
This is a repository copy of TZDKS: A New TrustZone-based Dual-CriticalitySystem with
Balanced Performance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/142684/

Version: Accepted Version

Proceedings Paper:
Dong, Pan, Burns, Alan orcid.org/0000-0001-5621-8816, Jiang, Zhe et al. (1 more author)
(2018) TZDKS: A New TrustZone-based Dual-CriticalitySystem with Balanced
Performance. In: Proceeding IEEE 24th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). IEEE , IEEE Xplore , pp. 59-64.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

TZDKS: A New TrustZone-based Dual-Criticality

System with Balanced Performance

Pan Dong12 Alan Burns1 Zhe Jiang1 Xiangke Liao2

1 Real-Time Systems Research Group, Department of Computer Science, University of York, YO10 5GH, UK
2School of Computer, National University of Defense Technology, Changsha, Hunan Province, P.R.China

Abstract—Many mixed-criticality systems are composed of a
RTOS (Real-Time Operating System) and a GPOS (General
Purpose Operating System), and we define them as mixed-time-
sensitive systems. Complexity, isolation, real-time latency, and
overhead are the main metrics to evaluate such a mixed-time-
sensitive system (MTSS). These metrics may conflict with each
other, so it is difficult for them to be consistently optimized. Most
existing implementations only optimize part of the above metrics
but not all.

As the first contribution, this paper provides a detailed analysis
of performance influencing factors which are exerted by various
runtime mechanisms of existing MTSSs. We figure out the
difference in performance across system designs, including task
switch, memory management, interrupt handling, and resource
isolation. We propose the philosophy of utilizing TrustZone
characteristics to optimize various mechanisms in MTSS.

The second contribution is to propose a TrustZone-based
solution - termed TZDKS - for MTSS. Appropriate utilization
of TrustZone extensions helps TZDKS to implement (i) virtu-
alization environment for GPOS and RTOS, (ii) high efficient
task switch, memory access, interrupt handling and device
access which are verified by experiments. Therefore, TZDKS can
achieve a full-scale balance amongst aforementioned metrics.

I. INTRODUCTION

Recently, many applications require integrating components

with different levels of criticality on one physical platform, in

order to meet stringent non-functional requirements relating to

cost, space, weight, heat generation and power consumption.

This kind of system is defined as a mixed-criticality system

[5]. The most common case is that a real-time system and

a non-real-time interactive system are mixed and integrated

on one platform, which is defined as a mixed-time-sensitive

system (MTSS) in this paper, also deemed as a special Dual-

Criticalitiy System [4].

The performance of MTSS is determined by many metrics,

such as complexity, isolation [9], real-time latency, and over-

heads (of merging different OSs). These metrics may conflict

with each other, so can hardly be consistently optimized. For

example, isolation and complexity collide with performance or

overhead. There are many approaches to design and implement

MTSS, which can be classified as two sorts. The traditional

way is to extend popular GPOS, e.g, Linux. This method

usually deploys a small real-time kernel at the underlying

of GPOS, and takes GPOS as a pseudo real-time task. We

call it a dual-kernel system [11]. A dual-kernel system does

not require extra hardware support, and only introduces a low

overhead [11]. However, it needs to modify the GPOS kernel

heavily, which results in high cost in complexity and flexibility.

Additionally, insufficient isolation between OSs leads to many

security and reliability problems [15]. As an instance, Linux

often goes down because of a bug in a device driver, and

the same bug may also lead to the whole system’s failure

in Xenomai [11]. In contrast, virtualization-based method

becomes a more popular and rapid method to design a MTSS

through integrating RTOS and GPOS in two virtual machines.

This method can provide better security isolation and lower

complexity, so it has the advantages of simple development

and ideal isolation. However, both OSs suffer from high

overhead and remarkable decrease of executing performance.

The hypervisor must be redesigned to meet the real-time

requirement. Moreover, it heavily relies on hardware supports,

which increases the cost of the whole system [12].

The TrustZone technology, which is developed to provide

a trusted executing environment, has attracted our attention.

With the hardware isolation support, a GPOS may run on

the TrustZone-enabled CPU without modification, which leads

to a low development cost. Furthermore, as a light-weight

isolation scheme, TrustZone introduces a small overhead in

software. Therefore, its characteristics do help to develop a

MTSS with all-round balance amongst the metrics we focus.

As the first contribution, this paper provides a detailed

analysis of performance influencing factors which are ex-

erted by various runtime mechanisms of existing MTSSs.

We figured out the difference in efficiency across system

designs such as task switch, memory management, interrupt

handling, and resource isolation. We propose the philoso-

phy of utilizing TrustZone characteristics to optimize various

mechanisms in MTSS. The second contribution of the paper

is to propose a Trustzone-based solution for MTSS, termed

TZDKS (TrustZone-based Dual-Kernel System). Appropriate

utilization of TrustZone extension helps TZDKS implement

(i) virtualization environment for GPOS and RTOS, (ii) high

efficient task switch, memory access, interrupt handling and

device access which are verified by experiments. Therefore,

TZDKS achieves a full-scale balance among aforementioned

metrics. We believe that our TZDKS is a safe and low-cost

solution as the TrustZone-build-in ARM platforms have been

used in almost all engineering fields.

The paper is organized as follows: Section II introduces

related work; Section III gives the design philosophy; Section

IV describes the TZDKS implementation; Section V evaluates

the performance of TZDKS, with conclusions offered in

Section VI.

59

2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)

2325-1301/18/$31.00 ©2018 IEEE
DOI 10.1109/RTCSA.2018.00016

II. RELATED WORK

A. Two Common Solutions for Integrating Embedded System

A dual-kernel MTSS introduces a small real-time kernel

into the underlying of GPOS, and takes GPOS as a pseudo

real-time task. RTOS has a higher priority than GPOS, and

consequently GPOS only runs during the idle periods of

RTOS. That is to say, when the IDLE task is switched on,

a switcher module will be invoked to save the state of RTOS,

and restores the state of GPOS, then RTOS will be activated as

the timer (belongs to RTOS) interrupting GPOS, and will do

rescheduling for the real-time tasks. So this is called as idle-

scheduling strategy. RTLinux, RTAI, Xenomai and RTThread

[6] [11] are products of dual-kernel system, and are widely

applied in industrial systems.

In a virtualization-based MTSS, a hypervisor may be used to

manage shared resources and isolate the OSs, and a GPOS can

execute aside a RTOS in two virtual machines (VM). The up-

to-date avionics systems specification - ARINC 653 [14] - is a

typical example. This specification requires integrating many

subsystems (such as flight control system, environment control

system, and amusement system) into a virtualized platform

on modern aircraft. Virtualization has also been developed

in the IO system of a MTSS. I/O virtualization [18] [17]

[10] enables time and space multiplexing of I/O devices, by

mapping multiple logical I/O devices upon a smaller number

of physical devices. More than just provide more device ports,

this technology can also reduce the software overhead and

enhance the I/O performance and timing predictability.

These two MTSSs always behave oppositely in many as-

pects, and detailed analysis will be presented in section III.

B. TrustZone and TrustZone-based virtualization

ARM TrustZone [16] is a hardware-based security extension

technology incorporated into ARM processors. It enables a

single physical processor to execute instructions in one of two

operating worlds: the normal world (NW) and the secure world

(SW). The isolation mechanisms are well defined. Access

permissions are strictly under the control of SW, which forbids

access of secure resources from NW. As the processor only

runs in one world at a time, to enter the other world requires

context switch via a special instruction called the Secure

Monitor Call (SMC). In order to facilitate the application

development, the GlobalPlatform consortium develops the

TEE client API specification [8].

The idea of using TrustZone as a virtualization technique in

embedded systems was first introduced by Frenzel et al [7].

TrustZone extensions help to virtualize a system in two ways:

(1) Use system access capabilities of the secure world to

build a hypervisor that can control VMs running in NW.

SierraVisor is an example of such way.The SierraVisor

Hypervisor [3] leverages hardware security extensions of

TrustZone to run multiple, high-level operating systems

concurrently. The guest operating systems (OS) are aware

of the fact that they are running on top of a hypervisor,

so minor modifications must be made to the guest OS.

Guest kernel and applications run in their usual privilege

modes respectively. Furthermore, each guest executes in

an isolated environment with low overhead.

(2) Use the efficient switch mechanism of the Secure Monitor

to host a dual-OS system (Secure OS and Normal OS).

Most TrustZone-based virtualization systems [13] [15] are

constructed in this way. SafeG [15] is designed to concur-

rently host a RTOS and a GPOS on TrustZone-enabled

ARM SoC devices. SafeG takes advantage of TrustZone

security extensions to provide full system access to trusted

software, and limit the capabilities of software running in

the normal world.

III. BALANCING DESIGN PHILOSOPHY OF TZDKS

A. Dual-kernel vs Virtualization

Here we discuss four metrics mentioned before as key

points of system performance. Considering that it is difficult

to test these metrics directly, we change to compare another

four testable mechanisms - tasks management, memory man-

agement, event management, and runtime environment - and

believe that they can reflect the performance of former metrics.

Fig. 1. Main Task Switch Process in Different Systems

A.1 Tasks management. Both systems adopt a two-level

model for task management, and the main difference exists in

OS switch. Dual-kernel system’s RTOS kernel do scheduling

not only for its RT tasks, but also for running of GPOS. As

a contrast, a virtualization system adds an extra hypervisor

to manage the switch operation of GPOS/RTOS VMs. Figure

1 (a) gives a illustration how a given real-time task τ and

GPOS are alternately executing, while the process with the

same goal in a virtualization system is given in figure 1 (b).

As shown, GPOS is interrupted by a real-time timer, and the

interrupt handler stores the runtime context of GPOS, then

restores the context of the RTOS scheduler. If τ is ready, the

60

RTOS scheduler will restore the context of τ . When the RTOS

scheduler finds no runnable task in the queue, the idle task will

be switched on, and it will invoke a system call to store the

context of itself, and restore the context of GOPS. In figure

1 (b), a hypervisor runs at the under-layer of two VMs, so

extra scheduling and context storing/restoring take place in

the process of VM switch.

Fig. 2. Address Translation in Different Systems

A.2 Memory model. In the dual-kernel system as shown

in figure 2 (a), some physical memory is retained and locked

by RTOS, so GPOS can only use other physical memory,

though they both adopt two level (virtual/physical) address

translation. A virtualization system normally adopts three level

(virtual/real/physical) address translation shown in figure 2 (b).

A.3 Interrupt handling. Dual-kernel system ensures that

interrupts are first treated by RTOS. Interrupts belonging to

GPOS will be put into a pipeline and then be progagated to

GPOS when there are no more runnable tasks in RTOS. In

virtualization system, all the interrupts will be firstly treated

by the hypervisor (or domain 0 OS), then be forwarded to

VMs. Though IO virtualization [10] is able to route interrupts

to VMs directly, unfortunately there are very few commodity

platforms with IO virtualization support.

A.4 Runtime environment. A dual-kernel system integrates

two OSs by patching the GPOS kernel and adding many

intercoupling function in two kernels, so there is no logical

independent environment for GPOS or RTOS, and no effective

defence to harmful interference from each other. As known,

virtualization systems have well-defined and isolated environ-

ments for each OS.

We have following observations through the comparison.

• C.1 Dual-kernel system achieves better real-time latency

and suffers from a lower overhead, because

– less context store/restore (3 vs 4 times in figure 1).

– less times of scheduling in task switch (1 vs 2 times

in figure 1).

– shorter interrupt latency, because interrupts go to

RTOS directly.

– shorter memory access latency, for less translation

layers.

– less waste CPU time, because it saves all the idle

time of RTOS to run GPOS.

• C.2 Virtualization system is much better than dual-kernel

system in aspects of complexity and isolation.

– lower complexity is benefited from the advanced VM

capabilities, such as cloning and live migration.

– virtualization provides software&hardware isolation,

which brings it ideal reliability and security.

B. Design Philosophy of TZDKS

TZDKS is derived from the following fundamental princi-

ples.

• at least two kernels are required to handle different time-

sensitive tasks’ management.

• simplified structures. Dual-kernel system has less com-

ponents and management levels, which is the main cause

of the less overhead and the lower latency.

• hardware virtualization support. Both isolation and high

performance require that.

• replacement or simplification of the hypervisor. This

software layer decreases the performance.

Normal virtualization technologies seem more heavy-weight

than above principles, while TrustZone - a lightweight iso-

lation extension of ARM - comes into our view. We can

easily get two isolated domains (or virtual machines) with the

assistance of the following TrustZone hardware mechanisms.

• Each physical CPU is virtualized into two virtual CPUs:

one for the secure world and the other for the non-secure

world. Cache of each level is also virtualized and isolated.

• TrustZone Address-Space Controller (TZASC) allows

partition of memory, which can be exploited to guaran-

tee strong spatial isolation. Therefore, TrustZone-enabled

system only has/needs MMU support for two-level ad-

dress translation.

• TrustZone Protection Controller (TZPC) allows devices

to be configured as secure or non-secure, that allows the

isolation of devices at the hardware level.

• Generic Interrupt Controller (GIC) supports the coex-

istence of secure and non-secure interrupt sources. It

allows the configuration of secure interrupts with a higher

priority, and also allows to assign IRQs and FIQs to

secure or non-secure interrupt sources.

Some opensource projects like Trusted Firmware [2] have

provided sound support for two domains and virtual-machine-

like interfaces to Linux and general RTOS, and also give us

ideal platform foundation.

So it seems that it is an obstacle to pursue greater perfor-

mance in designing this new system. We are fortunate enough

to discover that many mechanisms provided by TrustZone are

very helpful to improving the performance of TZDKS - our

TrustZone-based Dual-Kernel System.

• With the assistance of hardware memory isolation, two-

level address translation can be implemented in the

TZDKS virtual memory subsystem, and makes it have

61

Process 1 Process 2
GPOS RTOS

Process 1 Process 2
Virtual Memory

Non-secure
Physical Memory

Virtual Memory

Secure
Physical Memory

drivers drivers

GICNon-secure
devices

Secure
devices

access accessIRQ FIQ

interrupts interrupts

Fig. 3. Address Translation and Device Access in TZDKS

the same efficiency as the memory mapping in a bare-

metal OS (figure 3).

• Through the proper configuration of GIC, interrupts can

be routed to the owner kernel by hardware, that avoids

software interrupt forwarding. Both kernels benefit from

the simplification of interrupts management (figure 3).

• Devices can be partitioned according to requirement, so

the IO software stacks can be simplified and the IO

latency can be kept at the lowest level.

• Some software characters of TrustZone can also be ex-

ploited. For example, we can use the monitor mode as

a context switcher for two kernels, so as to replace the

functions of a hypervisor. We will implement the kernel

switch shown in Figure 4, apparently it has the same

efficiency as the traditional dual-kernel system.

Fig. 4. Tasks Switch Process in TZDKS

In a word, TrustZone extension provides sufficient support

to achieve a balance among isolation, virtualization, and

performance for dual-kernel structure.

IV. IMPLEMENTATION OF TZDKS

A. Architecture of TZDKS

There are more than one possible structures may be adopted

to integrate a RTOS and a GPOS in a TrustZone-enabled

multi-core platform. For example, RTOS can use CPU cores

in sharing (with GPOS) way or in exclusive way.TZDKS

chooses the sharing way, named multi-core shared structure

(MSS). In MSS, all CPU cores are time-shared by two OSs.

MSS can achieve high processor utilization, so an uniprocessor

platform can also support it. It is more suitable to develop a

dual-criticality system based on MSS because time slices can

be neatly deployed to meet the requirements of high critical

applications. A complicated OS switch mechanism should be

designed in a MSS system. In order to implement a smooth OS

switch, we leverage the monitor mode of TrustZone. As shown

in figure 5, there are two software stacks located in the two

worlds of TrustZone-enabled environment on TZDKS. Consid-

ering that SW has higher priority than NW, we build RTOS in

SW for high criticailty guarantee. The SW stack is composed

by the monitor module, RTOS and real-time tasks/services,

and provides a real-time environment for the development

of applications which need to guarantee specific deadlines.

While the NW stack is composed by GPOS and applications,

and provides a rich environment for running human-machine

interaction as well as internet-based applications.

RT
Task
RT

Task

RTOS
Kernel

Idle
Task

RT
Task

RT
Task
RT

Task

GPOS(Linux)
Kernel

Normal App

ARM Trustzone based SoC

Monitor
Mode

Normal World Secure World

Executing
Switch

Executing
Switch

TZ Driver

NW
Timer

SW
Timer

TZAPI Library
g

Monitor

Fig. 5. TZDKS Architecture

B. Components of TZDKS

1) RTOS: RTOS is the partly modified version of a typical

real-time system - µcOSII. The main modifications on the

µcOSII kernel side includes: (i) a new port to enter-into/exit-

from GPOS, (ii) implementation of idle-scheduling, that is to

modify the idle task as an entrance for GPOS. (iii) optional

support for standard TEE (Trusted Execution Environment).

2) Monitor: The monitor component executs as a slave

module, though it runs in EL3 mode of ARM CPU. In fact, the

monitor is only activated through two ways. One is through a

SMC call, the other is through FIQ when GPOS is executing.

Functions of the monitor component includes: (i) SMC service

ports, (ii) timer interrupt handler for RTOS in the period of

GPOS running, (iii) world switcher.

3) GPOS: GPOS is an enhanced Linux system. Actu-

ally, Linux can run in the normal world without modifi-

cation. Some new modules have been added to Linux for

the communication with RTOS, including the kernel drivers

for TrustZone(which encapsulates SMC ports as a pseudo-

device), application libraries (provide communication ports

and standard TEE service ports defined by the GloblePlatform

consortium), some daemon services for the RTOS requirement,

and a configuration module for RTOS.

C. Working Process of TZDKS

The system starts booting on the secure world side by per-

forming a series of initialization operations, such as allocating

62

different resources to the predefined worlds and loading the ex-

ception/SMC vectors to the predefined addresses. Afterwards,

the RTOS kernel is loaded and started. The whole system will

run with RTOS as the main body, while GPOS will be loaded

and executed as a special task of RTOS, i.e. the IDLE task.

Each OS owns its private timer source. Meanwhile, different

interrupt types are configured to each OS (IRQ for GPOS,

and FIQ for RTOS). IRQs are masked during the secure world

execution for the priority of real-time tasks.

There are two kinds of event can trigger OS switch, SMC

instruction and interrupt. When CPU is executing in the GPOS

mode, a SMC call or a FIQ interrupt will trap CPU into

the monitor mode, and the monitor will store environment

information of GPOS, then redirect the control to the scheduler

or the ISR (Interrupt Service Routing) in RTOS, thus the

system will switch to RTOS. Switch to GPOS from RTOS

is under the control of the idle-scheduling policy of TZDKS.

To do this, RTOS stores the current environment and triggers

a SMC call to the monitor, so the monitor will restore the

GPOS context directly.

D. Mixed-Criticality Design

In TZDKS, idle-scheduling policy enables that RTOS has

a higher scheduling priority than GPOS, and consequently

GPOS is only scheduled during the idle periods of RTOS.

We find that pure idle-scheduling makes some troubles for

GPOS even when the CPU is not fully occupied by RTOS.

One problem is timer loss. That is because GPOS (with the

lowest priority) may be blocked by other real-time tasks for

a long time, and which will make GPOS lose some timer

interrupts. The other problem is the priority reverse brought

by communications between two OSs. Some tasks in RTOS

possibly require communicate with GPOS, and maybe wait

GPOS for a long time. We hence add another real-time task

τG also serving as a container of GPOS (when τG get CPU, it

will switch GPOS on), but with a variable priority. Due to the

limitation of the pages, we will give the detailed description

of τG in the future paper.

V. EVALUATION

We implemented TZDKS on a Hikey development board

with Trustzone-enabled. Hikey has an octa-core Cortex-A53

CPU (1.2 GHz), 2GB memory, 8GB eMMC storage. Because

µcOSII only supports uniprocessor, we modified the power

management functions in the under level of the software so

that only one core is left running. Nevertheless, the design of

TZDKS can also support a multi-core RTOS, and the following

experiments also reflect the performances in the multi-core

environment.

In order to evaluate the performance, four metrics discussed

in Section IV are measured: Complexity, Overhead, isolation,

and RT latency. Because isolation is hardly to be verified

by experiments, we conduct a discussion around supporting

mechanisms. Note that, in order to ensure the readability of

experimentation results, we have normalized the result data,

because different Linux versions are used in target platforms.

A. System Complexity

Benefiting from the TrustZone light-weight virtualization,

we can rapidly develop the prototype of TZDKS in a few

weeks. At the side of adapted µcOSII, we only modifed two

exception handler functions and IDLE task body to make the

OS running in the secure world. At the Linux side, it can run

directly in the normal world without modefication.

TABLE I
NECESSARY CODE LINES ADDED TO THE TZDKS COMPONENTS

Linux µcOS Trusted Firmware etc.

Code Lines 0 < 300 < 100

Besides that, some code lines were added to the Trusted

Firmware to enable a timer for µcOS. Applications and their

developments can be migrated to the new system easily. Table

I lists the code lines needed to develop the TZDKS. We note

that Xenomai require a patch to Linux kernel which has more

than 15 thousands code lines [1]. TZDKS obviously has a very

low complexity notwithstanding it is only a prototype system.

B. Evaluation on Isolation

Note that we mainly consider the isolation for RTOS in

a dual-criticality system. In TZDKS, access permissions to

memory and peripherals are under the control of hardware con-

trollers, and resources belonging to RTOS can not be accessed

by GPOS. Interrupts are configured (in GIC) as two groups:

group 0 and group 1. Group 0 interrupts are only hardware

routed to RTOS, while group 1 are only to GPOS. These

hardware components have been built in almost all current

ARMv8 processors. While in a virtualization system, memory

isolation is normally supported by hardware assistances (such

as VTx). Hardware isolation for peripherals and interrupts also

require extra hardware assistances(such as VT-d), which suf-

fers from significant system cost. Therefore, TZDKS provides

fine isolation for RTOS with low-cost hardware.

Fig. 6. Unixbench Results

C. Overhead

Due to the lack of method to test the integral performance

of TZDKS, we use UnixBench to measure the comprehensive

performance of Linux (GPOS) with zero load in RTOS. The

results will reflect the performance of TZDKS. Afterwards,

we compare the performance with other three Linux systems:

63

a native Linux, a Xenomai Linux, and a Linux in a Xen VM.

As shown in figure 6, we can see that there is almost no

performance loss in both GPOSs of TZDKS and Xenomai

Linux when the load of RTOS is very light. TZDKS is even

better than Xenomai as a whole, and a possible reason is

that Xenomai has more cost of context switch than TZDKS

(we will explain this later in the task switch experiment).

As a contrast, Linux in the Xen virtual machine has obvious

performance loss.

D. Interrupt Latency for RTOS

We measure the time from a interrupt triggered to the

interrupt handler running. Two thousands times SGI (Software

Generated Interrupt) were repeated in the experiment, and

we lists the maximum, minimum, average, as well as MSE

(Mean Squared Error) of latencies in table II. We compare the

latencies with the bare-metal µcOS, and results show that the

interrupt latencies in RTOS of TZDKS are slightly influenced

by GPOS, but are still deterministic and short enough for most

real-time applications. We also run the latency test (of the real-

time timer) provided by Xenomai package (the test can not

give MSE results), and the results show that TZDKS always

has shorter latencies than Xenomai.

TABLE II
INTERRUPT LATENCY FOR RTOS

Max

(cycles/µs)

Min

(cycles/µs)

Average

(cycles/µs)

MSE

(cycles/µs)

µcOS in

TZDKS
2530 / 2.11 410 / 0.34 1001.1 / 0.83 632.6 / 0.53

Bare-metal

µcOS
1377 / 1.15 380 / 0.32 823.5 / 0.69 313.1 / 0.26

Xenomai

Cobalt
15069 / 12.56 1382 / 1.16 3889 / 3.24 - / -

E. Context Switch Latency for Real-Time Tasks

In this measurement, we measure the CPU cycles used in the

process shown in upper half of Figure 4, e.g. the longest time

of a ready real-time task τ waiting to run. Results in table III

show that the longest time is less than 20 µs in TZDKS when

GPOS has very high load (especially when there are many

EXECL calls), so the context switch performance is good

enough for most applications. We run the switchtest provided

by Xenomai package to test the performance of thread switch

in kernel mode of Xenomai, and the maximum number of

switches is no more than 1800 per second on our board (the

average switch period is more than 550 µs).We think this

result probably can not reflect the true performance difference

between TZDKS and Xenomai for diverse methods and details

in each test, but it still shows that TZDKS has a good task

switch performance, and more researches will concern it in

the further work.

VI. CONCLUSIONS

The mixed-time-sensitive system, which combines different

types of OSs on unique hardware platform, has wide require-

ments and applications in many fields such as robot, aviation

etc. Two traditional solutions, dual-kernel and virtualization,

TABLE III
CONTEXT SWITCH LATENCY

Max

(cycles/µs)

Min

(cycles/µs)

Average

(cycles/µs)

MSE

(cycles/µs)

GPOS to RT-

task in TZDKS
19475 / 16.23 1757 / 1.47 4884.3 / 4.07 3619.8 / 3.02

Task switch in

Bare-metal µcOS
1629 / 1.15 642 / 0.54 1079.5 / 0.90 312.8 / 0.26

provide just reverse merit and demerit in different perfor-

mances. This paper proposes an idea to realize the dual-kernel

system based on the TrustZone isolation, and give the design of

TZDKS to verify this idea. TZDKS achieves suitable balance

among complexity, isolation, latency, and overhead.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (No. 61502510). Much of the work

reported in this paper took place while the first author was

visiting the University of York.

REFERENCES

[1] Soucecode of Xenomai. https://xenomai.org.
[2] TRUSTZONE. https://arm.com/products/security-on-arm/trustzone.
[3] Sierravisor virtualization for arm. Technical report, Sierraware,

http://www.sierraware.com, 2017.
[4] S. Baruah and A. Burns. Fixed-priority scheduling of dual-criticality

systems. In Proceedings of the 21st International conference on Real-

Time Networks and Systems, pages 173–181. ACM, 2013.
[5] A. Burns and R. Davis. Mixed criticality systems-a review. Department

of Computer Science, University of York, Tech. Rep, 2013.
[6] M. Franke. A quantitative comparison of realtime linux solutions.

Chemnitz University of Technology, 2007.
[7] T. Frenzel, A. Lackorzynski, A. Warg, and H. Härtig. Arm trustzone

as a virtualization technique in embedded systems. In Proceedings of

Twelfth Real-Time Linux Workshop, Nairobi, Kenya, 2010.
[8] Global Platform, http://www. globalplatform.org. TEE client API spec-

ification, 1.0 edition, 2010.
[9] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin. Resource efficient

isolation mechanisms in mixed-criticality scheduling. In 27th Euromicro

Conference on Real-Time Systems (ECRTS2015), pages 13–24.
[10] A. N. Jiang Zhe and P. Dong. Bluevisor: A scalable real-time hardware

hypervisor for heterogeneous many-core embedded systems.
[11] J. H. Koh and B. W. Choi. Real-time performance of real-time mecha-

nisms for rtai and xenomai in various running conditions. International

Journal of Control and Automation, 6(1):235–246, 2013.
[12] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho. Vosys-

monitor, a low latency monitor layer for mixed-criticality systems on
armv8-a. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[13] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral,
and A. Tavares. Towards a lightweight embedded virtualization archi-
tecture exploiting arm trustzone. In Emerging Technology and Factory

Automation (ETFA), 2014 IEEE, pages 1–4. IEEE, 2014.
[14] P. J. Prisaznuk. Arinc 653 role in integrated modular avionics (ima). In

27th Digital Avionics Systems Conference (DASC 2008), pages 1–E.
[15] D. Sangorrı́n, S. Honda, and H. Takada. Reliable and efficient dual-os

communications for real-time embedded virtualization. Information and

Media Technologies, 8(1):1–17, 2013.
[16] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using arm trustzone

to build a trusted language runtime for mobile applications. In ACM

SIGARCH Computer Architecture News, volume 42, pages 67–80, 2014.
[17] J. Zhe and A. Neil. Vcdc: The virtualized complicated device controller.

In LIPIcs-Leibniz International Proceedings in Informatics, volume 76.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[18] N. A. Zhe Jiang. Gpiocp: Timing-accurate general purpose i/o con-
troller for many-core real-time systems. In Proceedings of the 2017

Design, Automation & Test in Europe Conference & Exhibition. EDA
Consortium, 2017.

64

