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Abstract

In this paper, we develop a novel Dirichlet densifier that can be used to

increase the edge density in undirected graphs. Dirichlet densifiers are implicit

minimizers of the spectral gap for the Laplacian spectrum of a graph. One

consequence of this property is that they can be used improve the estimation

of meaningful commute distances for mid-size graphs by means of topological

modifications of the original graphs. This results in a better performance in

clustering and ranking. To do this, we identify the strongest edges and from

them construct the so called line graph, where the nodes are the potential q−step

reachable edges in the original graph. These strongest edges are assumed to be

stable. By simulating random walks on the line graph, we identify potential

new edges in the original graph. This approach is fully unsupervised and it is

both more scalable and robust than recent explicit spectral methods, such as

the Semi-Definite Programming (SDP) densifier and the sufficient condition for

decreasing the spectral gap. Experiments show that our method is only outper-

formed by some choices of the parameters of a related method, the anchor graph,

which relies on pre-computing clusters representatives, and that the proposed

method is effective on a variety of real-world datasets.
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1. Introduction

In this paper, we introduce a novel methodology for improving the estima-

tion of commute distances in mid-size graphs, namely Dirichlet graph densifi-

cation. Given a graph, we transform or rewire it by adding new edges so that

its algebraic connectivity is better conditioned. This problem arises in graphs5

consisting of clusters of nodes, where links are missing within the clusters. As

a result the commute distances between clusters are underestimated compared

to those within clusters. In a dumbbell structure consisting of two clusters of

interconnected edges and a set of bridging edges (a bottleneck) between clus-

ters, the commute distance underestimation will cause the inter-cluster distance10

to shrink relative to the intra-cluster distance. The problem can be solved by

introducing new intra-cluster edges, thus reducing the intra-cluster commute

distances and preserving the bridge or bottleneck.

Graph densification was introduced in [1], where it is posed as a constrained

optimization problem driven by cut preservation. However, the link between15

densification and commute times was firstly explored in [2], where we high-

lighted the fact that densification leads to a shrinkage of the inter-cluster dis-

tances, thus making commute times meaningful in large graphs. Later on, in [3],

we highlighted the fact that state-of-the-art densifiers rely on semi-definite pro-

gramming and motivate a novel algorithm, which is more scalable and robust.20

The core of this algorithm is harmonic analysis. Herein, we retain the basic

formulation in [2] and enrich its analysis with that of another recent spectral

method. Regarding [3], we: (i) clarify the use of the Dirichlet principle, (ii) re-

late it to the implicit minimization of the spectral gap and (iii) add a significant

amount of experiments to test the proposed method in several datasets.25

To develop the mathematical machinery for this study, we commence by

exploring the link between the Cheeger constant [4], the spectral gap [5] and

commute distances [6]. We then show the role of harmonic functions when dif-
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fusing edge certainty or edginess information through the so called line graph.

This is the graph of q-step reachable edges. Since harmonic functions are consis-30

tent with the concept of smoothness, a good densifier is one that not only retains

the strongest intra-cluster edges originally present but can also input new edges

that fill critical intra-cluster gaps while minimizing the number of inter-cluster

links. They thus improve the algebraic connectivity of the resulting graph.

In our previously published papers, we have briefly introduced and sketched35

the overarching concept of using graph densification as a means of pre-conditioning

spectral clustering, thus motivating the need for densification in accurate clus-

tering [2]. In this paper, we also reviewed the fundamentals of graph densifiers

based on cut similarity and then analyzed the associated optimization prob-

lems, using just toy examples to provide proof of concept and to illustrate our40

hypothesis in the estimation of commute times. Moreover, in [3], we have pro-

posed a specific graph densifier based on minimizing the combinatorial Dirichlet

integral for the specific case of the line graph. This approach estimates mean-

ingful commute distances for mid-sized graphs. However, it is fully bottom up

and unsupervised, whereas the state-of-the-art as exemplified by anchor graphs45

requires a top-down and supervised approach. In this paper we therefore ex-

tend this work, presenting a more general and practical framework for graph

densification and commute time estimation. This constitutes a full analysis of

densification which, in contrast to our earlier work is principled, tractable and

bottom-up.50

Sections 2 and 3 cover some of the same ground as [2] [3], but in greater detail

and with improved notation. We commence by providing a deeper mathematical

background and more detailed motivation for our approach in Section 2. In

Section 3, we review the mathematical detail of classical (spectral) densifiers.

Our novel contributions, on the other hand, are described in the second part of55

the paper, i.e. in Section 4 onwards. We pose the problem in terms of applying

the Dirichlet principle in Section 4. In Section 5, we explain how to apply

this principle, commencing by considering the problem of how to group edges

through return random walks. Return random walks (RRW) are designed to
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enforce intra-class edges while penalizing inter-class weights, and we reformulate60

our original algorithm to improve the efficiency and to capture more efficiently

which links are intra-class edges, removing the noise (inter-class edges). Since

our strategy is completely unsupervised, the return random walks operate under

the hypothesis that inter-class edges are rare events. We consider the RRW as

a filter which can be used to remove noise. To this end, in Section 6 we exploit65

the random walker [7] not on the original graph but on the corresponding line

graph, where the nodes become the potential edges (reachable in q steps) in

the original graph. We show that the random walker minimizes the Dirichlet

integral, in this case that associated with the line graph. In Section 7, we

have analyzed the new RRW algorithm and its resulting densification levels on70

a variety of data including anchor graphs. We also test the sensitivity of our

approach to the two thresholds, which define universal bounds of densification

and which are applicable to multiple datasets. This illustrates that the extended

densification framework presented in this paper outperforms that reported in

our previous work [2] [3]. Finally, we draw our conclusions and discus future75

work in Section 8.

2. Background

We first introduce the concept graph densification and its formulation as a

constrained optimization problem in which cuts are to some extent preserved in

the densified graph. Since this is consistent with the preservation of bottlenecks,80

we establish a link with the minimization of graph conductance (or Cheeger

constant) Φ. Minimizing or constraining the graph conductance leads us to

constrain the spectral gap λ2, since λ2 ≤ 2Φ. As a result, commute times

between nodes in the densified graph become meaningful. This allows us to

motivate the development of a scalable densifier.85

2.1. Graph Densification

Graph densification [1] is the principled study of how to significantly increase

the number of edges of a graph G = (V,E) so that the new graph H = (V,E′),
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approximates G with respect to a given test function, for instance whether there

exists a given cut within the two graphs. The study supported in this paper is90

motivated by the fact that certain NP-hard problems have a PTAS (Polynomial

Time Approximation Scheme) when their associated graphs are dense. This is

the case of the MAX-CUT problem [8]. Frieze and Kannan [9] raise the question

of whether this computational ”easyness” can be explained by the Szemerédi

Regularity Lemma. This lemma states that very large dense graphs have many95

of the properties of random graphs [10].

For a standard machine learning setting, we have that the graph G is typi-

cally sparse. This may occur for instance when either a kNN representation is

used or when a Gaussian graph is constructed with a small bandwidth parame-

ter σ. In this case the densification of G so that the value of any cut is at most

C times the value of the same cut in G is called a one-sided C-multiplicative cut

approximation. This (normalized) cut approximation must satisfy:

cutH(S)

vol(H)
≤ C · cutG(S)

vol(G)
, (1)

for any subset S ⊂ V of the set of vertices V , where cutG(S) =
∑

i∈S,j∈V∼S wij

considers the set of edge weights {wij}i,j∈V , where wij ∈ [0, 1]. For H , we have

cutH(S) =
∑

i∈S,j∈V ∼S w′
ij for edge weights {w′

ij}i,j∈V also satisfying w′
ij ∈

[0, 1]. The cuts are normalized by the total edge weight vol(.) of each graph,

i.e. vol(G) =
∑

i,j wij and vol(H) =
∑

i,j w
′
ij . With these ingredients, graph

densification can be posed in terms of solving the following (primal) problem:

P1 Max
∑

i,j

w′
ij s.t. ∀S ⊆ V :

cutH(S)

vol(H)
≤ C · cutG(S)

vol(G)
, (2)

where w′
ij are the weights of the new graph H = (V,E′), cutH(S) is the total

weight of the cut induced by S, but in the new graph H instead of in the original

one G. Finally C > 0 is a constant. The cut-bounding constraints are designed

so that bottlenecks or bridges are preserved as much as possible (depending on100

C).

The preservation or enforcement of bottlenecks is key to improving the con-

sistency of the optimal graph-based partition or clustering (see [11] and refer-
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ences therein). This problem is also compatible with the minimization of the

graph conductance or Cheeger constant Φ [4] which is defined as

Φ , min
S⊆V

cut(S)

min(vol(S), vol(S̄))
, (3)

where cut(S) =
∑

i∈S,j∈S̄ wij is the weight of the cut associated with S, the

subset of vertices, and vol(S) =
∑

i∈S di (where di is the degree of the node i)

is the volume (density) of S which determines the density of the graph.

Since solving P1 naturally involves increasing vol(H), it leads to a succinct105

approximation of the bound ΦH ≤ CΦG, where ΦG and ΦH are the respective

Cheeger constants of G andH . Such an approximation has an important impact

in the improvement of fundamental node-to-node similarities such as Commute

Times.

2.2. Densification and Commute Times110

Graph densification was originally proposed as a formal tool for ruling out

the existence of certain embeddings [1]. In other words, if graphs are embeddable

then they cannot be densified and vice versa. However, the above observation

involving Cheeger constants makes this topic more appealing for pattern recog-

nition. Specifically, graph densification can be seen as a way of pre-conditioning115

or rewiring graphs so that they boost the tractability of subsequent processing

tasks. One of these tasks is the measurement of the similarity between nodes.

The accurate measurement of the similarity between nodes is a key problem

in graph-based learning and pattern recognition. Commute times (CTs), for

instance, are Euclidean distances that rely on random walks. Namely, given a120

graph G = (V,E) and two nodes i, j ∈ V , the commute time CTij between them

is the expected time taken for a random walk to travel from i to j and back

again [12][13][6]. The link with the resistance distance Rij = 1
2|E|CTij charac-

terizes the diffusive nature of commute times. If we consider unit flows between

nodes, the limitations of commute times become clear. As an illustration, in125

Fig. 1, we show the unit flow between nodes A and D. The input unit flow

(yellow bar) scatters through the left part of the graph (a 4N grid), and then it
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is recovered (due to the flow conservation law) at node B. In this example the

flow crosses the single edge cut and then, later on it re-enters a 8N grid. Here,

it diffuses until node D is reached. In the specific case of a p = 2 norm, this130

leads to the approximation Rij ≈ 1
di

+ 1
dj

, where di and dj are the degrees of

nodes i and j respectively [14].

A B C D
A B C D

RAD = RAB + 1 + RCD

NA

RAB>NA+NB +SPAB RCD>NC+ND+SPCD

NB NC ND

Figure 1: Commute Times and densification: A 4N-graph linked with a 8N-graph through

a single edge. Unit flow (magnitude of vertical bars) between nodes A and D. Flow is

concentrated in the neighbourhoods NA . . . ND . It diffuses through the 4N graph and then,

after the cutting edge, it becomes unitary again and enters the 8N graph. In this case, flow

scattering (not completely shown for the 8N graph for clarity) is symmetric with respect to

the (horizontal) axis A → D. Shorter paths (SP ) are shown in red. Densification (8N graph)

produces many more (and shorter) paths, which decreases the spectral gap λ2. The smaller

the cut in conjunction with densification, the better is the divergence of RAD from 1

dA
+ 1

dD
.

As a result, CTs are globally meaningless, unless we re-scale or re-define

them. In [15], Luxburg et al. amplify CTs by using Sij , Rij −
(

1
di

+ 1
dj

)

.

In [16], they further show that the computation of CTs relies on p−resistances.135

These developments lead us to decompose the effective resistance in terms

of a local component and a global one. Nguyen and Mamitsuka [17] propose to

1) calculate the p = 2 flow and 2) define a modified p−resistance. Returning to

Fig. 1, this means that the bars are no-longer reduced and this to some extent

overcomes the problem of global information loss.140

In this paper, we turn our attention to change the topology of a graph G as
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a means of alleviating the above problems and providing more robust estimates

of CTs, density and geodesics. Our approach, referred to as graph densification,

implicitly minimizes the spectral gap of the input graph G since this relaxes

the bounds on the local component of the CTs. We show that a) the SDP145

formulation is too simple to preserve global information in realistic situations,

and b) SDP solvers are polynomial in the number of unknowns [18], which are

O(n2) in this case, and thus only small-scale experiments can be performed. As

a result, we propose a fully unsupervised approach that densifies the graph both

more efficiently and more accurately than SDP. This method is referred to as150

Dirichlet densification. In the following, we show that Dirichlet densification

is consistent with the minimization of the spectral gap and also that it is a

better alternative than anchor graphs [19] as a method for conditioning or pre-

processing the adjacency matrix (or more precisely the Laplacian matrix) for

subsequent pattern recognition tasks.155

2.3. The ingredients of our approach

The starting point of our approach is the following bound, derived by von

Luxburg et al. [14] for any connected, undirected graph G = (V,E) that is not

bipartite:
∣

∣

∣

∣

1

vol(G)
CTij −

(

1

di
+

1

dj

)∣

∣

∣

∣

≤ 2

(

1

λ2
+ 2

)

wmax

d2min

(4)

where CTij = Rijvol(G) is the commute time between the nodes i and j, vol(G)

is the volume of the graph, λ2 is the spectral gap and dmin is the minimum node

degree in G. The spectral gap λ2 is the second eigenvalue of the normalized

graph Laplacian L = I − D−1/2WD−1/2 where D = diag(d1, . . . , dn) is the160

degree matrix andW is the (symmetric) affinity (or weight) matrix, with wij > 0

if (i, j) ∈ E, and wmax is the maximal affinity element in W .

The above equation suggests that a way of making Rij ≈ 1
di

+ 1
dj

diverge is

to reweight/rewire the edges in E so that λ2 → 0. To commence, we have the

following lower bound:
vol(G)

d2maxγmaxb
≤ λ2 , (5)
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where γmax is the maximum path length [5]. The definition of b relies on the set

of paths {γij} between any pair of vertices i 6= j: b , maxe∈E E |{γij} : e ∈ γij}|.
Then, b is associated with the most traversed edge e. Actually, b is the expected165

number of paths traversing such an edge. Thus, Eq. 5 shows that λ2 is min-

imized when b → ∞, i.e. with there exists a small bottleneck defined by a

handful of maximal traversed edges (see, for instance, the yellow edge in Fig 1).

A single-edge cut leads to make RAD = RAB + 1 + RCD thus diverging from

the resistance distance 1
dA

+ 1
dD

, especially when R1 (effective resistance with170

norm p = 1) is used. However, as soon as a small number of edges link the 4N

and 8N graphs in Fig. 1 the spectral gap grows and RAD ≈ 1
dA

+ 1
dD

.

The existence of a small bottleneck is also compatible with the minimization

of the graph conductance or Cheeger constant Φ [4]. Then, we have the following

upper bound for λ2:

λ2 ≤ 2Φ, (6)

where Φ is the Cheeger constant (Eq 3). This bound suggests that λ2 is mini-

mized when: a) the cut is minimized (see above), and b) min(vol(S), vol(S̄)) is

as large as possible. It is well known that for two cliques of size n linked by r175

edges, we have Φ = r
n(n−1) , i.e. limn→∞ Φ = 0. However, if r = n the we need

larger cliques for constraining the spectral gap.

This rationale opens the door to modify the set of edges E, by adding and/or

reweighting edges so that min(vol(S), vol(S̄)) is maximized for all S ⊂ V . How-

ever, we must take into account the fact that the Cheeger constant relies on the180

worst case. For instance, in Fig. 2, the left cluster, say S, is less dense than

the right one, S̄. Its density (the worst case) constrains the graph conductance

instead of that of S̄. On the one hand we need to infer more edges for S, but on

the other hand, we must minimize the number of new inter-class edges linking

S and S̄ (dashed links in Fig 2-right).185

This could be done by solving P1 (graph densification), but in this paper

we derive a more precise and scalable densification. This new procedure is

designed to implicitly minimize the Cheeger bound (Eq. 6) as follows. We define
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Figure 2: Cheeger constant and Densification. Left: before densification, the left (less dense)

cluster, say S, conditions the Cheeger constant. In this case, cutG(S) = 1 (see the extremal

nodes in the yellow edge). Right: after densification, cutH(S) = cutG(S) + 2d with d = 2.

Again, the Cheeger constant is dominated by the left cluster which is not dense enough for

making ΦH < ΦG.

a measure of ”edginess” which is harmonically diffused. Harmonic diffusion

enforces a conservative (minimum energy) method of inducing new edges [20].190

However, this may be not strong enough to minimize the Cheeger bound. Let

ΦG be the (input) Cheeger bound associated with G = (V,E), and cutG(S) the

minimal cut in G and S ⊂ V the set associated with this cut. If G is unweighted

then cutH(S) = cutG(S)+kO(d), where d is the average degree of the k extremal

nodes involved in the cut. As a result, it is straightforward to see that ΦH < ΦG195

only if min(volH(S), volH(S̄)) = O(d2). This means that we require a quadratic

density (virtually to transform S into a clique, where d = n− 1) to improve the

input bound. This explains why structural noise (strength of inter-class links)

constrains the effectiveness of any densifier.

3. Spectral Graph Densification200

3.1. Spectral Relaxation

In the previous section, we have formulated the problem of graph densifica-

tion and then we have explored the implications of densifying a graph in terms

of improving the measurement of certain node similarities such as the commute

distance. With these similarities to hand, certain subsequent processes such as205

graph-based clustering and ranking, and even graph compression, can be im-

proved. Thus, graph densification (or more generally graph rewiring) is herein
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conceived as a structural filter. However, to that end we have to propose both

scalable and accurate methods.

We commence by highlighting the combinatorial nature of the problem as210

well as its implications. Following [1], the formulation in Eq. 2 is equivalent to

P1 Max
∑

i,j

w′
ij

s.t. ∀ i, j : w′
ij ≤ 1

∀ S ⊆ V :
∑

i∈S,j∈V∼S

w′
ij ≤ C · cutG(S)

∑

i,j

w′
ij

w′
ij ≥ 0 , (7)

since cutH(S) =
∑

i∈S,j∈V ∼S w′
ij and vol(H) =

∑

i,j w
′
ij . Herein, we simply

drop the normalization constant vol(G) in each constraint (formally, C absorbs

this normalization). Obviously, P1 has O(2n) constraints since the weights w′
ij

in H are maximized s.t. all the possible normalized cuts in H (one per each215

S ⊆ V ) are constrained by their homologs in G. Thus, with spectral relaxation

to hand one can replace all these constrains by a unique (matricial) one.

If z is the binary 0− 1 characteristic vector of a given S ⊆ V then

cutG(S) = zTLGz ,
∑

(i,j)∈E

wij(zi − zj)
2

cutH(S) = zTLHz ,
∑

(i′,j′)∈E′

w′
ij(zi − zj)

2 , (8)

where LG = DG−W and LH = DH −W ′ are the respective Laplacian matrices

of G = (V,E) and H = (V,E′), with diagonal degree matrices DG, DH and

weight matrices W and W ′. In addition, if H satisfies

zTLHz ≤ C · zTLGz , (9)

for any z ∈ R
n, with n = |V |, we say that G and H are C−spectrally similar

and this fact is denoted by LH � C · LG. Spectrally similar graphs share220

many algebraic properties [21]. For instance, their effective resistances (rescaled

commute times) are similar. This similarity is bounded by C and it leads to

nice interlacing properties. We have that the eigenvalues of λ1, . . . , λn of LG

11



and the eigenvalues λ′
1, . . . , λ

′
n of LH satisfy: λ′

i ≤ C · λi. This implies that, for

C ≥ 1, H does not necessarily modify the spectral gap of G and the eigenvalues225

of LG are not necessarily shifted (i.e. increased).

However, spectral similarity provides a way of replacing a exponential num-

ber of constraints by a unique constraint LH � C · LG, thus enforcing spectral

similarity. Then, if bij = ei − ej , where ei is the vector with all zeros but a 1 in

the i−th position (and similarly for ej), we have LH =
∑

i,j w
′
ijbijb

T
ij and P1230

can be relaxed using Semi-definite programming (SDP) as follows

P1SDP Max
∑

i,j

w′
ij

s.t. ∀ i, j : w′
ij ≤ 1

∑

i,j

w′
ijbijb

T
ij �



C ·
∑

i,j

w′
ij



LG

w′
ij ≥ 0 . (10)

In practice, this problem is better approached by its dual one P2SDP which

implicitly seeks a proper embedding for the nodes of V . Summarizing, the

optimal embedding is encoded in the columns of a n× n positive semi-definite

matrix Z � 0. Given these coordinates and the optimal values of the dual235

variables σij we can obtain w′
ij (see details in [2]).

3.2. Testing Densification with Toy Experiments

With the primal SDP problem P1SDP to hand we have that

λ′
i ≤



C ·
∑

i,j

w′
ij



λi (11)

where λ′
i are the eigenvalues of the Laplacian LH associated with the densified

graph H . For C > 1 we have that densification tends to produce a complete

graph Kn. When we add to the cost of the dual problem P2SDP the term240

−K log det(Z) (a log-barrier), it enforces choices for Z � 0 (i.e. ellipsoids) with

maximal volume which also avoids the complete graph. In this way, given a

12



fixed K = 1000, the structure of the pattern space emerges1 as we modify the

C < 1 bound so that the spectral gap is minimized in such a way that reasonable

estimates of the commute distance emerge.245

Synthetic Experiments. We have designed several instances of the double

moon configuration of points following [23]. The dataset consists of two regions

A and B representing two classes. Each region is a half annulus with radius

r = 10, width w = 6. Region A is upper, most centered at (0, 0) and region

B is lower, most centered at (r, d), where d is the distance, and mirroring A250

with respect to the x axis. If d < 0 then some overlap is assumed. The more

negative is d the higher is the overlap. We consider three levels of overlap:

d = −1, d = −2 and d = −3. Once we have constructed a Gaussian proximity

graph for each level, and chosen a C-bound constant, we: (1) apply the SDP

densifier, (2) estimate commute times from the result, and (3) measure the255

Adjusted Rand Index (ARI), as a percentage, with respect to the ground truth.

Then, for d = −1 we obtain ARI 98% for C = 0.1 and 100% for C = 0.025. For

d = −2, C = 0.1 yields 84.5%, and 100% is obtained for C = 0.025. However,

for d = −3 (large overlap), setting C = 0.025 leads to an ARI of only 20.5%,

and we must relax C to 0.00625 to achieve the best ARI for this instance, i.e.260

96%. In all these experiments, we set n = 100.

Real Datasets (NIST). We subsample the NIST handwritten digit dataset2

and build Gaussian graphs to construct challenging instances for the SDP densi-

fier: 2-classes (digits 5 and 6), 4-classes (digits 3, 5 and 7), 3-classes (digits 5 to

8), 5-classes and 10-classes. In all cases, n = 100 and all classes have the same265

number of samples. We investigate the C bound in the range C ∈ [0.05, 0.75].

In this case, we obtain large ARIs for small values of C in some cases (small

number of classes), but the maximum ARI is 8% (for 2-classes). This indicates

1All examples/experiments in this section were obtained with the SDPT3 solver [22] ver-

sion 4.0. In our experiments, the number of variables is |E| ≈ 4500 and the SDP solver is

polynomial in |E|.
2http://yann.lecun.com/exdb/mnist/
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that in real world datasets, where more structured inter-class noise arises, the

quality of the results is highly conditioned by the simplicity of the optimization270

problem (guided only by a blind spectral similarity, which does not necessarily

reduce inter-class noise).

The above experiments show that the SDP formulation is neither effective

nor scalable. However, the fact that SDP address an explicity minimization

of the spectral gap (see Eq. 11) suggests to review alternative, yet spectral275

methods, for performing such a minimization.

3.3. Sufficient Conditions for Decreasing the Spectral Gap

Given the original graph G = (V,E), let L = I − D−1/2WD−1/2 be its

normalized Laplacian matrix. Then, the spectral gap λ2 can be posed in terms of

the eigenvalue f (Fiedler vector) associated with the spectral gap, as follows [24]:

λ2 = min
f⊥D1/21

∑

(i,j)∈E wij(f(i)− f(j))2
∑

j>i(f(i)− f(j))2
(12)

Let H = (V,E′) with E′ = E
⋃{(i, j)} be the graph obtained by adding the

edge (i, j) 6∈ E to G. Eldan et al., have recently derived a sufficient condition

for achieving λ2(H) < λ2(G) after including (i, j) (see Lemma 1 in [25]). After

some algebraic manipulations, the resulting condition is

λ2(G)

vol(G)

(

1

2
√
di

+
1

2
√

dj

)2

+ (1− λ2(G))

{

f2(i)

di
+

f2(j)

dj

}

<
f(i)f(j)√
di
√

dj
, (13)

Therefore, it is possible to predict whether including a new edge leads to decrease

the spectral gap in H simply by using the Fiedler vector of G (assumed to have

unit norm in the following). More precisely, for a setting with two clusters,280

we have that f(i)f(j) < 0 if (i, j) is an inter-class link, due to the structure

of the Fiedler vector [26]. Since inter-class links lead to increase the spectral

gap, the above condition is not applicable. When f(i)f(j) > 0 and we have

two clusters, we know that (i, j) is an intra-class link and it should be included

since the spectral gap is reduced for sure. Consequently, the above equation is285

useful when we have more than two clusters. For instance, for 3 clusters, f has
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three types of entries {+k, r → 0,−k} which are respectively assigned to the

nodes of the corresponding clusters. In this case, we may have f(i)f(j) > 0 for

inter-class links, such as f(i) = |k|, f(j) = r. However, now k2+r2 ≫ |k| ·r and
the condition in Eq. 13 is only satisfied when di ≫ dj . A similar requirement290

is needed when f(i) = f(j) = k or f(i) = f(j) = r . As a result, this condition

enforces preferential attachent (link nodes with a small degree to those with

large degrees) but it does not tell us (in general) whether the edges satisfying

the condition are either inter-class edges or intra-class edges.

4. Towards Dirichlet Densifiers295

4.1. Implicit Minimization of the Spectral Gap

Since spectral methods (SPD and sufficient conditions) have severe limita-

tions to provide both scalable and reliable densifiers, we turn our attention to

the implicit minimization of the spectral gap. In Section 2.3, we exploited the

link between the spectral gap λ2 and graph conductance Φ (λ2 ≤ 2Φ) to pose300

densification in terms of adding edges to the original graph G = (V,E) so that

Φ is significantly bounded. In practice, where G is attributed, we assume that

intra-class weights are generally smaller than inter-class ones. Under this condi-

tion, we can rely on large-valued wijs to diffuse edginesss in a conservative way

(minimum risk of increasing the spectral gap). To that end, let z ∈ {0, 1}E , be305

an indicator vector where E ⊆ |V | × |V | is the set of edges in E (with wij > 0)

sharing a vertex in V . Two neighbouring edges ea = (i, k) and eb = (k, j) share

a vertex k. If we define w(eab) as a similarity measure between two neighbour-

ing edges, for instance w(eab) = wa · wb or w(eab) = min(wa, wb), the most

conservative way of difussing edginess is given by the Dirichlet principle.310

Such a principle consists of defining z as a minimizer of

Q(z) =
∑

ea∼eb∈E

w(eab)(za − zb)
2 , (14)

which leads to

za =
1

da

∑

ea∼eb∈E

w(eab)zb , (15)
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where da =
∑

eb∼ea
w(eab). Consequently, the Dirichlet principle leads to diffuse

edginess in an harmonic way (the edginess of a given edge is the weighted average

of those of its neigbouring edges). Since large-valued edges are assumed to be

the most confident ones, we set some zbs to 1 in the above equation to infer the

unknown zas, thus relaxing the domain {0, 1}E to [0, 1]E for z.315

4.2. A Toy Example

In order to illustrate the Dirichlet principle, given a small graph G = (V,E)

like the one in Fig. 3-top, let the weight of each of its edges be proportional

to the thickness of the lines linking the corresponding vertices. In this regard,

dashed lines mean some potential new edges resulting from densification. The320

green one is given by edges (a3, a0) and (a0, b0), i.e. it is an inter-class edge.

However, the blue one is given by (b1, b0) and (b0, b3) and it is an intra-class

edge. Then, the diffusive process rooted in the Dirichlet principle is applied

to the line graph whose nodes are the edges in E and its edges E are given

by two-step node transitivities (or, equivalently, one-step edge transitivities) in325

G. Any edge in the line graph is candidate for densifying G, but these edges

must be discovered by the Dirichlet diffusion process. If this process starts at

a0 − b0 (the green node) it will reach four inter-class edges (now nodes in the

line graph) and the spectral gap will increase. On the other hand, the diffusion

process is optimally seeded at a1−a2 and b2−b3 (red nodes) which strongly link330

intra-class nodes in G. An interesting property of the line graph is that there

are more intra-class nodes than inter-class ones. For instance, the intra-class

edge b1−b3 can be inferred either from the path b2−b3, b1−b2 or from the path

b0− b3, b0− b1. If we start the process by setting zb2−b3 = 1 and zero elsewhere,

we will find a large value for zb1−b2 in only one iteration, thus inferring b1− b3.335

In the following sections we will: (1) develop an structural filter using return

random walks so that we can pre-filter inter-class edges in the original graph,

(2) construct the line graph by considering the practical (spatial) limitations,

(3) run the Dirichlet process and (4) test it in real mid-size/large graphs.
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Figure 3: Dirichlet principle. Input graph with some inferred edges (top). Line graph with

seeds (bottom).

5. Return Random Walks340

5.1. Motivation

Our proposed densifier infers new intra-class edges while minimizing the

number of new inter-class edges. To this end, we proceed to 1) design an struc-

tural filter, using Return Random Walks (RRW) and 2) build the line graph

and run a Dirichlet process on it. In this section, we show that the RRWs345

implement a weighted diffusion process. This process minimizes the probability

that a random walk starting and ending at a given node traverses the inter-class

links. The resulting weighting matrix We is denser and more clustered than that

associated with input graph.

5.2. Design of Return Random Walks350

Given a set of points χ = {~x1, ..., ~xn} ⊂ R
D, we map the points ~xi to the

vertices V of an undirected weighted graph G(V,E,W ). We have that V is the

set of nodes where each vi represents a data point xi, and E ⊆ V × V is the

set of edges linking adjacent nodes. An edge e = (i, j) with i, j ∈ V , exists if

17



vi
vj

vk

vl

vk

vl

TRANSITION NODES

CLUSTER #1

CLUSTER #2

ORIGIN DESTINATION

vi
vj

vk

vl

vj

vk

vl

TRANSITION NODES

ORIGIN DESTINATION

GO

RETURN

CASE 1 (INTRA-CLASS) CASE 2 (INTER-CLASS)

HYPOTHESIS: Probability of CASE 1 is higher than the probability of CASE 2

Figure 4: Return random walks for reducing inter-class noise.

wij > 0, where wij = e−||~xi−~xj||
2/σ2

, and j ∈ Nk(i) (j is a kNN of i). The

bandwidth parameter σ is optimally selected with respect to k.

Design of We. Given W = {wij} ∈ R
n×n, we produce a reweighted sim-

ilarity matrix We by following the following rationale, a) we explore the two-

step random walks reaching a node vj from node vi through any transition

node vk, b) on return from vj to vi, we maximize the probability of returning

through a different transition node vl 6= vk. For the first step (going from vi

to vj through vk) we have pvk(vj |vi) =
wikwkj

d(vi)d(vj)
as well as a standard return

pvl(vi|vj) =
wjlwli

d(vj)d(vi)
. The standard return works well if vi and vj belong to the

same cluster (see Fig. 4-left). However, vl (the transition node for returning)

can be constrained so that vl 6= vk. In this way, travelling out of a class is

penalized since the walker must choose a different path, which in turn is hard

to find on average. Therefore, we obtain weij from wij as follows:

weij = max
k

max
∀l 6=k

{pvk(vj |vi)pvl(vi|vj)} , (16)

i.e. for each possible transition node vk we compute the probability of leaving

and returning (product of independent probabilities) through a different node

vl. We retain the maximum product of probabilities for each vl referred to

a given k and finally we retain the supremum of these maxima. As a result,
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when inter-class paths are frequent for a given edge e = (i, j) (Fig. 4-right) its355

weight weij is significantly reduced. The weights weij measure the connectivity

between two nodes in a specific cluster or region (not the direct connection but

the indirect one through neighbouring nodes). Large values of weij mean that

both nodes i and j are not only strongly locally connected but they also belong

to a highly cohesive connected component.360

Our working hypothesis is that the number of edges involved in inter-class

transitions (Fig. 4-right) is small on average, since the number of inter-class

edges tends to be small compared with the total number of edges. In realistic

situations patterns can be confused either due to their intrinsic similarity or due

to the use of an improper similarity measure. As a result, this assumption leads365

to a significant decrease of many of the elements of W .

Filtering of We. To reduce inter-class noise, we consider the relationship

between the shortest path and the sum of different weights of the RRW, i.e.

w′
eij = weij × exp

{

−γij
min

γij

}

, (17)

where γij = wik + wkj + wjl + wli and γij
min is the length of the shortest path

between i and j. Consequently, we enforce that the length of the actual path370

(constrained to pass through l and k with l 6= k) is very large in comparison

with that of the shortest path between i and j. In addition, we enforce that the

length of the shortest path γij
min is small too.

However, the above equation does not account for the difference between

outward and return paths. For this case, we assign the weight as375

w′′
eij =

w′
eij

bsij
, where bsij =

wik + wkj

wjl + wli
, (18)

where bsij measures the balance or symmetry with respect to outward and

return paths (asymmetric if bsij 6= 1). If the value bsij is either small or large,

then (i, j) will be considered an inter-class edge.

The above filtering of W is quite effective for reducing inter-class noise. In

Figure 5 we show the Adjusted Rand Indices (ARIs) obtained for We, W
′
e and380
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Figure 5: NIST dataset: Comparison and evolution of Return Random Walks for increasing

values of k in kNN

W ′′
e (NIST dataset with n = 1000). As k increases, both W ′

e and W ′′
e are stable,

whereas the effectiveness of the kNN graph, filtered with Eq. 16, decays with k.

In the following section, we rename W ′′
e as We, to avoid notational conflicts.

6. The Dirichlet Graph Densifier

6.1. Motivation385

Once we obtain the filtered weighting matrix We which is both denser and

better conditioned than the original input matrix W , we 1) construct an oracle

to create new edges and 2) run a Dirichlet process. The main novelty of our

contribution is that we run random walkers on a line graph, i.e. in the edge

space rather than the original graph. In addition, the two thresholds δ1 and δ2,390

used in the proposed approach, become universal bounds which are applicable

(see details in the experimental section 7) to multiple datasets.

6.2. The Line Graph

The graph densification problem can be posed as follows: given a graph

G = (V,E,W ) infer another graph H = (V,E′,W ′) so that |E′| ≥ |E| in such395

a way that the bulk of new edges are constrained to be intra-class edges (i.e.

the number of inter-class edges is minimized). Therefore, the unknowns of the
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problem are the new edges that need to be inferred. In principle we have a

O(n2) unknowns, where n = |V |, and working with all of them is infeasible.

This motivates the selection of a small fraction of the original edges (those with400

the largest values of weij ) according to a given threshold δ1. This leads to an

oracle E′′ = {e ∈ E : we ≥ δ1} containing the most likely candidate edges.

The fact that the smaller the latter fraction the better the accuracy seems

counterintuitive, and is both explained below and explored in more detail later

in the experimental section of this paper. The impact of this choice on efficiency405

is that only |E′′| edges, with |E′′| ≪ |E|, are considered for constructing a graph

of edges, i.e. a line graph LineWe, as follows.

Let A be the p× n edge-node incidence matrix defined as follows:

Aeijvk =



















+1 if i = k,

−1 if j = k,

0 otherwise,

(19)

Then, the adjacency matrix of q−steps (with q = 2) transitive edges is

C = AAT − 2Ip, where Ip is the p × p identity matrix. This is the adjacency

matrix of the unweighted line graph, where the nodes ea are given by all the

possible pairs of r = |E′′| edges with a common vertex according to A. The

edges of C indicate second-order interactions between nodes in the original graph

represented by A. However, C is still unattributed (although conditioned by

We). A proper weighting for this graph is to use standard ”go and return”

random walks, which gives elements of the weighted adjacency matrix as

LineWe(ea, eb) =

r
∑

k=1

pek(eb|ea)pek(ea|eb) , (20)

i.e. return walks are not applied because they become too restrictive. There is

an edge in the line graph for every pair (ea, eb) with LineWe(ea, eb) > 0. We

denote the set of edges of the line graph by ELine.410

6.3. The Dirichlet Functional for the Line Graph

Given the line graph LineWe with r nodes (now edges) many of them will

be highly informative according to We and the application of Eq. 20. We retain
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a fraction of them (again, those with the largest values of We) according to a

second threshold δ2 > δ1. This second threshold must be set as small as possible

since it defines the difference between the ”known” (stable) and the ”unknown”

(unstable) edges. More precisely, We acts as a function We : |E′′| → R so that

the larger its value, the more certain or trustable is a given edge as a candidate

stable or known edge in the original graph G. Unknown edges are assumed to

have small values of We and this is why they are not selected, since the purpose

of our method is to infer them.

This is a classical inference problem (now in the space of edges and com-

pletely unsupervised3) which has been posed in terms of minimizing the dis-

agreements between the weights of existing (assumed to be ”known”) edges and

those of the ”unknown” or inferred ones. In this regard, since unknown edges

are typically neighbours of known ones, the minimization of this disagreement

is naturally expressed in terms of finding a harmonic function. Harmonic func-

tions u(.) satisfy the condition ∇2u = 0 which in our discrete setting leads to

the following property

u(ea) =
1

d(ea)

∑

(ea,eb)∈ELine

LineWe(ea, eb)u(eb) , (21)

The harmonic function u(.) is constrained, since it is known for some val-

ues of the domain (the perimeter or border). In our case, we set u(ea) =

wea/max {wea} for ea ∈ EB , referred to as perimeter or border nodes since they

are associated with assumed known edges. The harmonic function is unknown

for eb ∈ EI = E′′ ∼ EB (the interior nodes). Then, finding an harmonic func-

tion given its boundary values is called the Dirichlet problem and it is typically

formulated in terms of minimizing the following integral

D[u] =
1

2

∫

Ω

|∇u|2dΩ, (22)

3Our experiments show that δ1,δ2 are highly consistent for different datasets, which is one

of the key contributions of this paper.
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where Ω is the field. Its discrete version relies on the graph Laplacian [7] (in

this case on the Laplacian of the line graph):

DLine[u] =
1

2
(A′u)TP (A′u) =

1

2
uTLLineu

=
1

2

∑

(ea,eb)∈ELine

LineWe(ea, eb)(u(ea)− u(eb))
2 , (23)

where A′ is the |E”| × |ELine| incidence matrix, P is the |ELine| × |ELine|
diagonal constitutive matrix containing all the weights of the edges in the line

graph, and LLine = DLine−LineWe withDLine = diag(d(ea) . . . d(e|E”|)), where

d(ea) =
∑

eb 6=ea
LineWe(ea, eb), is the diagonal degree matrix. Then, LLine is

the Laplacian of the line graph.

Given the line graph Laplacian LLine and the Dirichlet combinatorial integral

DLine we have that the nodes in the line graph are partitioned in two classes:

”perimeter” EB and ”interior” EI , i.e. E” = EB ∪ EI . This partition leads

to a reordering of the harmonic function u = [uB uI ] as well as the Dirichlet

integral:

D
[

uI

]

= 1
2

[

uT
B uT

I

]





LB K

KT LI









uB

uI



 (24)

where D
[

uI

]

= 1
2 (u

T
BLBuB + 2uT

I K
TUB + uT

I LIuI) and differentiating w.r.t.

uI leads to a solution of the linear system which relates uI with uB:

LIuI = −KTuB . (25)

Let s ∈ [0, 1] be a label indicating to what extent a given node of the line

graph (an edge in the original graph) is relevant. We define a potential function

Q : EB → [0, 1] so that for a known node ea ∈ EB we assign a label s, i.e.

Q(ea) = s. This leads to declaring the following vector for each label:

ms
a =







wea

maxeb∈E”{web
} if Q(ea) = s,

0 if Q(ea) 6= s
. (26)

Finally, the linear system is posed in terms of how the known labels predict the

unknown ones, placed in the vector u, as follows:

LIu
s = −KTms . (27)
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If we consider simultaneously all labels instead of just a single one, we have the

solution

LIU = −KTM ⇒ U = (−KTM)L−1
I , (28)

where U is a stochastic matrix with |EI | rows (one per unknown/interior edge,

to be solved) and M has |EB| rows and columns. Then, let Uk be the k−th

row, i.e. the probabilities that a given unknown ek edge is compatible with any

of the known edges (these probabilities have unit sum). The edginess of ek is

now given by the maximum row probability. If ek = (i, j), with i, j ∈ V in the

original graph G = (V,E,W ), then an edge exist in H = (V,E′,W ′) if Hij > 0,

where

Hij =



















maxek∈U Uk if ek ∈ EI

Mij if ek ∈ EB,

0 otherwise

(29)

In this way, the new edges E′ are inferred by the Dirichlet process.

7. Experiments and Discussion415

In our experiments, we evaluate our Dirichlet densifier on four standard

datasets, namely (1) a reduced version of the NIST handwritten digits dataset:

n = 1000 (100 samples per class - 10 classes), (2) the COIL-20 dataset4 with

n = 1440 (72 samples per class - 20 classes [27]), (3) the FlickrLOGOs-32

dataset5 with n = 2240 (70 samples per class - 32 classes [28]) and (3) the420

YALE-Faces dataset6 with n = 2414 (variable number of samples per class - 38

classes [29]).

Once the associated kNN graphs are densified, we estimate commute times

through the Nguyen and Mamitsuka [17] method (state-of-the-art). Then, the

Adjusted Rand Index (ARI) with respect to the ground truth is used to measure425

the performance of the densification.

4http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
5http://www.multimedia-computing.de/flickrlogos/
6http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Our aim is to investigate the behavior of the proposed densifier as, (1) k,

the number of nearest neighbours in the kNN graph, increases, (2) the size

of the oracle (and thus of the line graph) |E′′| (set according to threshold δ1)

increases, and (3) the number of known labels |EB| (set according to threshold430

δ2) increases. Our objective is to find universal bounds with are commonly

applicable to all the datasets.

7.1. Evaluation of Dirichlet densification in kNN graphs

To commence, we analyze the original affinity matrix W with kNNs, where

the number of nearest neighbours k ∈ {15, 25, 35}. As k increases, the graph435

structure becomes very noisy (many inter-class edges appear). However, for

small values of k, only the strongest classes remain and the remainder of the

structure is weakened. In Figure 6, we show these effects for the NIST dataset.

The respective Adjusted Rand Indices (ARIs) after estimating commute times

are 69.25%, 65.62% and 63.74%.440
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Figure 6: NIST kNN graphs for different values of k.

RRWs are critical. In Figure 7, we confirm that the performance of

kNNs graphs degrades faster than that of our densification procedure. Given an

input kNN graph, we apply Return Random Walks (RRWs). After RRWs, the

densification level (DL) increases significantly (3.47% → 17.3%) because these

walks explore all paths between nodes that are linked in q = 2 steps. Then, we445

create the line graph from the largest valued edges (|E”|). Finally, we obtain

a densification matrix from a given percentage of known edges |EB| in order to

drive the Dirichlet process. We show that the best densification level (8.22%)
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with ARI (71.02%) is obtained when the fraction of selected edges for building

the oracle is |E”| = 0.35 (δ1 is adjusted).450

In addition to their densifying role, RRWs are critical for obtaining a good

ARI measure for the clusters. Given the same oracle size |E”| = 0.35, we

obtain ARI = 71.02% using RRWs to compare to ARI = 61.13% without using

them. However, the computational cost of RRWs is O(n4), and this fact must

be considered in practice.455
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Figure 7: The Dirichlet Densifier at work (best case for NIST). We show both ARIs and DLs.

Top: RRW + |E”| = 0.15. Middle: RRW + |E”| = 0.35 (best densification and ARI). Botton:

not RRW but Dirichlet with |E”| = 0.35.

Searching for optimal thresholds. In Figure 8 we show the effect of

setting the set of known edges |EB | (by adjusting δ2) in addition to setting

the fraction of edges |E”| for constructing the oracle in the NIST dataset. In

general, we obtain the best results for |E”| = 0.35 (35% edges of the original

Laplacian) and a small percentage of known edges |EB| (bottom-left).460

With these parameters to hand (|E”| ≈ 0.35, |EB | ≈ 0.05) we analyze

the four datasets with k =15, 25 and 35. The respective results are shown

in Tables 1 (NIST), 2 (COIL), 3 (LOGO) and 4 (YALE). In these tables,

we compare the ARI (after densification and commute times estimation) for

different configurations (defined by the values of k, |E”| and |EB |) as well as465

for kNN graphs without densification. These tables should be read as follows.
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Figure 8: Densified NIST graphs with different thresholds |E′′| and |EB|.

For each kNN scenario, the top row indicates |EB |=0.05, 0.25 or 0.5 (one per

column). The next block of rows corresponds to |E”|=0.05, 0.15, 0.25 or 0.35.

The ARI is in between (in percentages). Finally, the bottom row corresponds

to ARI for no densification (No dense).470

First, the performance of raw (undensified) kNNs degrades as k increases.

The magnitude of these ARI performances and their degradation rate indicates

how difficult is to densify the corresponding dataset.

For the best cases, their respective ARI are 74.4% (NIST), 95.44% (COIL),

62.96% (LOGO) and 15.68% (YALE), and improve over the kNNs without den-475

sification. The corresponding results without densification are 69.25%, 89.75%,

61.92% and 14.85% respectively (see Figure 9).

Setting |E”|. Here, we retain a third of the edges for the oracle (35%).

This is the critical mass, i.e. base number of representative (confident) edges,

of our approach. A larger oracle may lead to a poorer result (in NIST, a kNN480

with k=15 and |E”| = 0.5 yields ARI = 71.89%) because, in these conditions we

tend to include many inter-class edges (noise) in the oracle. Only in the YALE
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dataset, which is clearly the least structured dataset tested in this paper, the

critical mass is reduced to |E”| = 0.25 to give the best performance in almost

all scenarios (see Table 4).485

Setting |EB|. When we keep the number of known edges small (|EB|=5%)

the densification may become more noisy. This is due to the leakage of random

walkers through inter-class edges. However (as we can see in Figure 8) we

obtain denser classes (inter-class cohesiveness) in comparison to configurations

with a larger number of known edges (|EB |=50%). This is consistent with the490

reduction of the densification level (DL) as |EB| increases. For example, in the

NIST dataset we have DL = 3.79% with 5% of known edges, vs DL = 1.99%

with 50% of known edges.

In general, the setting |EB | = 0.05 results in some loss of stability (in terms

of providing optimal performance) in combination with |E”| = 0.35, as the495

kNN scenario gets harder. Otherwise, it seems more reasonable to increase

the number of known labels in harder scenarios or in all the scenarios for

hard/unstructured datasets (YALE).
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Figure 9: Best cases (Adjusted Rand Index) of densification of different datasets.

7.2. Comparison with Anchor graphs

Anchor graphs [19] are designed to produce better affinity matrices by min-500

imizing the spectral gap λ2. However, they require pre-computation of the
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Table 1: NIST dataset: Adjusted Rand Index for different thresholds and number of k

kNN 15 kNN 25 kNN 35

|EB|
0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

|E
′′
|

0.05 37.3 41.88 40.62 57.23 54.33 52.26 27.12 30.88 43.49

0.15 66.9 63.52 61.64 70.87 70.84 57.65 69.51 68.54 67.42

0.25 71.78 69.15 65.01 71.05 70.4 70.21 69.95 71.6 70.51

0.35 74.4 71.06 70.08 71.02 71.51 70.42 70.55 71.23 70.49

No dense 69.25 65.62 63.74

optimal number of cluster representatives (model order selection). We there-

fore proceed to compare the performance of the parameter configuration with

|E”| = 35% and |EB | = 5% for Dirichlet densifiers with those obtained for

anchor graphs with an increasing number of anchors m. In Fig. 10-left, where505

we explore the range m ∈ [5, 900] for the NIST dataset. The performance of

anchor graphs increases with m but degrades after reaching the maximum value

at m = 440 (ARI = 76%). This maximum is due to the fact that anchor graphs

tend to reduce the amount of inter-class noise. On the other hand, Dirichlet

densifiers are completely unsupervised and do not rely on anchor computation.510

Their performance is constant w.r.t. m and the best of ARI obtainable is 74.4%.

Our (unsupervised) densifier is only outperformed in a small range of m. These

results are consistent with other datasets too. For instance, in the COIL dataset,

we explore the range m ∈ [5, 350] for the anchors. Our best ARI for the Dirich-

let densifier is 95%, which is obtained with |E”| = 35% and |EB | = 5%. Anchor515

graphs reach a maximum ARI = 98% in the range m ∈ [250, 310] and then

degrade in performance.
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Table 2: COIL dataset: Adjusted Rand Index for different thresholds and number of k

kNN 15 kNN 25 kNN 35

|EB|
0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

|E
′′
|

0.05 55.17 57.99 33.51 54.31 51.03 30.94 72.66 71.68 67.85

0.15 73.16 72.04 72.69 63.33 64.26 74.11 90.96 84.57 71.13

0.25 93.69 83.68 82.98 92.09 91.09 64.32 91.01 91.99 90.27

0.35 95.44 94.54 83.01 92.41 92.81 90.55 90.53 91.01 92.11

No dense 89.75 89.65 85.42
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Figure 10: Left: ARIs for Anchors Graphs and Dirichlet densifiers. Dirichlet densifiers do not

depend on the number of anchors and are unsupervised. Right: ARIs vs Spectral Gaps.

Finally, the good behavior of Dirichlet densifiers for minimizing λ2 is shown

in Fig. 10-right. Red dots correspond to Dirichlet dense matrices (those whose

performance is reported in Table 1). This not only reconciles our results with520

those of the anchor graphs, but also lifts the von Luxburg and Radl’s bound

(Eq. 4) so that commute times can be more accurately estimated.

8. Conclusions

In principle, commute times (CTs) cannot be accurately estimated from large

graphs [14]. However, in this paper we show that Dirichlet densifiers provide a525

30



Table 3: LOGO dataset: Adjusted Rand Index for different thresholds and number of k

kNN 15 kNN 25 kNN 35

|EB|
0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

|E
′′
|

0.05 20.21 18.11 22.56 45.59 42.99 40.2 19.94 14.01 16.69

0.15 60.55 58.81 56.03 57.68 47.21 48.71 52.77 14.43 51.54

0.25 61.77 60.58 59.81 59.24 59.21 47.56 54.65 53.33 53.29

0.35 62.96 61.75 61.39 60.65 59.7 58.73 57.23 55.11 53.71

No dense 61.92 59.82 54.11

route to the computation of meaningful commute times. We highlight the fact

that the spectral gap should be close to zero, and this is the role of Dirichlet

densifiers (see Fig. 10-right) for small fractions of leading edges. However, the

adjusted rand index (ARI) degrades linearly as the spectral gap increases. This

means that the spectral gap is negatively correlated with increasing levels of530

inter-class noise. This noise arises when the densification level increases, since

Dirichlet densifiers are still not able to confine densification to intra-class links.

For anchor graphs the spectral gap is typically close to the unity. Otherwise,

they outperform Dirichlet densifiers to some extent at the cost of computing

anchors and finding the best number of anchors.535

To conclude, we have presented a novel method for transforming graphs

into denser versions which are more suitable for estimating meaningful CTs.

This is due to the minimization of the Cheeger constant and, in turn, to the

minimization of the spectral gap. Our method is more scalable and effective

than that based on SDP. It is completely unsupervised, since our experiments540

with real datasets show that there are almost universal thresholds, namely |E”|
and |EB |, for a variety of datasets.

Our future work includes a semi-supervised version of the Dirichlet densifier,

the modification of the von Luxburg et al.’s gap to make it dependent on the
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Table 4: YALE-Faces dataset: Adjusted Rand Index for different thresholds and number of k

kNN 15 kNN 25 kNN 35

|EB|
0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

|E
′′
|

0.05 12.48 11.66 10.69 5.34 5.71 5.76 5.59 3.07 4.2

0.15 15.47 14.38 13.91 10.57 10.45 9.59 7.73 7.14 6.93

0.25 15.29 15.48 15.01 10.81 10.66 10.14 8.14 8.04 7.84

0.35 14.46 15.68 15.34 9.18 6.65 10.9 7.1 7.04 7.69

No dense 14.85 9.27 7.27

densification level and the application of densification to graph classification. We545

will explore also better sufficient conditions for predicting links that decrease

the spectral gap. In addition, our recent work shows that densifying/rewiring

the original graph has a deep implication in the improvement of graph-based

ranking [30].
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