
This is a repository copy of A Python script for adaptive layout optimization of trusses.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/142746/

Version: Accepted Version

Article:

He, L., Gilbert, M. orcid.org/0000-0003-4633-2839 and Song, X. (2019) A Python script for
adaptive layout optimization of trusses. Structural and Multidisciplinary Optimization, 60
(2). pp. 835-847. ISSN 1615-147X

https://doi.org/10.1007/s00158-019-02226-6

This is a post-peer-review, pre-copyedit version of an article published in Structural and
Multidisciplinary Optimization. The final authenticated version is available online at:
https://doi.org/10.1007/s00158-019-02226-6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Noname manuscript No.
(will be inserted by the editor)

A Python script for adaptive layout optimization of trusses

Linwei He · Matthew Gilbert · Xingyi Song

Received: date / Accepted: date

Abstract Numerical layout optimization employing an

adaptive ‘member adding’ solution scheme provides a com-

putationally efficient means of generating (near-)optimum

trusses for problems involving single or multiple load cases.

To encourage usage of the method a Python script is pre-

sented, allowing medium to large-scale problems to be

solved efficiently. As well as handling multiple load cases,

the short (98 line) script presented can tackle truss optimiza-

tion problems involving unequal limiting tensile and com-

pressive stresses, joint-costs, and non-convex polygonal do-

mains, with or without holes. Various numerical examples

are used to demonstrate the efficacy of the script presented.

Keywords Truss · Layout optimization · Ground structure

method · Python · Education

1 Introduction

Truss layout optimization using the ‘ground structure’ ap-

proach provides a fully automated means of identifying

(near-)optimum truss structures. Although first proposed in

the 1960s by Dorn et al (1964), it has not been widely used

in practice for various reasons. For example, the solutions

generated appear impractical, at least when conventional

L. He

Department of Civil and Structural Engineering, University of

Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield, S1

3JD, UK. E-mail: linwei.he@sheffield.ac.uk

M. Gilbert

Department of Civil and Structural Engineering, University of

Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield, S1

3JD, UK. E-mail: m.gilbert@sheffield.ac.uk

X. Song

Department of Computer Science, University of Sheffield, Re-

gent Court, 211 Portobello, Sheffield, S1 4DP, UK. E-mail:

x.song@sheffield.ac.uk

manufacturing techniques are envisaged. However, in recent

decades new manufacturing techniques have been develop-

ing apace, e.g., additive manufacturing, and means of ratio-

nalizing the solutions obtained via layout optimization have

also been developed (e.g., He and Gilbert 2015). Also, in

2003 an adaptive ‘member adding’ scheme was proposed by

Gilbert and Tyas (2003), which allowed solutions to be ob-

tained more quickly, and also for extremely large problems

(e.g., >1,000,000,000 members) to be solved. This means

that layout optimization can be used to obtain highly accu-

rate benchmark solutions that can be used to validate analyt-

ical solutions (e.g., Sokół 2011b; Sokół and Rozvany 2012),

and also to discover new optimum structural forms (e.g.,

Darwich et al 2010; Tyas et al 2011; Fairclough et al 2018).

To increase the practical applicability of solutions, Pritchard

et al (2005) extended the adaptive ‘member adding’ scheme

to solve problems involving multiple load-cases whilst Tyas

et al (2006) incorporated structural stability considerations.

Also, Smith et al (2016) utilized layout optimization to de-

sign truss-like metallic components suitable for fabrication

via additive manufacturing, with the techniques involved re-

cently extended by He et al (2018). In parallel, the layout

optimization technique has been successfully transferred to

other applications. For example, Bolbotowski et al (2018)

utilized layout optimization to design (near-)optimum gril-

lages and Smith and Gilbert (2007); Gilbert et al (2014) pro-

posed the ‘discontinuity layout optimization’ (DLO) method

to identify critical patterns of discontinuities at collapse for

in-plane and out-of-plane plasticity problems.

However, although interest in numerical layout opti-

mization has grown in recent years, the power of the method

still appears under-appreciated in the structural optimization

research community. One possible reason for this is that ac-

cessible educational resources for use by new researchers

have been lacking. Although a script was made available

by Sokół (2011a), the Mathematica language employed is

2 Linwei He et al.

not commonly used in the community. Matlab scripts de-

veloped by Zegard and Paulino (2014, 2015) helped in this

respect, although these contain relatively complex functions

that could potentially limit uptake. Also, most significantly,

although proposed in 2003, the ‘member adding’ scheme

has not yet been incorporated in any of the aforementioned

publicly available scripts, potentially leading researchers to

underestimate the potential computational efficiency of the

layout optimization method. In contrast, the 99-line Matlab

script for SIMP (Sigmund 2001) helped pave the way for

worldwide research in the field of continuum topology opti-

mization. As an indication of the dominance of SIMP over

numerical layout optimization in terms of published educa-

tional source codes, only one of the 22 scripts listed by Wei

et al (2018) employ the latter.

In order to provide an accessible yet computationally ef-

ficient educational implementation of numerical layout op-

timization, this paper introduces a simple Python script.

With 98 lines, it incorporates the efficient adaptive ‘member

adding’ scheme for 2D problems subject to multiple load

cases, with the potential for unequal limiting tensile and

compressive stresses, joint-costs, and non-convex polygo-

nal domains (with or without holes). The paper is orga-

nized as follows: first, the mathematical layout optimiza-

tion formulation is introduced; second, important code sec-

tions are explained; third, numerical examples are shown to

demonstrate the efficacy of the script; finally, conclusions

are drawn.

2 Formulation of layout optimization

2.1 Single load case problem

The standard layout optimization process (Dorn et al 1964;

Gilbert and Tyas 2003; Pritchard et al 2005) involves a

number of steps, as shown in Fig. 1. Firstly the design do-

main, load and support conditions are specified, Fig. 1(a);

secondly, the design domain is discretized using nodes,

Fig. 1(b); thirdly, these nodes are interconnected with poten-

tial members to create a ‘ground structure’, Fig. 1(c); finally,

an optimum layout is identified by solving the optimization

problem below (Fig. 1(d)):

min
a,q

V = lTa (1a)

s.t.

Bq = f (1b)

q ≥ −σ−a (1c)

q ≤ σ+a (1d)

a ≥ 0, (1e)

where, V is the structural volume, a = [a1, a2, ..., am]T is

a vector containing member cross-sectional areas, with m

(a) (b)

(c) (d)

Fig. 1: Steps in layout optimization: (a) specify design do-

main, loads and supports; (b) discretize domain using nodes;

(c) interconnect nodes with potential truss members; (d) use

optimization to identify the optimal structural layout

denoting the number of members. l = [l1, l2, ..., lm]T is a

vector of member lengths. B is a 2n×m equilibrium matrix

comprising direction cosines, with n denoting the number of

nodes and q is vector containing the internal member forces;

a simple example of the equilibrium constraint is presented

in Fig. 2. f is a vector containing the external forces; σ+

and σ− are limiting tensile and compressive stresses respec-

tively.

Fig. 2: Equilibrium condition at a typical (unloaded) node

2.2 Multiple load case problem

Problem (1) can easily be extended to obtain solutions for

multiple load case plastic design problems. In this case the

equilibrium constraint (1b), stress limits (1c) and (1d) must

be satisfied in each load case, e.g., the former gives:

Bqk = fk, for k = 1, 2, ..., p, (2)

A Python script for adaptive layout optimization of trusses 3

where, k is the load case identifier and p represents the total

number of load cases.

2.3 Joint costs

It was found in previous studies (e.g., Gilbert and Tyas 2003;

Pritchard et al 2005) that layout optimization will often gen-

erate structures that are complex in form, containing large

numbers of short members. A simple means of addressing

this is to include a notional joint cost (Parkes 1978), which

has the effect of penalizing short members and hence simpli-

fying the solution in many cases: l̃ = [l1 +s, l2 +s, ..., lm +
s]T in the objective function (1a), where l̃ is the augmented

member length vector with predefined joint cost (or length)

s.

2.4 Full problem

Considering multiple load cases and joint costs, the full

problem can now be written as:

min
a,q

V = l̃Ta (3a)

s.t.

Bqk = fk

qk ≥ −σ−a

qk ≤ σ+a







for k = 1, 2, ..., p (3b)

a ≥ 0, (3c)

which is, like (1), a linear programming (LP) problem that

can be solved efficiently using modern optimization solvers.

However, when using the ground structure approach the

number of potential numbers grows rapidly with the number

of nodes employed, with up to
n(n−1)

2 members required.

This can easily lead to extremely large optimization prob-

lems that are computationally expensive to solve. To ad-

dress this, a ‘member adding’ scheme, which is based on

the ‘column generation’ approach (Dantzig and Wolfe 1960)

was proposed by Gilbert and Tyas (2003). This allows prob-

lem (3) to be decomposed into a number of smaller sub-

problems, with information from the dual problem used to

guide the process.

2.5 Adaptive ‘member adding’ scheme

Using the adaptive ‘member adding’ scheme (Gilbert and

Tyas 2003; Pritchard et al 2005), initially only a reduced set

of members are used to solve problem (3), and remaining

potential members in the ‘ground structure’ are gradually

added to the set, until the following constraint is satisfied for

all potential members (readers who are interested in deriva-

tion of (4) can refer to Appendix A):

ǫi =

p
∑

k=1

max {σ+BT
i uk

i , −σ−BT
i uk

i }

l̃i
≤ 1,

(for i = 1, ...,m),

(4)

where ǫi is the summed maximum virtual strain of member

i in all load cases; uk
i is a vector containing virtual displace-

ment of nodes connected by member i, under load case k.

Note that, when a primal-dual interior point method is used

to solve problem (3), uk
i is obtained automatically with no

extra cost. Although only a reduced set of members are used

in (3), a full virtual displacement field uk of all nodes can

still be generated. If any violation of (4) is found in the vir-

tual displacement field, the most violated potential members

can be added to the reduced set of members. Then (3) can be

solved again, this time generating an improved virtual dis-

placement field in which (4) is no longer violated for the

newly added members. This adaptive ‘member adding’ pro-

cess continues until no violation is detected; according to

duality theory, the solution obtained will then be equivalent

to that obtained by solving the full problem from the outset.

The entire process is shown in Fig. 3.

Fig. 3: Flowchart of the adaptive ‘member adding’ process

3 Python implementation

Python is an open source interpreted high-level program-

ming language that is becoming increasingly popular for

solving scientific and engineering problems. Unlike Mat-

lab, where built-in toolboxes are automatically loaded when

4 Linwei He et al.

started, in Python such tools are imported using the import

keyword at the beginning of the script. These extra import

lines allow dependencies on external tools to be clearly seen.

In this paper, a number of freely available tools are used, in-

cluding mathematical tools such as scipy and numpy, the

convex optimization tool cvxpy (Diamond and Boyd 2016;

Agrawal et al 2018), and the geometry tool shapely.

In this section the various functions used to construct

and solve the layout optimization problem (3) are first in-

troduced, then the main workflow is outlined. As Python

is, like Matlab, an interpreted language, loop structures are

generally inefficient. Therefore, to improve execution speed,

vectorized operations are utilized in place of loop structures

wherever possible.

3.1 Equilibrium matrix B

For a member i, interconnecting nodes I and II , its contri-

bution to equilibrium matrix B can be written as:

Bi =
[

−Xi/li −Yi/li Xi/li Yi/li
]T

, (5)

where, Xi = xII
i − xI

i and Yi = yII
i − yI

i are the projected

length of the member of length li in the x and y axis direc-

tions respectively, and where [xI
i , y

I
i] and [xII

i , yII
i] are the

co-ordinates of nodes I and II are respectively. If a con-

nected node is supported, then the coefficients of the cor-

responding row are set to zero (i.e. supported degrees of

freedom are removed). Thus taking into account boundary

conditions, the above formulation can be expressed as:

Bi =
[

−d0Xi/li −d1Yi/li d2Xi/li d3Yi/li
]T

, (6)

where d0, d1, d2, d3 are 0-1 coefficients describing the de-

gree of freedom in the x and y directions for the connected

nodes

The equilibrium matrix B is then assembled using the

Bi matrices for all members. B is a sparse matrix, which

can be expressed using a row-column-value format com-

prising only non-zero entries, constructed by concatenating

the coefficients calculated in (6) as well as their correspond-

ing row (degree of freedom at nodes) and column (member)

numbers.

3.2 Solving the LP problem

In the script, problem (3) is solved in function solveLP.

In Python, the use of object oriented programming

(OOP) allows problem (3) to be written in a format that is

very similar to its natural expression, improving readability.

For example, using the optimization tool cvxpy, the stress

constraints in (3b) are expressed as q[k] >= -sc * a and

q[k] <= st * a.

3.3 Check dual violation

When the primal problem (3) is solved via the primal-dual

interior point method, the virtual displacements in u for each

load case are obtained from the equilibrium constraints de-

fined in eqn. Therefore, violation of constraint (4) can be

calculated for every member in the full ‘ground structure’

(except for those already present in the reduced set, where

this is unnecessary as there will be no violation). All po-

tential members are then sorted by their constraint violation

numbers, and the most violating ones are added to the pri-

mal problem, with the number of new members calculated

using:

Δm =







αmV, mV ≥ βmP,
αβmP, βmP > mV > αβmP,
mV, αβmP ≥ mV,

(7)

where, Δm is the number of new members to be added, mP

and mV are, respectively, the numbers of remaining mem-

bers in the potential member list (i.e., members not yet in-

cluded in (3)), and those violating (4). α and β are control

parameters, both set to 0.05 in this paper. Using the adaptive

‘member adding’ scheme, the size of problem (3) gradually

increases, with (7) used to control the growth rate. When

number of violations is large, only a small proportion are

added into (3); on the other hand, when the number of vio-

lations is small, most (or all) are added in a given iteration.

This balances problem size with the number of iterations

required in order to achieve an efficient iterative process.

Various alternative heuristics can be used to determine the

priority and number of members to be added at each itera-

tion, e.g., the two-stage high pass filter in Gilbert and Tyas

(2003) and the active member set method described in Sokół

(2014). It is important to note that, although a heuristic algo-

rithm is used here to improve computational efficiency, the

final solution, obtained when (4) is satisfied for all members

in the ground structure, is equivalent to the solution obtained

by solving the full problem, due to the strong duality nature

of LP problems (Vanderbei 2001).

3.4 Visualization

The solutions are visualized in function plotTrusses.

Members with areas greater than a threshold number (e.g.,

1 × 10−3 of the maximum member area) are plotted in red

or blue, depending on the sign of their internal forces. When

the signs of internal forces vary in different load cases, gray

is used instead.

3.5 Main workflow

The main trussopt function contains several steps to de-

fine the design domain, load and support conditions for any

A Python script for adaptive layout optimization of trusses 5

given layout optimization problem, to create the ‘ground

structure’ and to solve LP problem (3) using the adaptive

‘member adding’ scheme.

– Firstly, a polygonal design domain is specified using the

Polygon function imported from shapely, and then its

convexity checked.

– Secondly, a uniformly distributed grid of nodes is cre-

ated using the meshgrid function, with points lying in-

side the design domain added to node list Nd; then sup-

port and load conditions are added.

– Thirdly, the ‘ground structure’ is created by generating

all valid potential members, excluding overlapping lines

(checked using the greatest common divider, function

gcd, when joint costs are not specified), and lines cross-

ing the polygonal boundary (using function contains

from shapely).

– Finally, the initial reduced set of members is created by

including only short member connections. The adaptive

‘member adding’ process then starts, in which potential

members are added to this reduced set until no violation

of (4) is found in any member in the ‘ground structure’.

4 Numerical examples

A number of examples serve to demonstrate the efficacy of

the script.

Firstly, a simple cantilever problem (Fig. 4) can be

solved by running the following command in a terminal:

python trussopt.py

Fig. 4: Cantilever example: problem definition

Alternatively, the script can be imported as a module in

Python using:

>>>from trussopt import trussopt

And then function trussopt can be called to perform a lay-

out optimization with the following input arguments:

>>>trussopt(20, 10, 1, 1, 0)

which solves the simple cantilever problem shown in Fig. 4

with width = 20, height = 10, limiting stress in tension = 1,

in compression = 1 and joint cost = 0. In this section, all line

numbers refer to the script in Appendix C, and all quoted

CPU times were obtained using a laptop PC equipped with

an Intel I7-7700HQ CPU and running 64-bit Windows 10.

4.1 Effect of using the adaptive ‘member adding’ scheme

Using the adaptive ‘member adding’ scheme, a large-scale

layout optimization problem is solved as a series of much

smaller LP problems solved in succession; e.g., Fig. 5 shows

steps in the solution of the cantilever design problem shown

in Fig. 4.

(a) (b)

(c) (d)

Fig. 5: Cantilever example: steps in the adaptive ‘member

adding’ process following, (a) iteration 1, (b) iteration 2, (c)

iteration 3, (d) final iteration

When solving medium or large-scale problems, the

adaptive ‘member adding’ scheme reduces memory con-

sumption and can result in significant speed improvements,

as indicated in Table 1. Whilst the resulting structural vol-

umes are identical (to five significant figures), the latter be-

comes increasingly efficient with increasing problem size,

e.g., 7.5 times faster when 60× 30 nodal divisions are used.

Note that ‘member adding’ can be switched off by in-

creasing the maximum initial member connection distance

in line 85, for example changing this to:

for pm in [p for p in PML if p[2] <= 1000]:

for the purposes of this paper.

4.2 Alternative LP solvers

By default, the LP problem (3) is solved using the open-

source solver ECOS (Domahidi et al 2013) distributed with

cvxpy. Alternatively, a range of other, potentially more ef-

ficient, LP solvers such as GUROBI and MOSEK can be

used with cvxpy. To use MOSEK, for example, line 29 is

6 Linwei He et al.

Table 1: Cantilever example: effect of using ‘member adding’ scheme (small problems)

Nodal

divisions

Number of

nodes

Number of

members

Without ‘member adding’ With ‘member adding’ With ‘member

adding’ speed

up factor
Volume CPU time (s) Volume CPU time (s)

(P L

σ0

) LP† (P L

σ0

) LP† Dual‡ Total

20 × 10 231 16,290 7.0747 1.0 7.0747 0.6 0.2 0.8 1.3

40 × 20 861 225,848 7.0454 47.7 7.0454 6.2 0.5 6.7 7.1

60 × 30 1,891 1,086,938 7.0376 579.0 7.0376 68.5 2.5 71.0 8.2

†: cumulative CPU time spent in function solveLP

‡: cumulative CPU time spent in function stopViolation

replaced with the following (note that this requires MOSEK

has already been added to Python environment; if not, guid-

ance can be found in Appendix B):

vol = prob.solve(solver = cvx.MOSEK, \

mosek_params={"MSK_IPAR_INTPNT_BASIS":0})

The MOSEK parameter "MSK_IPAR_INTPNT_BASIS" is

optional; however this disables the unnecessary basis identi-

fication step to improve speed. Using MOSEK, the CPU cost

required to solve problems is significantly reduced, making

the layout optimization process very efficient. Table 2 shows

sample solutions for the cantilever problem shown in Fig. 4,

indicating that a numerical solution within 0.04% of the an-

alytical solution can be obtained for this problem on a laptop

PC.

4.3 Joint cost

To approximately account for the costs associated with

joints, a joint cost can be directly specified when calling the

main function trussopt. For example, a joint cost of s = 1

unit length can be added using the following command; the

simpler solution then generated is shown on Fig. 6.

>>>trussopt(20, 10, 1, 1, 1)

Fig. 6: Cantilever example: design obtained using a joint

cost s = 1

4.4 Unequal stress limits

Unequal stress limits can also be directly specified. For ex-

ample, a compressive stress limit can be set to σ− = 0.1σ0

with the following input arguments:

>>>trussopt(40, 20, 1, 0.1, 0)

Alternatively, a different tensile stress limit can be set if de-

sired. The corresponding results are shown in Fig. 7.

(a) (b)

Fig. 7: Cantilever example: effect of specifying unequal

stress limits, (a) σ+ = σ0, σ− = 0.1σ0; (b) σ+ = 0.1σ0,

σ− = σ0

4.5 Change load and support conditions

Load and support conditions can be changed by modifying

lines 73 and 74. For example, to generate the ‘half wheel’

example shown in Fig. 8, the pin and roller supports can be

applied by replacing line 73 with:

if (nd == [0, 0]).all(): dof[i,:] = [0, 0]

if (nd == [width, 0]).all(): dof[i,:] = [1, 0]

which locate the two corner nodes at the base of the domain

and then set the appropriate degrees of freedom. Similarly,

the point load can be applied by replacing the original line

74 with:

f+=[0,-1] if(nd==[width/2,0]).all() else [0,0]

4.6 Multiple load cases

Additional load cases can be included by appending load

vector f after line 74. For the two load case cantilever ex-

ample problem shown in Fig. 9, load case Q is added using

the following lines:

for i, nd in enumerate(Nd):

f+=[0, 1] if (nd==[width,height]).all()\

else [0, 0]

A Python script for adaptive layout optimization of trusses 7

Table 2: Cantilever example: effect of using Mosek LP solver (small to moderately large problems)

Nodal

divisions

Number of

nodes

Number of

members

Volume (P L

σ0

) Error (%)∗ With ‘member adding’ With ‘member

adding’ speed

up factorLP time† (s) Dual time‡ (s) Total time (s)

20 × 10 231 16,290 7.0747 0.71 0.9 0.05 0.95 0.6

40 × 20 861 225,848 7.0454 0.30 3.3 0.6 3.9 2.4

60 × 30 1,891 1,086,938 7.0376 0.18 13.2 2.9 16.1 4.0

80 × 40 3,321 3,352,500 7.0337 0.13 37.7 7.8 45.5 5.6

100 × 50 5,151 8,067,890 7.0312 0.092 96.8 18.5 115.3 11.7

120 × 60 7,381 16,559,996 7.0300 0.075 270.6 48.1 318.7 ⋆

140 × 70 10,011 30,462,670 7.0291 0.063 602.9 97.4 700.3 ⋆

160 × 80 13,041 51,699,820 7.0284 0.053 1921.9 242.5 2164.4 ⋆

180 × 90 16,471 82,475,558 7.0279 0.046 2496.6 264.6 2761.2 ⋆

200 × 100 20,301 125,265,288 7.0275 0.039 6296.9 515.7 6812.6 ⋆

∗: compared with the exact answer, V = 7.024707829 P L

σ0

, given by Graczykowski and Lewiński (2010)

†: cumulative CPU time spent in function solveLP

‡: cumulative CPU time spent in function stopViolation

⋆: problems with high numbers of nodal divisions could only be solved with ‘member adding’ due to memory usage

Fig. 8: ‘Half wheel’ example: problem definition and layout

obtained using 20 × 10 nodal divisions

And the point load P is moved to the bottom-right corner

by replacing the original line 74 with:

f+=[0,-1] if (nd==[width,0]).all() else [0,0]

Initially all load cases are concatenated in vector f,

which is then reformatted to a p × 2n array in line 83.

Fig. 9: Two load case cantilever example: problem specifi-

cation and layout obtained using 20 × 10 nodal divisions

4.7 Non-convex domain

Various polygonal domains can be specified using shapely.

For example, to add a hole to the design domain, as shown

in Fig. 10, the following lines can be added after line 65:

poly=poly.difference(Polygon([\

(width/4, height/4),\

(width/4*3, height/4),\

(width/4*3, height/4*3),\

(width/4, height/4*3)]))

This subtracts a rectangular region from the original design

domain in Fig. 4. Note that, when a non-convex domain is

used, lines that intersect domain boundary should be ex-

cluded from the ‘ground structure’. Line 80 checks such

intersections using the contains function from shapely.

Since this can become computationally expensive when the

number of potential connections is large, it is skipped when

a convex domain is used.

5 Conclusions

A simple Python implementation of truss layout optimiza-

tion using an adaptive ‘member adding’ scheme has been

presented for educational use. Various examples are used

to demonstrate the efficacy of the script for problems in-

volving single and multiple load cases, unequal limiting

stresses in tension and compression, joint-costs, and non-

convex polygonal domains, with or without holes. The solu-

tions obtained are globally optimal for the prescribed nodal

discretization and can be used to benchmark other methods

or to provide inspiration for structural designers.

The 98-line Python script described is listed for refer-

ence in Appendix B and is also provided in the form of

downloadable source code; see Supplementary material sec-

tion.

8 Linwei He et al.

(a) (b)

Fig. 10: Cantilever example with hole: problem specification and layout obtained using: (a) 40 × 20 nodal divisions; (b)

120 × 60 nodal divisions

6 Acknowledgements

The first two authors acknowledge the financial support of

EPSRC, under grant reference EP/N023471/1.

7 Supplementary material

Downloadable Python script, trussopt.py, and installation

files:

https://figshare.com/s/0ec40d238819ae4ec6ec

8 Conflict of interest

On behalf of all authors, the corresponding author states that

there is no conflict of interest.

References

Agrawal A, Verschueren R, Diamond S, Boyd S (2018)

A rewriting system for convex optimization problems. J

Control Decision 5(1):42–60

Bolbotowski K, He L, Gilbert M (2018) Design of optimum

grillages using layout optimization. Struct Multidisc Op-

tim 58(3):851–868

Boyd S, Vandenberghe L (2004) Convex optimization. Cam-

bridge University Press

Dantzig GB, Wolfe P (1960) Decomposition principle for

linear programs. Oper Res 8(1):101–111

Darwich W, Gilbert M, Tyas A (2010) Optimum structure

to carry a uniform load between pinned supports. Struct

Multidisc Optim 42(1):33–42

Diamond S, Boyd S (2016) CVXPY: A Python-embedded

modeling language for convex optimization. J Mach

Learn Res 17(83):1–5

Domahidi A, Chu E, Boyd S (2013) ECOS: An SOCP solver

for embedded systems. In: European Control Conference

(ECC), pp 3071–3076

Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic de-

sign of optimal structures. J Mècanique 3:25–52

Fairclough HE, Gilbert M, Pichugin AV, Tyas A, Firth

I (2018) Theoretically optimal forms for very long-

span bridges under gravity loading. Proc R Soc A

474(2217):20170,726

Gilbert M, Tyas A (2003) Layout optimization of large-scale

pin-jointed frames. Eng Comput 20(8):1044–1064

Gilbert M, He L, Smith C, Le C (2014) Automatic yield-line

analysis of slabs using discontinuity layout optimization.

Proc R Soc A 470

Graczykowski C, Lewiński T (2010) Michell cantilevers

constructed within a half strip. tabulation of selected

benchmark results. Struct Multidisc Optim 42(6):869–

877

He L, Gilbert M (2015) Rationalization of trusses gen-

erated via layout optimization. Struct Multidisc Optim

52(4):677–694

He L, Gilbert M, Johnson T, Pritchard T (2018) Conceptual

design of am components using layout and geometry op-

timization. Computers & Mathematics with Applications

(in press)

Parkes E (1978) Joints in optimum frameworks. Int J Solids

Struct 11(9):1017–1022

Pritchard T, Gilbert M, Tyas A (2005) Plastic layout op-

timization of large-scale frameworks subject to multi-

ple load cases, member self-weight and with joint length

penalties. 6th World Congresses of Structural and Multi-

disciplinary Optimization, Rio de Janeiro, Brazil

Sigmund O (2001) A 99 line topology optimization code

written in Matlab. Struct Multidisc Optim 21(2):120–127

Smith C, Gilbert M (2007) Application of discontinuity lay-

out optimization to plane plasticity problems. Proc R Soc

A 463:2461–2484

Smith CJ, Gilbert M, Todd I, Derguti F (2016) Application

of layout optimization to the design of additively man-

ufactured metallic components. Struct Multidisc Optim

54(5):1297–1313

A Python script for adaptive layout optimization of trusses 9

Sokół T (2011a) A 99 line code for discretized Michell

truss optimization written in Mathematica. Struct Multi-

disc Optim 43(2):181–190

Sokół T (2011b) Topology optimization of large-scale

trusses using ground structure approach with selective

subsets of active bars. In: 19th International Conference

on ‘Computer Methods in Mechanics’, CMM2011, ACM

Press, pp 457–458

Sokół T (2014) Multi-load truss topology optimization using

the adaptive ground structure approach. In: Lodygowski

T, Rakowski J, Litewka P (eds) Recent Advances in Com-

putational Mechanics, CRC Press, pp 9–16

Sokół T, Rozvany GIN (2012) New analytical benchmarks

for topology optimization and their implications. Part I:

bi-symmetric trusses with two point loads between sup-

ports. Struct Multidisc Optim 46(4):477–486

Tyas A, Gilbert M, Pritchard TJ (2006) Practical plastic lay-

out optimization of trusses incorporating stability consid-

erations. Comput Struct 84(3-4):115–126

Tyas A, Pichugin A, Gilbert M (2011) Optimum structure

to carry a uniform load between pinned supports: exact

analytical solution. Proc R Soc A 467(2128):1101–1120

Vanderbei RJ (2001) Linear programming: foundations and

extensions, 2nd edn. Springer Verlag

Wei P, Li Z, Li X, Wang MY (2018) An 88-line MATLAB

code for the parameterized level set method based topol-

ogy optimization using radial basis functions. Struct Mul-

tidisc Optim 58(2):831–849

Zegard T, Paulino GH (2014) GRAND - Ground structure

based topology optimization for arbitrary 2D domains us-

ing MATLAB. Struct Multidisc Optim 50(5):861–882

Zegard T, Paulino GH (2015) GRAND3 - Ground structure

based topology optimization for arbitrary 3D domains us-

ing MATLAB. Struct Multidisc Optim 52(6):1161–1184

A Dual problem formulation

The adaptive solution scheme requires information from the dual prob-

lem, the derivation of which is now described.

Firstly the objective function (3a) is augmented by taking into ac-

count constraints (3b) and (3c) using a weighted sum, formulating the

so-called Lagrange function, written as:

L(a,q,u, z1, z2, z3) = l̃Ta +

p
∑

k=1

(

fk − Bqk
)T

uk

+

p
∑

k=1

(

−σ−a − qk
)T

zk
1

+

p
∑

k=1

(

−σ+a + qk
)T

zk
2

−aTz3, (8)

where, uk, zk
1 and zk

2 are Lagrange multipliers corresponding to

constraints in (3b) in load case k, and z3 to area constraint in (3c).

q = [q1T
, ...,qpT]T is a vector containing internal forces in all load

cases, and same for u, z1 and z2. The Lagrange dual of (3) can be de-

rived using (readers interested in duality theory can refer e.g. to Boyd

and Vandenberghe (2004)):

max
u,z1,z2,z3

L(a,q,u, z1, z2, z3) (9a)

s.t.

▽aL(a,q,u, z1, z2, z3) = 0 (9b)

▽qL(a,q,u, z1, z2, z3) = 0 (9c)

z1, z2, z3 ≥ 0, (9d)

which gives:

max
u,z1,z2,z3

W =

p
∑

k=1

fkT
uk (10a)

s.t.
p
∑

k=1

(

σ−zk
1 + σ+zk

2

)

+ z3 = l̃ (10b)

BTuk + zk
1 − zk

2 = 0 for k = 1, 2, ..., p (10c)

z1, z2, z3 ≥ 0, (10d)

where, W is the virtual work done by the applied loads. The Lagrange

multiplier uk corresponds to the virtual displacement of nodes in load

case k. Note that, since the two inequality constraints in (3b) will not

be active simultaneously (as a member cannot be in both tension and

compression under one load case), either zk
1 or zk

2 must be zero for any

member. Therefore, constraints (10b) and (10c) can be reformulated by

converting the equality constraint to inequality constraints using non-

negative dual variables, as follows:

p
∑

k=1

zk ≤ l̃ (11a)

−
zk

σ−
≤ BTuk ≤

zk

σ+

zk ≥ 0







k = 1, 2, ...p, (11b)

where, zk is a new variable which combines zk
1 and zk

2 . For each mem-

ber, (11) can alternatively be written as a single expression:

ǫi =

p
∑

k=1

max {σ+BT
i uk

i , −σ−BT
i uk

i }

l̃i
≤ 1,

(for i = 1, ..., m).

(12)

where ǫi is the summed maximum virtual strain of member i in all load

cases; this expression is reproduced in (4).

B Setting up Python environment

B.1 Basic setup

The script is designed to run with Python 3 (version 3.5 and later; tested

with version 3.7). The script can also be used with Python 2 but some

modifications are required - see Appendix B.2 for details.

The Anaconda package (64-bit version freely available at

https://www.anaconda.com/download) includes a Python distribution

and development environment and is recommended for new Python

users. The following platform-specific instructions that install the re-

quired tools to allow the Python script to run assume that Anaconda is

being used:

Windows: An Anaconda Prompt window should be opened (in Ana-

conda Navigator, open a terminal from base(root) in the Environments

tab) and the following batch file (provided with the Python script) exe-

cuted:

10 Linwei He et al.

install.bat

Linux & Mac: Assuming that conda has is referenced in the PATH vari-

able (e.g. via the .bashrc file), the following shell script (provided

with the Python script) should be executed:

bash install.sh

Manual install: Alternatively the required tools can be installed on any

platform one-by-one by starting an Anaconda Prompt window and en-

tering the following commands:

conda install numpy=1.15.4

conda install scipy=1.1.0

conda install shapely=1.6.4

conda install -c cvxgrp cvxpy=0.4.*
conda install matplotlib=2.2.3

Note that the commands above, and the script and batch file, spec-

ify particular versions of the relevant tools, that have been tested to be

compatible. Alternatively the version numbers can be omitted to ensure

the latest versions of these tools are used, though in this case compati-

bility is not guaranteed.

B.2 Installation with Python 2

It is possible to run the script with Python 2 (2.6 and later) by making

minor modifications to the script, as detailed below.

First, remove the gcd method from math in the first line:

from math import ceil

And instead import it from fractions instead, by adding the fol-

lowing new line:

from fractions import gcd

Also, line 47 is replaced with:

for i in range(int(num)):

to take into account the fact that function ceil returns a floating point

rather than integer value in Python 2.

B.3 Alternative solvers

To use an alternative solver, as described in Section 4.2, this also needs

be installed. For example, MOSEK can be installed using the following

command:

conda install -c mosek mosek

In addition, a licence file is required, which can be freely obtained for

academic use from the MOSEK website (https://www.mosek.com).

B.4 Python IDE

For beginners, the Spyder IDE (Integrated Development Environment)

bundled with the Anaconda package provides an easy-to-use means of

editing and running the script.

A Python script for adaptive layout optimization of trusses 11

C Python script

1 from math import gcd, ceil

2 import itertools

3 from scipy import sparse

4 import numpy as np

5 import cvxpy as cvx

6 import matplotlib.pyplot as plt

7 from shapely.geometry import Point, LineString, Polygon

8 #Calculate equilibrium matrix B

9 def calcB(Nd, Cn, dof):

10 m, n1, n2 = len(Cn), Cn[:,0].astype(int), Cn[:,1].astype(int)

11 l, X, Y = Cn[:,2], Nd[n2,0]-Nd[n1,0], Nd[n2,1]-Nd[n1,1]

12 d0, d1, d2, d3 = dof[n1*2], dof[n1*2+1], dof[n2*2], dof[n2*2+1]

13 s = np.concatenate((-X/l * d0, -Y/l * d1, X/l * d2, Y/l * d3))

14 r = np.concatenate((n1*2, n1*2+1, n2*2, n2*2+1))

15 c = np.concatenate((np.arange(m), np.arange(m), np.arange(m), np.arange(m)))

16 return sparse.coo_matrix((s, (r, c)), shape = (len(Nd)*2, m))

17 #Solve linear programming problem

18 def solveLP(Nd, Cn, f, dof, st, sc, jc):

19 l = [col[2] + jc for col in Cn]

20 B = calcB(Nd, Cn, dof)

21 a = cvx.Variable(len(Cn))

22 obj = cvx.Minimize(np.transpose(l) * a)

23 q, eqn, cons= [], [], [a>=0]

24 for k, fk in enumerate(f):

25 q.append(cvx.Variable(len(Cn)))

26 eqn.append(B * q[k] == fk * dof)

27 cons.extend([eqn[k], q[k] >= -sc * a, q[k] <= st * a])

28 prob = cvx.Problem(obj, cons)

29 vol = prob.solve()

30 q = [np.array(qi.value).flatten() for qi in q]

31 a = np.array(a.value).flatten()

32 u = [-np.array(eqnk.dual_value).flatten() for eqnk in eqn]

33 return vol, a, q, u

34 #Check dual violation

35 def stopViolation(Nd, PML, dof, st, sc, u, jc):

36 lst = np.where(PML[:,3]==False)[0]

37 Cn = PML[lst]

38 l = Cn[:,2] + jc

39 B = calcB(Nd, Cn, dof).tocsc()

40 y = np.zeros(len(Cn))

41 for uk in u:

42 yk = np.multiply(B.transpose().dot(uk) / l, np.array([[st], [-sc]]))

43 y += np.amax(yk, axis=0)

44 vioCn = np.where(y>1.0001)[0]

45 vioSort = np.flipud(np.argsort(y[vioCn]))

46 num = ceil(min(len(vioSort), 0.05*max([len(Cn)*0.05, len(vioSort)])))

47 for i in range(num):

48 PML[lst[vioCn[vioSort[i]]]][3] = True

49 return num == 0

50 #Visualize truss

51 def plotTruss(Nd, Cn, a, q, threshold, str, update = True):

52 plt.ion() if update else plt.ioff()

53 plt.clf(); plt.axis(’off’); plt.axis(’equal’); plt.draw()

54 plt.title(str)

55 tk = 5 / max(a)

56 for i in [i for i in range(len(a)) if a[i] >= threshold]:

57 if all([q[lc][i]>=0 for lc in range(len(q))]): c = ’r’

58 elif all([q[lc][i]<=0 for lc in range(len(q))]): c = ’b’

59 else: c = ’tab:gray’

60 pos = Nd[Cn[i, [0, 1]].astype(int), :]

61 plt.plot(pos[:, 0], pos[:, 1], c, linewidth = a[i] * tk)

62 plt.pause(0.01) if update else plt.show()

63 #Main function

64 def trussopt(width, height, st, sc, jc):

65 poly = Polygon([(0, 0), (width, 0), (width, height), (0, height)])

66 convex = True if poly.convex_hull.area == poly.area else False

67 xv, yv = np.meshgrid(range(width+1), range(height+1))

68 pts = [Point(xv.flat[i], yv.flat[i]) for i in range(xv.size)]

69 Nd = np.array([[pt.x, pt.y] for pt in pts if poly.intersects(pt)])

12 Linwei He et al.

70 dof, f, PML = np.ones((len(Nd),2)), [], []

71 #Load and support conditions

72 for i, nd in enumerate(Nd):

73 if nd[0] == 0: dof[i,:] = [0, 0]

74 f += [0, -1] if (nd == [width, height/2]).all() else [0, 0]

75 #Create the ’ground structure’

76 for i, j in itertools.combinations(range(len(Nd)), 2):

77 dx, dy = abs(Nd[i][0] - Nd[j][0]), abs(Nd[i][1] - Nd[j][1])

78 if gcd(int(dx), int(dy)) == 1 or jc != 0:

79 seg = [] if convex else LineString([Nd[i], Nd[j]])

80 if convex or poly.contains(seg) or poly.boundary.contains(seg):

81 PML.append([i, j, np.sqrt(dx**2 + dy**2), False])

82 PML, dof = np.array(PML), np.array(dof).flatten()

83 f = [f[i:i+len(Nd)*2] for i in range(0, len(f), len(Nd)*2)]

84 print(’Nodes: %d Members: %d’ % (len(Nd), len(PML)))

85 for pm in [p for p in PML if p[2] <= 1.42]:

86 pm[3] = True

87 #Start the ’member adding’ loop

88 for itr in range(1, 100):

89 Cn = PML[PML[:,3] == True]

90 vol, a, q, u = solveLP(Nd, Cn, f, dof, st, sc, jc)

91 print("Itr: %d, vol: %f, mems: %d" % (itr, vol, len(Cn)))

92 plotTruss(Nd, Cn, a, q, max(a) * 1e-3, "Itr:" + str(itr))

93 if stopViolation(Nd, PML, dof, st, sc, u, jc): break

94 print("Volume: %f" % (vol))

95 plotTruss(Nd, Cn, a, q, max(a) * 1e-3, "Finished", False)

96 #Execution function when called directly by Python

97 if __name__ ==’__main__’:

98 trussopt(width = 20, height = 10, st = 1, sc =1, jc = 0)

99 ##

100 # This Python script was written by L. He, M. Gilbert, X. Song #

101 # University of Sheffield, United Kingdom #

102 # Please send comments to: linwei.he@sheffield.ac.uk #

103 # The script is intended for educational purposes - theoretical details #

104 # are discussed in the following paper, which should be cited in any #

105 # derivative works or technical papers which use the script: #

106 # #

107 # "A Python script for adaptive layout optimization of trusses", #

108 # L. He, M. Gilbert, X. Song, Struct. Multidisc. Optim., 2018 #

109 # #

110 # Disclaimer: #

111 # The authors reserve all rights but do not guarantee that the script is #

112 # free from errors. Furthermore, the authors are not liable for any #

113 # issues caused by the use of the program. #

114 ##

