at PLT are in response to a global phenomenon.
192	The positive Δ^{199} Hg shift is consistent with increased direct atmospheric
193	deposition of volcanically derived Hg^{2+} to the ocean (Thibodeau and Bergquist, 2017).
194	This shift also coincides with the reef demise, implying that onset of ELIP eruption,
195	marked by increased Hg ²⁺ , may have caused reef development to cease through
196	significant CO2 release triggering greenhouse warming, as seen in conodont oxygen
197	isotopes record (Chen et al., 2011). Climate warming and elevated atmospheric nutrient
198	flux may have then stimulated the post-extinction microbial proliferation. The large
199	Hg/TOC peak in the C. postbitteri postbitteri to C. dukouensis Zones suggests intense
200	eruptions in the earliest Lopingian, coincident with a negative δ^{13} C shift.

201	Emeishan magmas are estimated to have released nearly 5 Mt of SO ₂ km ⁻³ (Zhang
202	et al., 2013), and the volume of the Emeishan basalts is at least 0.3×10^6 km ³ (Shellnutt,
203	2014). Thus, the total SO ₂ release would be $> 1.5 \times 10^6$ Mt, which corresponds to a total
204	Hg input of >31.5 Mt to the atmosphere (assuming a Hg/SO ₂ ratio of 0.21×10^{-4} ; Nriagu,
205	1989). Major fluxes of volcanic Hg have been postulated as a possible extinction
206	mechanism via poisoning of marine waters (Sanei et al., 2012). Marine anoxia is also
207	seen in several locations around the world (Bond et al., 2015; Zhang et al., 2015; Wei et
208	al., 2016) and is another potential cause of stress at this time. While the ELIP produced a
209	global Hg record that, at PLT and Spitsbergen, is timed with a biotic crisis, further work
210	in other regions is required to demonstrate global biotic impacts at this time.
211	CONCLUSIONS
212	The PLT provides a detailed record of major environmental and biotic changes in
213	the GLB interval, here summarized into four stages:
214	1) A metazoan reef containing a high diversity of framework builders (bryozoans,
215	Tubiphytes and corals) was developed prior to the GLB during a lowstand interval.
216	2) Two Hg/TOC anomalies occur either side of the GLB. The first, in the J. granti Zone,
217	coincides with the collapse of the reef and the loss of several coral species and the
218	alatoconchid bivalves. Positive Δ^{199} Hg values indicate this crisis is triggered by the
219	eruption of ELIP volcanism with the effusion of volatiles causing the Hg/TOC peak.

220	3) The end-Guadalupian saw the proliferation of microbiotas that may have benefitted
221	from climate warming and enhanced atmospheric nutrient input at this time.
222	4) Hg/TOC peaked in the earliest Lopingian, suggesting the acme of ELIP volcanism at
223	this time. This coincided with rapid sea-level rise and deep-water anoxia, and a
224	turnover amongst the pelagic biota which clearly post-dates the benthic crisis.
225	ACKNOWLEDGMENTS
226	We thank Pedro Marenco, Matthew Clapham and other anonymous reviewers for
227	critical comments. This study was supported by NSFC grants (41572091, 41772007,
228	41661134047) and Hubei Provincial Natural Science Foundation grant (2017CFA019). It
229	is a contribution to IGCP 630.
230	REFERENCES CITED
231	Blum, J., and Bergquist, B.A., 2007, Reporting of variations in the natural isotopic
232	composition of mercury: Analytical and Bioanalytical Chemistry, v 388, p. 353–359,
233	https://10.1007/s00216-007-1236-9.
234	Blum, J.D., Sherman, L.S., and Johnson, M.W., 2014, Mercury isotopes in Earth and
235	environmental sciences: Annual Review of Earth and Planetary Sciences, v. 42, p.
236	249-269, https://doi.org/10.1146/annurev-earth-050212-124107.
237	Bond, D.P.G., Hilton, J., Wignall, P.B., Ali, J.R., Stevens, L.G., Sun, Y., and Lai, X.,
238	2010, The Middle Permian (Capitanian) mass extinction on land and in the oceans:

- 239 Earth-Science Reviews, v. 102, p. 100–116,
- 240 https://doi.org/10.1016/j.earscirev.2010.07.004.
- 241 Bond, D.P.G., Wignall, P.B., Joachimski, M.M., Sun, Y., Savov, I., Grasby, S.E.,
- 242 Beauchamp, B., and Blomeier, D.P.G., 2015, An abrupt extinction in the Middle
- 243 Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and
- 244 acidification: Geological Society of America Bulletin, v. 127, p. 1411–1421,
- 245 https://doi.org/10.1130/B31216.1.
- 246 Chen, B., Joachimski, M.M., Sun, Y.D., Shem, S.Z., and Lai, X.L., 2011, Carbon and
- 247 conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary
- sections: Climatic or sea-level signal?: Palaeogeography, Palaeoclimatology,
- 249 Palaeoecology, v. 311, p. 145–153, https://doi.org/10.1016/j.palaeo.2011.08.016.
- 250 Chen, Z.Q., George, A.D., and Yang, W.R., 2009, Effects of Middle-Late Permian sea-
- level changes and mass extinction on the formation of the Tieqiao skeletal mound in
- the Laibin area, South China: Australian Journal of Earth Sciences, v. 56, p. 745–
- 253 763, http://dx.doi.org/10.1080/08120090903002581.
- Ehiro, M., and Shen, S.Z., 2008, Permian ammonoid Kufengoceras from the uppermost
- 255 Maokou Formation (Earliest Wuchiapingian) at Penglaitan, Laibin Area, Guangxi
- Autonomous Region, South China: Paleontological Research, v. 12, p. 255–259,
- 257 https://doi.org/10.2517/1342-8144-12.3.255.

258	Gektidis, M., Dubinsky, Z., and Goffredo, S., 2007, Microendoliths of the shallow
259	euphotic zone in open and shaded habitats at 30° N–Eilat, Israel–paleoecological
260	implications: Facies, v. 53, p. 43–55, https://doi.org/10.1007/s10347-006-0091-z.
261	Grasby, S.E., Beauchamp, B., Bond, D.P.G., Wignall, P.B., and Sanei, H., 2016, Mercury
262	anomalies associated with three extinction events (Capitanian crisis, latest Permian
263	extinction and the Smithian/Spathian extinction) in NW Pangea: Geological
264	Magazine, v. 153, p. 285–297, https://doi.org/10.1017/S0016756815000436.
265	Haq, B.U., and Schutter, S.R., 2008, A chronology of Paleozoic sea-level changes:
266	Science, v. 322, p. 64-68, https://doi.org/10.1126/science.1161648.
267	Jin, Y.G., 1993, Pre-Lopingian benthos crisis: Comptes Rendus XII ICC-P, v. 2, p. 269-
268	278.
269	Jin, Y.G., Shen, S.Z., Henderson, C.M., Wang, X., Wang, W., Wang, Y., Cao, C., and
270	Shang, Q., 2006, The Global Stratotype Section and Point (GSSP) for the boundary
271	between the Capitanian and Wuchiapingian stage (Permian): Episodes, v. 29, p. 253-
272	262.
273	Jost, A.B., Mundil, R., He, B., Brown, S.T., Altiner, D., Sun, Y., DePaolo, D., and Payne,
274	J.L., 2014, Constraining the cause of the end-Guadalupian extinction with coupled
275	records of carbon and calcium isotopes: Earth and Planetary Science Letters, v. 396,
276	p. 201–212, https://doi.org/10.1016/j.epsl.2014.04.014.

- 277 Nriagu, J.O., 1989, A global assessment of natural sources of atmospheric trace metals:
- 278 Nature, v. 338, p. 47–49, https://doi.org/10.1038/338047a0.
- 279 Salama, W., EI-Kammar, A., Saunders, M., Morsy, R., and Kong, C., 2015, Microbial
- 280 pathways and palaeoenvironmental conditions involved in the formation of
- 281 phosphorite grains, Safaga District, Egypt: Sedimentary Geology, v. 325, p. 41–58,
- 282 https://doi.org/10.1016/j.sedgeo.2015.05.004.
- 283 Sanei, H., Grasby, S.E., and Beauchamp, B., 2012, Latest Permian mercury anomalies:
- 284 Geology, v. 40, p. 63–66, https://doi.org/10.1130/G32596.1.
- 285 Shellnutt, J.G., 2014, The Emeishan large igneous province: A synthesis: Geoscience
- 286 Frontiers, v. 5, p. 369–394, https://doi.org/10.1016/j.gsf.2013.07.003.
- 287 Shen, S.Z., and Shi, G.R., 2009, Latest Guadalupian brachiopods from the
- 288 Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi,
- 289 South China and implications for the timing of the pre-Lopingian crisis:
- 290 Palaeoworld, v. 18, p. 152–161, https://doi.org/10.1016/j.palwor.2009.04.010.
- 291 Stanley, S., and Yang, X., 1994, A double mass extinction at the end of the Paleozoic era:
- 292 Science, v. 266, p. 1340–1344, https://doi.org/10.1126/science.266.5189.1340.
- 293 Thibodeau, A.M., and Bergquist, B.A., 2017, Do mercury isotopes record the signature of
- 294 massive volcanism in marine sedimentary records: Geology, v. 45, p. 95–96,
- 295 https://doi.org/10.1130/focus012017.1.

- Wang, W., Cao, C.Q., and Wang, Y., 2004, The carbon isotope excursion on GSSP
- 297 candidate section of Lopingian-Guadalupian boundary: Earth and Planetary Science
- 298 Letters, v. 220, p. 57–67, https://doi.org/10.1016/S0012-821X(04)00033-0.
- 299 Wei, H.Y., Wei, X., Qiu, Z., Song, H., and Shi, G., 2016, Redox conditions across the G-
- 300 L boundary in South China: Evidence from pyrite morphology and sulfur isotopic
- 301 compositions: Chemical Geology, v. 440, p. 1–14,
- 302 https://doi.org/10.1016/j.chemgeo.2016.07.009.
- 303 Wignall, P.B., Védrine, S., Bond, D.P.G., Wang, W., Lai, X.L., Ali, J.R., and Jiang, H.S.,
- 304 2009, Facies analysis and sea-level change at the Guadalupian–Lopingian Global
- 305 Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass
- 306 extinction: Journal of the Geological Society, v. 166, p. 655–666,
- 307 https://doi.org/10.1144/0016-76492008-118.
- 308 Zhang, G., Zhang, X., Li, D., Farquhar, J., Shen, S., Chen, X., and Shen, Y.A., 2015,
- 309 Widespread shoaling of sulfidic waters linked to the end-Guadalupian (Permian)
- 310 mass extinction: Geology, v. 43, p. 1091–1094, https://doi.org/10.1130/g37284.1.
- 311 Zhang, Y., Ren, Z.Y., and Xu, Y.G., 2013, Sulfur in olivine-hosted melt inclusions from
- 312 the Emeishan picrites: Implications for S degassing and its impact on environment:
- Journal of Geophysical Research. Solid Earth, v. 118, p. 4063–4070,
- 314 https://doi.org/10.1002/jgrb.50324.

315	Zhong, Y.T., He, B., Mundil, R., and Xu, Y.G., 2014, CA-TIMS zircon U-Pb dating of
316	felsic ignimbrite from the Binchuan section: Implications for the termination age of
317	Emeishan large igneous province: Lithos, v. 204, p. 14-19,
318	https://doi.org/10.1016/j.lithos.2014.03.005.
319	
320	FIGURE CAPTIONS
321	
322	Figure 1. (A) Paleogeographic map (R. Blakey: http://www2.nau.edu/rcb7/260moll.jpg)
323	showing location of the PLT section (China). (B) G-L succession (Beds 1-7) of
324	Penglaitan showing geometry of the reef and GLB position. The geologist, in red, is ~160
325	cm in height.
326	
327	Figure 2. Selected PLT reef biota and microbiota. (A) Bryozoan-Tubiphytes framestone;
328	(B) Encrusting networks of Fistulipora; (C) Coral Amplexocarinia sp.; (D) Eurygonum
329	nodosum along the margins of a brachiopod shell. (E-F) Coccoid-like calcispheroid
330	under microscope and SEM, (G) Ovummurus duoportius, (H–I) Bacterial clump-like
331	spheroids under microscope and SEM, (J) Eurygonum nodosum on crinoid stem.
332	
333	Figure 3. The PLT section showing: Covariations of microbiota, carbon isotopes (green
334	open circle data from Wang et al. (2004), red triangle data from Jost et al. (2014), black,

335	solid circles: this study), Hg, TOC, Hg isotope, redox conditions (from Wei et al., 2016),
336	sea-level changes, and stratigraphic distributions of fossils (Jin et al., 2006; Ehiro and
337	Shen, 2008; Wignall et al. 2009; Shen and Shi, 2009; this study). Conodont zonation after
338	Jin et al. (2006), Epo. = Epoch, Fm. = Formation, CZ = Conodont Zone, Lith. =
339	Lithology, Rel. abu. = Relative abundance, C. h. = Clarkina hongshuiensis, C. po. =
340	Clarkina postbitteri postbitteri, C. duk. = Clarkina dukouensis. u.s. = upper slope, l.s. =
341	lower slope, ba. = basin. Relative abundances of Coccoid-like spheres (a), Bacterial
342	clump-like spheres (b) and Ovummurus duoportius (c) are: few (<20 individuals /cm ²),
343	common (20–50 individuals /cm ²), abundant (>50 individuals /cm ²), or areal percentages
344	on 200 views (\times 50) for Mastigocoleus testarum (d): few (<5%), common (5%–10%),
345	and abundant (>10%).

