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Abstract 27 

RADiation sensitive52 (RAD52) protein catalyzes the pairing between two 28 

homologous DNA sequences double-strand break repair and meiotic recombination, 29 

mediating RAD51 loading onto single-stranded DNA ends, and initiating homologous 30 

recombination and catalyzing DNA annealing. This article reports for the first time 31 

the presence of RAD52 homologs in the thermo-acidophilic Cyanidiophyceae whose 32 

genomes have undergone extensive sequencing. Database mining, phylogenetic 33 

inference, prediction of protein structure and evaluation of gene expression were 34 

performed in order to determine the functionality of RAD52 protein in 35 

Cyanidiophyceae. Our findings support that RAD52 gene and protein have an ancient 36 

origin, though it has been subsequently lost in all green algae and land plants. Its 37 

current function in Cyanidiophytina could be related to stress damage response for 38 

thriving in hot and acidic environments as well as to the genetic variability of these 39 

algae, in which – conversely to extant Rhodophyta - sexual mating was never 40 

observed. 41 

 42 

Keywords  RAD52, Homologous recombination, Cyanidiophytina, Galdieria, 43 

extremophiles 44 

 45 

Introduction  46 

Cyanidiophytina are unicellular red algae living in volcanic and post volcanic areas, 47 

where temperatures rise above 50°C, and high sulphuric acid concentrations, 48 

generated by the oxidation of sulphur gaseous emissions, greatly reduce the pH to 49 

values (pH 0.5-3.0)  prohibitive for the majority of eukaryotic life forms [1–6]. The 50 

class includes three genera, the walled Galdieria (G. sulphuraria, G. phlegrea, G. 51 
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maxima) and Cyanidium (C. caldarium, C. chilense) and the naked Cyanidioschyzon 52 

(C. merolae). 53 

The long evolutionary history of Cyanidiophytina began around 1.5 BYA ([7–9], 54 

before the formation of the supercontinent Rodinia (1.3-0.9 BYA), which resulted in 55 

an increase in volcanic activity that would have favored the diversification and 56 

dispersal of these thermoacidophilic algae [7–9].  57 

According to Gross and Bhattacharya [10], the rising oxygenic atmosphere would 58 

have exerted a selective pressure for efficient repair of ROS/UV-damaged DNA, 59 

driving ultimately the evolution of sex, through cell-cell fusions, chromosome 60 

movement, and emergence of the nuclear envelope, with the concurrent evolution of 61 

meiosis and eukaryogenesis.  62 

The occurrence of meiotic genes is not only related to genetic variation but it is also 63 

involved in DNA repair [11]: one of the most threatening forms of DNA damage is 64 

the break of the double helix (DSB), as both strands of the DNA duplex are impaired 65 

simultaneously. The RAD52 epistasis group is implicated in various cellular 66 

processes, such as recombinational repair and chromosome pairing in meisos, thus 67 

guaranteeing the genome integrity; in particular, the RADiation sensitive52 (RAD52) 68 

protein catalyzes the pairing between two homologous DNA sequences double-strand 69 

break repair and meiotic recombination mediating the loading of RAD51 onto single-70 

stranded DNA ends, and thereby initiating homologous recombination and catalyzing 71 

DNA annealing [12] RAD52 is recruited to the Replication Protein A (RPA)-single-72 

stranded DNA nucleoprotein complex, formed upon DSB induction and 73 

exonucleolytic ends resection, and mediates its replacement by RAD51. RAD51 then 74 

catalyzes strand invasion and D-loop formation. Eventually, RAD52 may assist in 75 

capturing the second DNA end and promote its annealing to the D-loop, thus leading 76 

to the formation of a Holliday junction [13]. 77 
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RAD52 Epistasis Group also includes RAD50, RAD51, RAD54, RAD55, RAD57, 78 

RAD59, RDH54, MRE11; they all cooperate in the process of homologous 79 

recombination, playing an essential role in the mitotic and meiotic cell cycles, also 80 

affecting the response to DNA damaging agents [12]. Homologues of the RAD52 81 

group of genes have been identified in many eukaryotes, including animals and fungi 82 

[14] and in some cases in prokaryotes [15] indicating high conservation of the 83 

recombinational repair pathway. The lack of RAD52 in the vast majority of 84 

photosynthetic protists, sexuated or not, is intriguing, considering its role in 85 

homologous recombination process and its relatively high conservation across 86 

eukaryotes. Even more unexpected is the presence of this key gene in the asexual red 87 

algae G. sulphuraria and C. merolae genomes along with its absence in other 88 

available genomes from sexuated Rhodophyta such as Porphyra and Chondrus.  89 

The present paper displays the characterization of RAD52 homologs in Galdieria 90 

sulphuraria genomes. The correspondence of the homologs to yeast and animal of the 91 

RAD52 proteins was also provided. An in-depth sequence analysis of this protein 92 

from 17 Galdieria strains was performed in order to delineate its evolutionary 93 

relationship and phyletic horizon in available genomes. To exclude a relictic nature of 94 

RAD52 sequences in Galdieria, selective pressures acting on the sequences were 95 

detected by analysis of non-synonymous nucleotide substitutions over the number of 96 

synonymous substitutions (Ka/Ks) [16–18]. The phylogenetic analyses were 97 

combined with preliminary gene expression data on Galdieria in order to verify the 98 

increasing of RAD52 mRNA expression during saline stress inducing DSBs.  99 

 100 

RESULTS AND DISCUSSION 101 

RAD52 origin and distribution  102 
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RAD52 gene homolog was identified in G. sulphuraria 074 genome (Gasu_26690, 103 

Accession number M2XIH5). To support the identification of RAD52 homologs 104 

within the genome of all analyzed taxa, a phylobayesian inference on protein 105 

sequences was built (Fig. 1). Analyses showed that all the algal aminoacid sequences 106 

were strongly supported as homologs of RAD52 excluding then being with RAD59 107 

paralog; by the survey of the sequences, RAD52 appears to be sporadically distributed 108 

both among bacteria and eukaryotes. RAD52 protein is commonly present in 109 

Bacteria; among phototrophic bacteria, RAD52 was confirmed only for 110 

Synechococcus sp. (Cyanophyta), and clusterized with significant posterior 111 

probability (0.99) with Spirochaete, Hyphomicrobium denitrificans and 112 

Phaeomarinobacter ectocarpi. Non-ambiguous blast hits included also Haptophyta 113 

(Emiliania huxleyi), and Heterokontophyta (Ectocarpus silicolosus, Phaeodactylum 114 

tricornutum, Thalassiosira oceanica, Thalassiosira pseudonana).  115 

Within the phylogenetic tree, cyanidophycean RAD52 proteins formed a moderately 116 

supported clade with the red algal group of Florideophyceae (Gelidium, 117 

Gracilariopsis and Calliarthron), as sister clade of the RAD52 from Heterokonts 118 

(Phaeodactylum tricornutum, Thalassiosira oceanica, Thalassiosira pseudonana), 119 

with Ectocarpus positioned outside of this branch. Noteworthy, all these algal phyla 120 

evolved through a secondary endosymbiosis in which a primary red algal cell would 121 

have been acquired by a eukaryotic lineage [19]. Previous phylogenetic analyses 122 

supported for a monophyletic origin of the plastids in cryptophytes, hapotophytes and 123 

heterokonts. According to Oliveira and Bhattacharya [20], the  124 
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 Fig. 1. RAD52 homologs, rooted with the RAD52 paralogs outgroup. 140 aligned 127 

amino acid sites from 54 taxa were analyzed; this consensus topology derived from 128 

>21.000 trees, α = 1.86 (1.45 < α < 2.28), pI = 7.269E-3 (7.4239E-8< pI < 0.0217) 129 

and lnL = –8952.79. 130 
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plastids of heterokonts would be most closely related to members of Cyanidium-138 

Galdieria group, and not directly related to cryptophytes and haptophyte plastids, thus 139 

suggesting for these last an independent origin from different members of 140 

Bangiophycidae [20].  141 

According to our investigations, the homology search for RAD52 in green algal 142 

genomes gave no results, as well as for Land Plants, Glaucophyta and Euglenophyta. 143 

However, the databases of protein, genomic, and transcribed (EST) sequences from 144 

the NCBI queried by Samach et al (2011) would have provided the evidence of 145 

RAD52-like proteins in several plants (monocotids and dicotids), as well as in some 146 

ferns and in filamentous (Spyrogira pratensis) and multicellular chlorophytes (Chara 147 

vulgaris). A gene duplication would have occurred according to Samach et al. [21] 148 

genome investigations: the green protists S. pratensis and C. vulgaris would possess 149 

only the paralog RAD52-1, whilst the gene would be lacking in Stramenopiles, 150 

Rhodophytes and unicellular Chlorophytes.  151 

The level of similarity among RAD52 G. sulphuraria sequences ranged from 72 to 152 

100%; the clustering reflects the phylogeny built on rbcL genes [5]: G. sulphuraria 153 

from Euroasiatic geothermal sites clusterized in an independent lineage (posterior 154 

probability= 0.89), but forming two well supported separate subclades: subclade I, 155 

including G. sulphuraria from Java and Russia (bp= 100%); subclade II, including 156 

both G. sulphuraria from Taiwan and G. sulphuraria from Iceland (bp= 100%). A 157 

second lineage included American accessions of G. sulphuraria clusterizing with 158 

Japanese and New Zealand strains, but into two well supported subclades (Fig. 2). 159 

 160 

 161 

 162 
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 175 

Fig. 2. Maximum likelihood tree for 24 newly sequenced Galdieria Rad52 gene. Only 176 

bootstrap values > 60% were reported. 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 Indonesia, ACUF074 (MK217340)

 Russia, IPPAS_P502 (MK217341)

 Taiwan, SAG21.92 (MK217346)

 Taiwan, Thal033 (MK217347)

 Iceland, ACUF402 (MK217342)

 Iceland, ACUF455 (MK217343)

 Iceland, ACUF388 (MK217344)

 Iceland, ACUF427 (MK217345)

 New Zealand, CCMEE5716 (MK217332)

 New Zealand, CCMEE5712 (MK217339)

 Japan, CCMEE5658 (MK217333)

 Japan, CCMEE5664 (MK217334)

 Japan, CCMEE5665 (MK217335)

 Japan, CCMEE5672 (MK217336)

 Japan, CCMEE5680 (MK217337)

 New Zealand, CCMEE5715 (MK217338)

 USA, ACUF141G (MK217324)

 USA, SAG108.79 (MK217327)

 New Zealand, CCMEE5720 (MK217326)

 Russia, IPPAS_P503 (MK217325)

 USA, ACUF141DG (MK217331)

 USA, ACUF141Y (MK217328)

 USA, ACUF142 (MK217329)

 USA, CCMEE5639 (MK217330)

 Cyanidioschyzon merolae, 10D (XM005538923)

0.20

100

100
100

100

72

77

99

75

89



 9 

Support for functional homology of RAD52 protein in Cyanidiophytina 189 

The structure of RAD52 from Cyanidiophyceae was modeled on the base of the N-190 

terminal domain of human RAD52 [22]. In Figs. 3 and 4 results from Selecton 191 

analysis are reported and related to information gained by I-Tasser. Results are shown 192 

concerning M8 model. Ka/Ks ratio was never higher than 1, evidencing that no 193 

divergent selection was detectable on analysed fragments. Values by MEC model 194 

were not substantially different (data not shown). The longest conserved sequence 195 

was made up of 36 residues that constitute 2 α-helix lining in the inner surface of the 196 

DNA binding groove of the protein. Many other highly conserved residues were in 197 

the first three β-sheets that constitute the outer surface of the DNA binding groove. In 198 

β-sheets, conserved residues were flanked by non-conserved ones. All five AA (I4, 199 

M9, Q59, K60 and V63) predicted as DNA binding by I-Tasser had highly conserved 200 

pattern (evidenced by a yellow square in Fig.3 and a yellow halo in Fig. 4d, e). For 201 

these residues, posterior probability evidenced a confidence interval for Ka/Ks 202 

estimated between 2.60E-05 and 3.50E-01 for I4 and between 3.20E-04 and 2.40E-203 

01for all the others. Residues evidenced by a red square in Fig. 3 and a yellow in Fig. 204 

4d,e are those predicted as DNA binding sites by Kagawa [22] (K129, R130 and 205 

R133) and were highly conserved as well. The second part of the sequence, not 206 

involved in the DNA binding groove formation, seemed not to be under puryfing 207 

selection during Galdieria speciation. In Fig. 4c, the predicted model by I-Tasser was 208 

shown, based on Singleton et al. [23] partial model for human RAD52 (Fig. 4a).  209 

All these features supported the functional homology between RAD52 from 210 

Cyanidiophyceae and the known RAD52 protein. To evaluate the functionality of 211 

RAD52 and its role in repairing DNA damage by inducing homologous 212 

recombination, the gene expression profile of RAD52 of G. maxima under salt-213 

stressed conditions was analyzed using real-time quantitative PCR (qPCR). RNAs  214 
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 216 

 217 

 218 

Fig. 3. Point value of Ka/Ks ratio along amino acidic sequence indicated by the Web-219 

logo graphics. Values gained under M8 model. Amino acid participating in a β-sheet 220 

formation are underlined in blue, while α-helix are underlined in red. All the five AA 221 

(I4, M9, Q59, K60 and V63) predicted as DNA binding by I-Tasser are evidenced by 222 

a yellow square on the diagram. Residues evidenced by a red square on the diagram 223 

are those predicted as DNA binding sites by Kagawa [22] (; K129, R130 and R133) 224 

 225 
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 230 

 231 

Fig. 4. Three-dimensional	representation	of	the	structure	predicted	by	I-TASSER	232 

integrated	with	Selecton	results;	a,	structure	of	human	RAD	52	is	reported	with	233 

the	DNA	binding	groove	evidenced	and	chains	represented	in	different	colours;	234 

b,	structure	predicted	by	I-Tasser	for	the	reference	sequence	used	in	the	Selecton	235 

analysis;	c,	DNA	binding	site	as	predicted	by	I-Tasser;	d,	Selecton	results	in	M8	236 

model	reported	on	the	predicted	structure,	3D	structures	are	represented	as	237 

cartoons	with	only	strongly	negatively	selected	sites	highlighted.	DNA	binding	238 

AA	are	highlited	with	yellow	halos;	e,	Selecton	results	in	M8	model	reported	on	239 

the	predicted	structure,	3D	structures	are	represented	as	spacefill.	DNA	binding	240 

AA	are	highlited	with	yellow	halos. 241 

 242 

 243 

 244 

 245 
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were extracted at multiple points (3,6 and 12 hours) from G. maxima cells under sub-246 

lethal and lethal NaCl (0,95M and 1,25M). RAD52 mRNA transcription levels 247 

increased after salt-exposition at 1.25M NaCl with a significant up-regulation at 12 248 

hours whereas at 0.95M NaCl the fold increase was higher compared to the control up 249 

to 6 hours exposition but then a drastic decrease is observed after 12 hours (Fig. 5). 250 

Accordingly with our expectations, RAD52 gene is present and plays an important 251 

role in Galdieria. The observation of functional conserved residues in a RAD52 252 

protein alignment showed that the catalytic activity of the protein may be conserved 253 

not only in Galdieria but also in the other related algal organisms. 254 

 255 

 256 

 257 

Fig. 5 .RAD52 gene expression in G. sulphuraria ACUF 074 cells cultured under 0.95 258 

M (dark grey bars) and 1.25M (light grey bars) NaCl. The mRNA levels were 259 

normalized with respect to the level of mRNA for the reference genes (EF1α and 260 

H2B). Bars show means ±SE from three independent experiments (n=3).  261 

 262 

 263 
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Putative role of RAD52 protein in Cyanidiophytina  264 

The findings herewith reported show RAD52 homologs in the polyextremophilic red 265 

algae Cyanidiophyceae; the conservation of predicted structures and of the amino acid 266 

residues implicated in DNA binding strongly supports the hypothesis of a common 267 

function between RAD52 from Cyanidiophyceae and the N-terminal domains of 268 

RAD52 from previously described proteins. Cyanidiophyceae are likely to be the 269 

oldest eukaryote with a RAD52 protein, in which it surely co-operates in DNA 270 

damage response and maybe in other meiosis-like mechanism of genetic variability 271 

(not shown); although RAD52 protein is lost for the most part in algae, it looks to be 272 

conserved in algal lineages derived from an event of secondary endosymbiosis 273 

involving a red alga, in which probably the ancestral RAD52 gene of the internalized 274 

rhodophyte was re-arranged and conserved. Because of its key role in DNA repair 275 

mechanism, RAD52 could have been retained as a relic heritage in some 276 

photosynthetic eukaryotes still living in primordial-like environments, while lost in 277 

others, even in closely related Rhodophyta with intricate life cycles. Being RAD52 278 

gene crucial in meiotic machinery as well, its presence is probably also a hint for 279 

looking at sexual behavior in putatively asexual Cyanidiophytina, inhabiting in 280 

Archean environments where eukaryogenesis and meiosis co-evolved to reduce the 281 

injuries in DNA of a rising oxygen atmosphere.  282 

Interestingly, RAD52 sequences demonstrated to have undergone purifying selection 283 

on all the part of the sequence involved in interaction with ssDNA and dsDNA. As 284 

expected, mutations in such sites may reduce fitness and are therefore more likely to 285 

be removed from the population (purified sites) [24]. In the remaining part of the 286 

sequence, instead, several K, R and Y residues are conserved, interspersed in a 287 

variable amino acidic context. As evidenced in human, these parts of the sequence are 288 

responsible of the globular structure of each module or RAD52 and of the interactions 289 
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between modules. In such regions of the protein, a certain sequence variability is 290 

compatible with the maintaining of the function. 291 

 292 

MATERIAL AND METHODS 293 

Bioinformatics and phylogenetic analysis 294 

RAD52 nucleotide sequences of G. sulphuraria 074 (Java, Indonesia) and 295 

Cyanidioschyzon merolae 10D (Japan) were retrieved from genome databases [25,26] 296 

(http://www.ncbi.nlm.nih.gov/genbank) while 24 additional unannotated nucleotide 297 

sequences of RAD52 from different Galdieria strains (10 G. sulphuraria, 14 298 

Galdieria sp.) were obtained by MySeq Illumina data. RAD52 from C. merolae 10D 299 

was retrieved from genome database and used as outgroup. For DNA extraction used 300 

for Illumina, DNA was extracted by resuspending a stationary phase algal paste with 301 

DNA extraction buffer [27]. DNA was incubated for 1 hr at 65 ̊C, centrifuged and the 302 

supernatant was precipitated by the addition of 1:1 isopropanol. The resultant pellet 303 

was suspended in Qiagen buffer PB, then applied to a miniprep column and washed 304 

according to manufacturers' details. DNA was eluted by adding pre-heated elution 305 

buffer provided by Quiagen to the column in 4 sequential elution steps. The 306 

sequencing was carried out as reported by Willing et al.[28]. After trimming, Illumina 307 

MiSeq reads were assembled using Spades v3.1 [29].  308 

RAD52 amino acid sequences were searched using the National Center for 309 

Biotechnology Information (NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi) by 310 

querying protein, genomic and EST sequences on BLAST. A total of 45 RAD52 311 

protein sequences from different organisms including algae, fungi, animals and 312 

bacteria were recruited, and used to generate a multiple sequence alignment, together 313 

with 9 RAD59 protein sequences as an outgroup. Among Cyanidiophytina, RAD52 314 

protein sequences were retrieved from genome databases of G. sulphuraria 074 (Java, 315 
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Indonesia), Cyanidioschyzon merolae 10D (Japan) (Tables 1, 2) 316 

(http://www.ncbi.nlm.nih.gov/genbank); [25,26] and G. phlegrea [30]. 317 

Phylogenetic inference of the evolutionary relationships of RAD52 from 318 

Cyanidiophyceae and its homologs obtained from public databases was used to verify 319 

the orthology of the protein; multiple alignment of amino acid sequences was 320 

performed by ClustalW [31], trimmed and adjusted by eye. Only unambiguously 321 

aligned amino acid sites were used for phylogenetic analyses. RAD52 phylogeny was 322 

rooted by outgroup by using a RAD52 paralogue, RAD59. Bayesian analyses (BA) 323 

were performed for combined and individual datasets with MrBayes v.3.1.1 [32] 324 

using the Metropolis coupled Markov chain Monte Carlo (MC3) with the GTR + Γ + 325 

I model. For each matrix, one million generations of two independent runs were 326 

performed with sampling trees generated every 100 generations. The burnin period 327 

was identified graphically by tracking the likelihoods at each generation to determine 328 

whether they reached a plateau. 329 

Maximum likelihood (ML) phylogenetic analysis was performed using the GTR + Γ 330 

+ I model implemented in RAxML software [33]. Statistical support for each branch 331 

was obtained from 1000 bootstrap replications using the same substitution model and 332 

RAxML program settings. The RAD52 evolutionary history of Galdieria strains was 333 

inferred using Maximum likelihood (ML) method, based on Hasegawa-Kishino-Yano 334 

model [34]. A discrete gamma distribution was used to model evolutionary rate 335 

differences among sites. Bootstrap analyses were performed as previously described. 336 

 337 

 338 

 339 

 340 

 341 
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Taxa GenBank ID 

RAD52   

Albugo candida 635369772 

Albugo laibachii 325180256 

Aphanomyces invadans 673048395 

Arcobacter butzleri 315478862 

Blastomyces gilchristii 261192601 

Bos taurus 528951193 

Calliarthron tubercolosum SRP005182 

Campylobacter curvus 516863234 

Campylobacter showae 489037738 

Candidatus Phaeomarinobacter ectocarpii 918662481 

Cyanidioschyzon merolae 544217672 

Danio rerio 66269435 

Ectocarpus silicolosus 298704860 

Emiliania huxleyi 551599108 

Encephalitozoon cuniculi 85014303 

Entamoeba histolytica 67476176 

Entamoeba invadens 471202697 

Entamoeba nuttali 672809564 

Galdieria sulphuraria  IPPAS P507   

Galdieria sulphuraria IPPAS P503 MK21733250 

Galdieria sp. ACUF074 MK217340 

Gallus gallus 730466 

Gracilaripsis chorda NBIV01000177 

Homo sapiens 863018 

Hyphomicrobium denitrificans 505409238 

Kuraisha capsulata 584391207 

Mus musculus 261824011 

Naegleria gruberi 290981385 

Phaeodactylum tricornutum 219126773 

Phytophthora nicotianae 970651832 

Phytophthora parasitica 566015423 

Plasmopara halstedii 953492183 

Rhizopus microsporus 729702307 

Saprolegnia diclina 669164116 

Saprolegnia parasitica 813177361 

Schizophyllum commune 302678737 

Schizosaccharomyces pombe 19112088 

Spirochaeta sp. 917473204 

Synechococcus sp. 494162898 
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 343 

Table 1. Accession numbers of RAD52 aminoacidic sequences used in this study 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

  

Taxa GenBank ID 

RAD52  

Thalassiosira oceanica 397635710 

Thalassiosira pseudonana 220968365 

Vittaforma corneae 667640414 

Wickerhamomyces ciferrii 754409763 

RAD59 
  

Bos taurus 61864423 

Chrysochromulina sp. 922864786 

Gallus gallus 45383087 

Guillardia theta 551643257 

Homo sapiens 21717826 

Kluyveromyces lactis 49643317 

Mus musculus 13385116 

Pan troglodytes 55645233 

Saccharomyces cerevisiae 6320144 
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Strain Strain code Accession number 

Galdieria sulphuraria ACUF141G MK217324 
ACUF141Y MK217328 

ACUF141DG MK217331 
ACUF142 MK217329 
ACUF388 MK217344 
ACUF402 MK217342 
ACUF427 MK217345 
ACUF455 MK217343 

SAG108.79 MK217327 
SAG21.92 MK217346 

Galdieria sp. IPPAS_P503 MK217325 
CCMEE5720 MK217326 
CCMEE5639 MK217330 
CCMEE5716 MK217332 
CCMEE5658 MK217333 
CCMEE5664 MK217334 
CCMEE5665 MK217335 
CCMEE5672 MK217336 
CCMEE5680 MK217337 
CCMEE5715 MK217338 
CCMEE5712 MK217339 

ACUF074 MK217340 
IPPAS_P502 MK217341 

THAL033 MK217347 
Cyanidioschyzon merolae 10D XM_005538923 

 359 

Table 2. Accession number of RAD52 nucleotide sequences from Cyanidiophyceae 360 

used in this study 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 
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2.2 In silico protein structure analysis 375 

The Selecton 2.4 Server (http://selecton.tau.ac.il/) was used to detect selection 376 

affecting specific sites. The server program measures the Ka/Ks rate on each amino 377 

acid residue [35–37]. Both M8 and MEC models were used. In M8 model, each 378 

substitution that implies a different coded amino-acid is considered as non 379 

synonymous, by contrast the mechanistic empirical combination model (MEC) takes 380 

into account the differences between amino acid replacement probabilities, expanding 381 

a 20 × 20 amino acid replacement rate matrix (such as the commonly used JTT 382 

matrix) into a 61 × 61 sense-codon rate matrix. Confidence interval of Ka/Ks values 383 

at each site were determined by posterior probability. The I-Tasser server 384 

(http://zhanglab.ccmb.med. umich.edu/I-TASSER) was used to predict the 3D 385 

structure of the domain and to map DNA binding sites especially conserved on the 386 

examined sequences. A multi-alignment representation was draft by using WebLogo 387 

application (http://weblogo.berkeley.edu/logo.cgi) and FirstGlance in JMolwas used 388 

to visualize the 3D structure (http://bioinformatics.org/firstglance/fgij//index.htm). 389 

 390 

Rad52 gene expression under salt stress 391 

The functionality of RAD52 gene was also investigated by analyzing the gene 392 

expression profile of the selected meiotic gene under osmotic stress conditions; G. 393 

sulphuraria ACUF 074 was maintained in liquid culture in Allen medium [38], pH 394 

1.5 at 37°C under a continuous irradiance of 60 µmol photons.m-2s-1. When in 395 

exponential growth stage, the culture was supplemented with different NaCl 396 

concentrations (0.16-2.5M). The growth rate was monitored until the stationary phase 397 

and evaluated spectrophotometrically at 550nm. All test were prepared in triplicate. 398 

Two NaCl stressed G. sulphuraria cultures with a sub-lethal (0,95M) and a lethal 399 

(1,25M) salt concentration were then used to evaluate RAD52 mRNA levels after 3, 6 400 
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and 12 hours from the salt addiction. A qRT-PCR assay was performed on G. 401 

sulphuraria ACUF 074. Total RNA was isolated by PureLink RNA Mini Kit (Thermo 402 

Fisher Scientific, Waltham, MA USA), according to the manufacturer’s instructions. 403 

The RNA concentration was quantified by measuring the absorbance at 260 nm using 404 

a Jasco V-530 UV/VIS spectrophotometer (Tokyo, Japan). The purity of all of the 405 

RNA samples was assessed at an absorbance ratio of OD260/280 and OD260/230, 406 

while its structural integrity was checked by agarose gel electrophoresis. Only high-407 

quality RNA with OD 260/280 and OD 260/230 >2 was used for subsequent steps. 408 

Single-stranded cDNA was synthesized from 100 ng of total RNA using an 409 

SuperScript® VILO™ cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA 410 

USA), according to the manufacturer’s instructions. EF1a and H2B were used as 411 

housekeeping genes [39]. The amplification efficiency of each gene was determined 412 

using a pool representing all of the cDNA samples. First, all of the primers were 413 

examined by end-point PCR, all of the chosen target were expressed, and specific 414 

amplification was confirmed by a single band of appropriate size in a 2% agarose gel 415 

after electrophoresis. In a second step, the pool was used to generate a five-point 416 

standard curve based on a ten-fold dilution series. The amplification efficiency (E) 417 

and correlation coefficient (R2) of the primers were calculated from the slope of the 418 

standard curve according to the equation [40]:  419 

 420 

Quantitative Real-time-PCR was performed using a CFX Connect Real-time PCR 421 

Detection System (Bio-Rad, Milan, Italy) to analyse the specific expression of each 422 

reference/target gene. cDNA was amplified in 96-well plates using the 423 

SsoAdvanced™ SYBR® Green Supermix (Bio-Rad, Milan, Italy), 15 ng of cDNA 424 

and 300 nM specific sense and anti-sense primers in a final volume of 20 µl for each 425 

well. Thermal cycling was performed, starting with an initial step at 95°C for 180 s, 426 
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followed by 40 cycles of denaturation at 95°C for 10 s and primer-dependent 427 

annealing for 30 s. Each run was completed with a melting curve analysis to confirm 428 

the specificity of amplification and lack of primer dimers.  429 

 430 
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